首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.

Background

The Ste-20 family kinase Hippo restricts cell proliferation and promotes apoptosis for proper organ development in Drosophila. In C. elegans, Hippo homolog also regulates longevity. The mammalian Ste20-like protein kinase, Mst1, plays a role in apoptosis induced by various types of apoptotic stress. Mst1 also regulates peripheral naïve T cell trafficking and proliferation in mice. However, its functions in mammals are not fully understood.

Methodology/Principal Findings

Here, we report that the Mst1-FoxO signaling pathway plays a crucial role in survival, but not apoptosis, of naïve T cells. In Mst1−/− mice, peripheral T cells showed impaired FoxO1/3 activation and decreased FoxO protein levels. Consistently, the FoxO targets, Sod2 and catalase, were significantly down-regulated in Mst1−/− T cells, thereby resulting in elevated levels of intracellular reactive oxygen species (ROS) and induction of apoptosis. Expression of constitutively active FoxO3a restored Mst1−/− T cell survival. Crossing Mst1 transgenic mice (Mst1 Tg) with Mst1−/− mice reduced ROS levels and restored normal numbers of peripheral naïve T cells in Mst1 Tg;Mst1−/− progeny. Interestingly, peripheral T cells from Mst1−/− mice were hypersensitive to γ-irradiation and paraquat-induced oxidative stresses, whereas those from Mst1 Tg mice were resistant.

Conclusions/Significance

These data support the hypothesis that tolerance to increased levels of intracellular ROS provided by the Mst1-FoxOs signaling pathway is crucial for the maintenance of naïve T cell homeostasis in the periphery.  相似文献   

2.
Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1−/− B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1−/− CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.  相似文献   

3.
High-mobility group box 1 (HMGB-1) is a strong chemo-attractive signal for both inflammatory and stem cells. The aim of this study is to evaluate the mechanisms regulating HMGB-1–mediated adhesion and rolling of c-kit+ cells and assess whether toll-like receptor-2 (TLR-2) and toll-like receptor-4 (TLR-4) of endothelial cells or c-kit+ cells are implicated in the activation of downstream migration signals to peripheral c-kit+ cells. Effects of HMGB-1 on the c-kit+ cells/endothelial interaction were evaluated by a cremaster muscle model in wild-type (WT), TLR-2 (−/−) and Tlr4 (LPS-del) mice. The mRNA and protein expression levels of endothelial nitric oxide synthase were determined by quantitative real-time PCR and immunofluorescence staining. Induction of crucial adhesion molecules for rolling and adhesion of stem cells and leukocytes were monitored in vivo and in vitro. Following local HMGB-1 administration, a significant increase in cell rolling was detected (32.4 ± 7.1% in ‘WT’ versus 9.9 ± 3.2% in ‘control’, P < 0.05). The number of firmly adherent c-kit+ cells was more than 13-fold higher than that of the control group (14.6 ± 5.1 cells/mm2 in ‘WT’ versus 1.1 ± 1.0 cells/mm2 in ‘control’, P < 0.05). In knockout animals, the fraction of rolling cells did not differ significantly from control levels. Firm endothelial adhesion was significantly reduced in TLR-2 (−/−) and Tlr4 (LPS-del) mice compared to WT mice (1.5 ± 1.4 cells/mm2 in ‘TLR-2 (−/−)’ and 2.4 ± 1.4 cells/mm2 in ‘Tlr4 (LPS-del)’ versus 14.6 ± 5.1 cells/mm2 in ‘WT’, P < 0.05). TLR-2 (−/−) and Tlr4 (LPS-del) stem cells in WT mice did not show significant reduction in rolling and adhesion compared to WT cells. HMGB-1 mediates c-kit+ cell recruitment via endothelial TLR-2 and TLR-4.  相似文献   

4.
5.
Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article.  相似文献   

6.
The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5’-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras −/−). An examination of the lymphoid organs of Rras −/− mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras −/− mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras −/− mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras −/− T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras −/− T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras −/− T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response.  相似文献   

