首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BB Hülsmann  AA Labokha  D Görlich 《Cell》2012,150(4):738-751
Nuclear pore complexes (NPCs) maintain a permeability barrier between the nucleus and the cytoplasm through FG-repeat-containing nucleoporins (Nups). We previously proposed a "selective phase model" in which the FG repeats interact with one another to form a sieve-like barrier that can be locally?disrupted by the binding of nuclear transport receptors (NTRs), but not by inert macromolecules, allowing selective passage of NTRs and associated cargo. Here, we provide direct evidence for this model in a physiological context. By using NPCs reconstituted from Xenopus laevis egg extracts, we show that Nup98 is essential for maintaining the permeability barrier. Specifically, the multivalent cohesion between FG repeats is required, including cohesive FG repeats close to the anchorage point to the NPC scaffold. Our data exclude alternative models that are based solely on an interaction between the FG repeats and NTRs and indicate that the barrier is formed by a sieve-like FG hydrogel.  相似文献   

2.
The permeability barrier of nuclear pore complexes (NPCs) controls all nucleo‐cytoplasmic exchange. It is freely permeable for small molecules. Objects larger than ≈30 kDa can efficiently cross this barrier only when bound to nuclear transport receptors (NTRs) that confer translocation‐promoting properties. We had shown earlier that the permeability barrier can be reconstituted in the form of a saturated FG/FxFG repeat hydrogel. We now show that GLFG repeats, the other major FG repeat type, can also form highly selective hydrogels. While supporting massive, reversible importin‐mediated cargo influx, FG/FxFG, GLFG or mixed hydrogels remained firm barriers towards inert objects that lacked nuclear transport signals. This indicates that FG hydrogels immediately reseal behind a translocating species and thus possess ‘self‐healing’ properties. NTRs not only left the barrier intact, they even tightened it against passive influx, pointing to a role for NTRs in establishing and maintaining the permeability barrier of NPCs.  相似文献   

3.
Nuclear pore complexes (NPCs) are highly selective gates that mediate the exchange of all proteins and nucleic acids between the cytoplasm and the nucleus. Their selectivity relies on a supramolecular assembly of natively unfolded nucleoporin domains containing phenylalanine–glycine (FG)‐rich repeats (FG repeat domains), in a way that is at present poorly understood. We have developed ultrathin FG domain films that reproduce the mode of attachment and the density of FG repeats in NPCs, and that exhibit a thickness that corresponds to the nanoscopic dimensions of the native permeability barrier. By using a combination of biophysical characterization techniques, we quantified the binding of nuclear transport receptors (NTRs) to such FG domain films and analysed how this binding affects the swelling behaviour and mechanical properties of the films. The results extend our understanding of the interaction of FG domain assemblies with NTRs and contribute important information to refine the model of transport across the permeability barrier.  相似文献   

4.
Macromolecular transport across the nuclear envelope depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains a permeability barrier made of phenylalanine-glycine (FG) repeat domains that selectively facilitates the permeation of cargoes bound to nuclear transport receptors (NTRs). FG-repeat domains in NPCs are a major site of O-linked N-acetylglucosamine (O-GlcNAc) modification, but the functional role of this modification in nucleocytoplasmic transport is unclear. We developed high-throughput assays based on optogenetic probes to quantify the kinetics of nuclear import and export in living human cells. We found that increasing O-GlcNAc modification of the NPC accelerated NTR-facilitated transport of proteins in both directions, and decreasing modification slowed transport. Superresolution imaging revealed strong enrichment of O-GlcNAc at the FG-repeat barrier. O-GlcNAc modification also accelerated passive permeation of a small, inert protein through NPCs. We conclude that O-GlcNAc modification accelerates nucleocytoplasmic transport by enhancing the nonspecific permeability of the FG-repeat barrier, perhaps by steric inhibition of interactions between FG repeats.  相似文献   

5.
Nuclear pore complexes (NPCs) restrict uncontrolled nucleocytoplasmic fluxes of inert macromolecules but permit facilitated translocation of nuclear transport receptors and their cargo complexes. We probed the passive barrier of NPCs and observed sieve‐like properties with a dominating mesh or channel radius of 2.6 nm, which is narrower than proposed earlier. A small fraction of diffusion channels has a wider opening, explaining the very slow passage of larger molecules. The observed dominant passive diameter approximates the distance of adjacent hydrophobic clusters of FG repeats, supporting the model that the barrier is made of FG repeat domains cross‐linked with a spacing of an FG repeat unit length. Wheat germ agglutinin and the dominant‐negative importin β45‐462 fragment were previously regarded as selective inhibitors of facilitated NPC passage. We now observed that they do not distinguish between the passive and the facilitated mode. Instead, their inhibitory effect correlates with the size of the NPC‐passing molecule. They have little effect on small species, inhibit the passage of green fluorescent protein‐sized objects >10‐fold and virtually block the translocation of larger ones. This suggests that passive and facilitated NPC passage proceed through one and the same permeability barrier.  相似文献   

6.
Nuclear pore complexes (NPCs) mediate cargo traffic between the nucleus and the cytoplasm of eukaryotic cells. Nuclear transport receptors (NTRs) carry cargos through NPCs by transiently binding to phenylalanine‐glycine (FG) repeats on intrinsically disordered polypeptides decorating the NPCs. Major impediments to understand the transport mechanism are the thousands of FG binding sites on each NPC, whose spatial distribution is unknown, and multiple binding sites per NTR, which leads to multivalent interactions. Using single molecule fluorescence microscopy, we show that multiple NTR molecules are required for efficient transport of a large cargo, while a single NTR promotes binding to the NPC but not transport. Particle trajectories and theoretical modelling reveal a crucial role for multivalent NTR interactions with the FG network and indicate a non‐uniform FG repeat distribution. A quantitative model is developed wherein the cytoplasmic side of the pore is characterized by a low effective concentration of free FG repeats and a weak FG‐NTR affinity, and the centrally located dense permeability barrier is overcome by multivalent interactions, which provide the affinity necessary to permeate the barrier.  相似文献   

7.
Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ?30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98‐derived hydrogel. It fully blocks entry of GFP‐sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β‐type NTRs at its surface. O‐GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid‐state NMR spectroscopy revealed that the O‐GlcNAc‐modified Nup98 gel lacks amyloid‐like β‐structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC‐like permeability.  相似文献   

8.
Nucleocytoplasmic traffic of nucleic acids and proteins across the nuclear envelop via the nuclear pore complexes (NPCs) is vital for eukaryotic cells. NPCs screen transported macromolecules based on their morphology and surface chemistry. This selective nature of the NPC-mediated traffic is essential for regulating the fundamental functions of the nucleus, such as gene regulation, protein synthesis, and mechanotransduction. Despite the fundamental role of the NPC in cell and nuclear biology, the detailed mechanisms underlying how the NPC works have remained largely unknown. The critical components of NPCs enabling their selective barrier function are the natively unfolded phenylalanine- and glycine-rich proteins called “FG-nucleoporins” (FG Nups). These intrinsically disordered proteins are tethered to the inner wall of the NPC, and together form a highly dynamic polymeric meshwork whose physicochemical conformation has been the subject of intense debate. We observed that specific sequence features (called largest positive like-charge regions, or lpLCRs), characterized by extended subsequences that only possess positively charged amino acids, significantly affect the conformation of FG Nups inside the NPC. Here we investigate how the presence of lpLCRs affects the interactions between FG Nups and their interactions with the cargo complex. We combine coarse-grained molecular dynamics simulations with time-resolved force distribution analysis to disordered proteins to explore the behavior of the system. Our results suggest that the number of charged residues in the lpLCR domain directly governs the average distance between Phe residues and the intensity of interaction between them. As a result, the number of charged residues within lpLCR determines the balance between the hydrophobic interaction and the electrostatic repulsion and governs how dense and disordered the hydrophobic network formed by FG Nups is. Moreover, changing the number of charged residues in an lpLCR domain can interfere with ultrafast and transient interactions between FG Nups and the cargo complex.  相似文献   