7.
Recycling synaptic vesicles (SVs) transit through early endosomal sorting stations, which raises a fundamental question: are SVs sorted toward endolysosomal pathways? Here, we used snapin mutants as tools to assess how endolysosomal sorting and trafficking impact presynaptic activity in wild-type and snapin−/− neurons. Snapin acts as a dynein adaptor that mediates the retrograde transport of late endosomes (LEs) and interacts with dysbindin, a subunit of the endosomal sorting complex BLOC-1. Expressing dynein-binding defective snapin mutants induced SV accumulation at presynaptic terminals, mimicking the snapin−/− phenotype. Conversely, over-expressing snapin reduced SV pool size by enhancing SV trafficking to the endolysosomal pathway. Using a SV-targeted Ca2+ sensor, we demonstrate that snapin–dysbindin interaction regulates SV positional priming through BLOC-1/AP-3-dependent sorting. Our study reveals a bipartite regulation of presynaptic activity by endolysosomal trafficking and sorting: LE transport regulates SV pool size, and BLOC-1/AP-3-dependent sorting fine-tunes the Ca2+ sensitivity of SV release. Therefore, our study provides new mechanistic insights into the maintenance and regulation of SV pool size and synchronized SV fusion through snapin-mediated LE trafficking and endosomal sorting.  相似文献   

8.
Zhang J  Alcaide P  Liu L  Sun J  He A  Luscinskas FW  Shi GP 《PloS one》2011,6(1):e14525

Background

Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.

Methods and Results

Using bone marrow-derived mast cells from wild-type, Tnf−/−, Ifng−/−, Il6−/− mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin, and E-selectin in murine heart endothelial cells (MHEC) at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.

Conclusion

Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases.  相似文献   

9.
Increased intracellular pH is an evolutionarily conserved signal necessary for directed cell migration. We reported previously that in Dictyostelium cells lacking H+ efflux by a Na+-H+ exchanger (NHE; Ddnhe1), chemotaxis is impaired and the assembly of filamentous actin (F-actin) is attenuated. We now describe a modifier screen that reveals the C-terminal fragment of actin-interacting protein 1 (Aip1) enhances the chemotaxis defect of Ddnhe1 cells but has no effect in wild-type Ax2 cells. However, expression of full-length Aip1 mostly suppresses chemotaxis defects of Ddnhe1 cells and restores F-actin assembly. Aip1 functions to promote cofilin-dependent actin remodeling, and we found that although full-length Aip1 binds cofilin and F-actin, the C-terminal fragment binds cofilin but not F-actin. Because pH-dependent cofilin activity is attenuated in mammalian cells lacking H+ efflux by NHE1, our current data suggest that full-length Aip1 facilitates F-actin assembly when cofilin activity is limited. We predict the C-terminus of Aip1 enhances defective chemotaxis of Ddnhe1 cells by sequestering the limited amount of active cofilin without promoting F-actin assembly. Our findings indicate a cooperative role of Aip1 and cofilin in pH-dependent cell migration, and they suggest defective chemotaxis in Ddnhe1 cells is determined primarily by loss of cofilin-dependent actin dynamics.  相似文献   