9.
Nucleocytoplasmic transport occurs through gigantic proteinaceous channels called nuclear pore complexes (NPCs). Translocation through the NPC is exquisitely selective and is mediated by interactions between soluble transport carriers and insoluble NPC proteins that contain phenylalanine-glycine (FG) repeats. Although most FG nucleoporins (Nups) are organized symmetrically about the planar axis of the nuclear envelope, very few localize exclusively to one side of the NPC. We constructed Saccharomyces cerevisiae mutants with asymmetric FG repeats either deleted or swapped to generate NPCs with inverted FG asymmetry. The mutant Nups localize properly within the NPC and exhibit exchanged binding specificity for the export factor Xpo1. Surprisingly, we were unable to detect any defects in the Kap95, Kap121, Xpo1, or mRNA transport pathways in cells expressing the mutant FG Nups. These findings suggest that the biased distribution of FG repeats is not required for major nucleocytoplasmic trafficking events across the NPC.  相似文献   

10.
TAP-p15 heterodimers have been implicated in the export of mRNAs through nuclear pore complexes (NPCs). We report a structural analysis of the interaction domains of TAP and p15 in a ternary complex with a Phe-Gly (FG) repeat of an NPC component. The TAP-p15 heterodimer is structurally similar to the homodimeric transport factor NTF2, but unlike NTF2, it is incompatible with either homodimerization or Ran binding. The NTF2-like heterodimer functions as a single structural unit in recognizing an FG repeat at a hydrophobic pocket present only on TAP and not on p15. This FG binding site interacts synergistically with a second site at the C terminus of TAP to mediate mRNA transport through the pore. In general, our findings suggest that FG repeats bind with a similar conformation to different classes of transport factors.  相似文献   

11.
Molecular traffic between the cytoplasm and the nucleoplasm of eukaryotic cells is mediated by nuclear pore complexes (NPCs). Hundreds, if not thousands, of molecules interact with and transit through each NPC every second. The pore is blocked by a permeability barrier, which consists of a network of intrinsically unfolded polypeptides containing thousands of phenylalanine-glycine (FG) repeat motifs. This FG-network rejects larger molecules and admits smaller molecules or cargos bound to nuclear transport receptors (NTRs). For a cargo transport complex, minimally consisting of a cargo molecule plus an NTR, access to the permeability barrier is provided by interactions between the NTR and the FG repeat motifs. Numerous models have been postulated to explain the controlled accessibility and the transport characteristics of the FG-network, but the amorphous, flexible nature of this structure has hindered characterization. A relatively recent development is the ability to monitor the real-time movement of single molecules through individual NPCs via single molecule fluorescence (SMF) microscopy. A major advantage of this approach is that it can be used to continuously monitor a series of specific molecular interactions in an active pore with millisecond time resolution, which therefore allows one to distinguish between kinetic and thermodynamic control. Novel insights and prospects for the future are outlined in this review. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

12.
The mechanism by which macromolecules are translocated through the nuclear pore complex (NPC) is little understood. However, recent measurements of nuclear transport in permeabilized cells showed that molecules binding to phenylalanine-glycine-rich repeats (FG repeats) in NPC proteins were translocated much faster through the NPC than molecules not interacting with FG repeats. We have studied that substrate preference of the NPC in isolated oocyte nuclei and purified nuclear envelopes by optical single transporter recording. NTF2, the transport receptor of RanGDP, was exported ~30 times faster than green fluorescent protein, an inert molecule of approximately the same size. The data confirm that restricted diffusion of inert molecules and facilitated transport of FG-repeat binding proteins are basic types of translocation through the NPC, demonstrating that the functional integrity of the NPC can be conserved in isolated nuclei and nuclear envelopes and thus opening new avenues to the analysis of nucleocytoplasmic transport.  相似文献   