10.
The homologous Rho kinases, ROCK1 and ROCK2, are involved in stress fiber assembly and cell adhesion and are assumed to be functionally redundant. Using mouse embryonic fibroblasts (MEFs) derived from ROCK1−/− and ROCK2−/− mice, we have recently reported that they play different roles in regulating doxorubicin-induced stress fiber disassembly and cell detachment: ROCK1 is involved in destabilizing the actin cytoskeleton and cell detachment, whereas ROCK2 is required for stabilizing the actin cytoskeleton and cell adhesion. Here, we present additional insights into the roles of ROCK1 and ROCK2 in regulating stress-induced impairment of cell-matrix and cell-cell adhesion. In response to doxorubicin, ROCK1−/− MEFs showed significant preservation of both focal adhesions and adherens junctions, while ROCK2−/− MEFs exhibited impaired focal adhesions but preserved adherens junctions compared with the wild-type MEFs. Additionally, inhibition of focal adhesion or adherens junction formations by chemical inhibitors abolished the anti-detachment effects of ROCK1 deletion. Finally, ROCK1−/− MEFs, but not ROCK2−/− MEFs, also exhibited preserved central stress fibers and reduced cell detachment in response to serum starvation. These results add new insights into a novel mechanism underlying the anti-detachment effects of ROCK1 deletion mediated by reduced peripheral actomyosin contraction and increased actin stabilization to promote cell-cell and cell-matrix adhesion. Our studies further support the differential roles of ROCK isoforms in regulating stress-induced loss of central stress fibers and focal adhesions as well as cell detachment.  相似文献   

11.
Dietary arachidonic acid (AA) has roles in growth, neuronal development, and cognitive function in infants. AA is remarkably enriched in phosphatidylinositol (PI), an important constituent of biological membranes in mammals; however, the physiological significance of AA-containing PI remains unknown. In an RNA interference–based genetic screen using Caenorhabditis elegans, we recently cloned mboa-7 as an acyltransferase that selectively incorporates AA into PI. Here we show that lysophosphatidylinositol acyltransferase 1 (LPIAT1, also known as MBOAT7), the closest mammalian homologue, plays a crucial role in brain development in mice. Lpiat1−/ mice show almost no LPIAT activity with arachidonoyl-CoA as an acyl donor and show reduced AA contents in PI and PI phosphates. Lpiat1−/ mice die within a month and show atrophy of the cerebral cortex and hippocampus. Immunohistochemical analysis reveals disordered cortical lamination and delayed neuronal migration in the cortex of E18.5 Lpiat1−/ mice. LPIAT1 deficiency also causes disordered neuronal processes in the cortex and reduced neurite outgrowth in vitro. Taken together, these results demonstrate that AA-containing PI/PI phosphates play an important role in normal cortical lamination during brain development in mice.  相似文献   

12.
The glycolipid glycosylphosphatidylinositol anchor (GPI-A) plays an important role in lipid raft formation, which is required for proper expression on the cell surface of two inhibitors of the complement cascade, CD55 and CD59. The absence of these markers from the surface of blood cells, including erythrocytes, makes the cells susceptible to complement lysis, as seen in patients suffering from paroxysmal nocturnal haemoglobinuria (PNH). However, the explanation for why PNH-affected hematopoietic stem/progenitor cells (HSPCs) expand over time in BM is still unclear. Here, we propose an explanation for this phenomenon and provide evidence that a defect in lipid raft formation in HSPCs leads to defective CXCR4- and VLA-4-mediated retention of these cells in BM. In support of this possibility, BM-isolated CD34+ cells from PNH patients show a defect in the incorporation of CXCR4 and VLA-4 into membrane lipid rafts, respond weakly to SDF-1 stimulation, and show defective adhesion to fibronectin. Similar data were obtained with the GPI-A Jurkat cell line. Moreover, we also report that chimeric mice transplanted with CD55−/− CD59−/− BM cells but with proper GPI-A expression do not expand over time in transplanted hosts. On the basis of these findings, we propose that a defect in lipid raft formation in PNH-mutated HSPCs makes these cells more mobile, so that they expand and out-compete normal HSPCs from their BM niches over time.  相似文献   

13.
Various experimental studies indicate potential involvement of bone marrow (BM)-derived stem cells (SCs) in malignancy development and progression. In this study, we comprehensively analysed systemic trafficking of various populations of BM-derived SCs (BMSCs), i.e., mesenchymal, haematopoietic, endothelial stem/progenitor cells (MSCs, HSCs, EPCs respectively), and of recently discovered population of very small embryonic/epiblast-like SCs (VSELs) in pancreatic cancer patients. Circulating CD133+/Lin/CD45/CD34+ cells enriched for HSCs, CD105+/STRO-1+/CD45 cells enriched for MSCs, CD34+/KDR+/CD31+/CD45 cells enriched for EPCs and small CXCR4+CD34+CD133+ subsets of LinCD45 cells that correspond to VSELs were enumerated and sorted from blood samples derived from 29 patients with pancreatic cancer, and 19 healthy controls. In addition, plasma levels of stromal-derived factor-1 (SDF-1), growth/inhibitory factors and sphingosine-1-phosphate (S1P; chemoattractants for SCs), as well as, of complement cascade (CC) molecules (C3a, C5a and C5b-9/membrane attack complex – MAC) were measured. Higher numbers of circulating VSELs and MSCs were detected in pancreatic cancer patients (P < 0.05 and 0.01 respectively). This trafficking of BMSCs was associated with significantly elevated C5a (P < 0.05) and C5b-9/MAC (P < 0.005) levels together with S1P concentrations detected in plasma of cancer patients, and seemed to be executed in a SDF-1 independent manner. In conclusion, we demonstrated that in patients with pancreatic cancer, intensified peripheral trafficking of selected populations of BMSCs occurs. This phenomenon seems to correlate with systemic activation of the CC, hepatocyte growth factor and S1P levels. In contrast to previous studies, we demonstrate herein that systemic SDF-1 levels do not seem to be linked with increased mobilization of stem cells in patients with pancreatic cancer.  相似文献   

14.
We recently described a new adhesion pathway in lymphocytes that is dependent on Cyclin-dependent kinase (Cdk) 4 activity and mediates lymphocyte interactions with endothelial matrix. We showed that Cdk4−/− mice had impaired recruitment of lymphocytes following bleomycin model of acute lung injury. In this study, we characterized the development and function of hematopoietic cells in Cdk4−/− mice and assessed the response of Cdk4−/− mice to allergen challenge. Cdk4−/− mice had hypoplastic thymuses with decreased total thymocyte cell numbers and increased CD4/CD8 double negative cells. Cdk4−/− bone marrow (BM) chimeric mice showed similar findings. Thymocytes from either Cdk4−/− or Cdk4−/− BM chimeric mice proliferated equally well as wild type controls in response to IL-2 activation. However Cdk4−/− thymocytes had decreased adhesion to both endothelial cell matrix and fibronectin compared to wild-type (WT) controls, whereas Cdk4−/− and WT splenocytes had similar adhesion. When Cdk4−/− BM chimeric mice and wild type BM chimeric mice were sensitized and challenged by intranasal administration of ovalbumin, we found no differences in allergic responses in the lung and airways between the two groups, as measured by inflammatory cell infiltrate, airway hyperreactivity, IgE levels and cytokine levels. In summary, we show that Cdk4 plays a previously unrecognized role in thymocyte maturation and adhesion, but is not required for thymocyte proliferation. In addition, Cdk4 is not required for lymphocyte trafficking to the lung following allergen sensitization and challenge.Key words: cell adhesion, leukocyte trafficking, thymocyte development  相似文献   

15.
Neuroinvasion and subsequent destruction of the central nervous system by prions are typically preceded by a colonization phase in lymphoid organs. An important compartment harboring prions in lymphoid tissue is the follicular dendritic cell (FDC), which requires both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance. However, prions are still detected in TNFR1−/− lymph nodes despite the absence of mature FDCs. Here we show that TNFR1-independent prion accumulation in lymph nodes depends on LTβR signaling. Loss of LTβR signaling, but not of TNFR1, was concurrent with the dedifferentiation of high endothelial venules (HEVs) required for lymphocyte entry into lymph nodes. Using luminescent conjugated polymers for histochemical PrPSc detection, we identified PrPSc deposits associated with HEVs in TNFR1−/− lymph nodes. Hence, prions may enter lymph nodes by HEVs and accumulate or replicate in the absence of mature FDCs.  相似文献   

16.
17.
18.

Background

CCR7-mediated signalling is important for dendritic cell maturation and homing to the lymph nodes. We have previously demonstrated that Jak3 participates in the signalling pathway of CCR7 in T lymphocytes.

Methodology and Principal Findings

Here, we used Jak3−/− mice to analyze the role of Jak3 in CCR7-mediated dendritic cells migration and function. First, we found no differences in the generation of DCs from Jak3−/− bone marrow progenitors, when compared to wild type cells. However, phenotypic analysis of the bone marrow derived DCs obtained from Jak3−/− mice showed reduced expression of co-stimulatory molecules compared to wild type (Jak3+/+). In addition, when we analyzed the migration of Jak3−/− and Jak3+/+ mature DCs in response to CCL19 and CCL21 chemokines, we found that the absence of Jak3 results in impaired chemotactic responses both in vitro and in vivo. Moreover, lymphocyte proliferation and contact hypersensitivity experiments showed that DC-mediated T lymphocyte activation is reduced in the absence of Jak3.

Conclusion/Significance

Altogether, our data provide strong evidence that Jak3 is important for DC maturation, migration and function, through a CCR7-mediated signalling pathway.  相似文献   

19.
Lck-interacting transmembrane adaptor 1 (LIME) has been previously identified as a raft-associated transmembrane protein expressed predominantly in T and B lymphocytes. Although LIME is shown to transduce the immunoreceptor signaling and immunological synapse formation via its tyrosine phosphorylation by Lck, a Src-family kinase, the in vivo function of LIME has remained elusive in the previous studies. Here we report that LIME is preferentially expressed in effector T cells and mediates chemokine-mediated T cell migration. Interestingly, in LIME-/- mice, while T cell receptor stimulation-dependent proliferation, differentiation to effector T cells, cytotoxic T lymphocyte (CTL) function and regulatory T lymphocyte (Treg) function were normal, only T cell-mediated inflammatory response was significantly defective. The reduced inflammation was accompanied by the impaired infiltration of leukocytes and T cells to the inflammatory sites of LIME-/- mice. More specifically, the absence of LIME in effector T cells resulted in the reduced migration and defective morphological polarization in response to inflammatory chemokines such as CCL5 and CXCL10. Consistently, LIME-/- effector T cells were found to be defective in chemokine-mediated activation of Rac1 and Rap1, and dysregulated phosphorylation of Pyk2 and Cas. Taken together, the present findings show that LIME is a critical regulator of inflammatory chemokine-mediated signaling and the subsequent migration of effector T cells to inflammatory sites.  相似文献   

20.
Lysophosphatidic acid (LPA) and the LPA-generating enzyme autotaxin (ATX) have been implicated in lymphocyte trafficking and the regulation of lymphocyte entry into lymph nodes. High local concentrations of LPA are thought to be present in lymph node high endothelial venules, suggesting a direct influence of LPA on cell migration. However, little is known about the mechanism of action of LPA, and more work is needed to define the expression and function of the six known G protein-coupled receptors (LPA 1–6) in T cells. We studied the effects of 18∶1 and 16∶0 LPA on naïve CD4+ T cell migration and show that LPA induces CD4+ T cell chemorepulsion in a Transwell system, and also improves the quality of non-directed migration on ICAM-1 and CCL21 coated plates. Using intravital two-photon microscopy, lpa2−/− CD4+ T cells display a striking defect in early migratory behavior at HEVs and in lymph nodes. However, later homeostatic recirculation and LPA-directed migration in vitro were unaffected by loss of lpa2. Taken together, these data highlight a previously unsuspected and non-redundant role for LPA2 in intranodal T cell motility, and suggest that specific functions of LPA may be manipulated by targeting T cell LPA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号