13.
The nuclear pore complex (NPC) regulates molecular traffic across the nuclear envelope (NE). Selective transport happens on the order of milliseconds and the length scale of tens of nanometers; however, the transport mechanism remains elusive. Central to the transport process is the hydrophobic interactions between karyopherins (kaps) and Phe-Gly (FG) repeat domains. Taking into account the polymeric nature of FG-repeats grafted on the elastic structure of the NPC, and the kap-FG hydrophobic affinity, we have established a coarse-grained model of the NPC structure that mimics nucleocytoplasmic transport. To establish a foundation for future works, the methodology and biophysical rationale behind the model is explained in details. The model predicts that the first-passage time of a 15 nm cargo-complex is about 2.6±0.13 ms with an inverse Gaussian distribution for statistically adequate number of independent Brownian dynamics simulations. Moreover, the cargo-complex is primarily attached to the channel wall where it interacts with the FG-layer as it passes through the central channel. The kap-FG hydrophobic interaction is highly dynamic and fast, which ensures an efficient translocation through the NPC. Further, almost all eight hydrophobic binding spots on kap-β are occupied simultaneously during transport. Finally, as opposed to intact NPCs, cytoplasmic filaments-deficient NPCs show a high degree of permeability to inert cargos, implying the defining role of cytoplasmic filaments in the selectivity barrier.  相似文献   

14.
Translocation through nuclear pore complexes (NPCs) requires interactions between receptor-cargo complexes and phenylalanine-glycine (FG) repeats in multiple FG domain-containing NPC proteins (FG-Nups). We have systematically deleted the FG domains of 11 Saccharomyces cerevisiae FG-Nups in various combinations. All five asymmetrically localized FG domains deleted together were non-essential. However, specific combinations of symmetrically localized FG domains were essential. Over half the total mass of FG domains could be deleted without loss of viability or the NPC's normal permeability barrier. Significantly, symmetric deletions caused mild reductions in Kap95-Kap60-mediated import rates, but virtually abolished Kap104 import. These results suggest the existence of multiple translocation pathways.  相似文献   

15.
Translocation through the nuclear pore complex (NPC), a large transporter spanning the nuclear envelope, is a passive, diffusion-driven process, paradoxically enhanced by binding. To account for this mystery, several models have been suggested. However, recent experiments with modified NPCs make reconsideration necessary. Here, we suggest that nuclear transport receptors (NTRs) such as the karyopherins, in accordance with their peculiar boat-like structure, act as nanoscopic ferries transporting cargos through the NPC by sliding on a surface of phenylalanine glycine (FG) motifs. The dense array of FG motifs that covers the cytoplasmic filaments of the NPC is thought to continue on the wall of the large channel permeating the central framework of the NPC and on parts of the nuclear filaments to yield a coherent FG surface. Nuclear transport receptors are assumed to bind to the FG surface at filaments or at the channel entrance and then to rapidly search the FG surface by a two-dimensional random walk for the channel exit where they are released. The passage of neutral molecules is restricted to a narrow tube in the center of the central channel by a loose network of peptide chains. The model features virtual gating, is compatible with but not dependent on FG affinity gradients and tolerates deletions and transpositions of FG motifs. Implications of the model are discussed and tests are suggested.  相似文献   

16.
The permeability barrier of nuclear pore complexes (NPCs) controls all exchange of macromolecules between the cytoplasm and the cell nucleus. It consists of phenylalanine-glycine (FG) repeat domains apparently organized as an FG hydrogel. It has previously been demonstrated that an FG hydrogel derived from the yeast nucleoporin Nsp1p reproduces the selectivity of authentic NPCs. Here we combined time-resolved optical spectroscopy and X-ray scattering techniques to characterize such a gel. The data suggest a hierarchy of structures that form during gelation at the expense of unstructured elements. On the largest scale, protein-rich domains with a correlation length of ~16.5 nm are evident. On a smaller length scale, aqueous channels with an average diameter of ~3 nm have been found, which possibly represent the physical structures accounting for the passive sieving effect of nuclear pores. The protein-rich domains contain characteristic β-structures with typical inter-β-strand and inter-β-sheet distances of 1.3 and 0.47 nm, respectively. During gelation, the formation of oligomeric associates is accompanied by the transfer of phenylalanines into a hydrophobic microenvironment, supporting the view that this process is driven by a hydrophobic collapse.  相似文献   

17.
Trafficking of nucleic acids and large proteins through nuclear pore complexes (NPCs) requires interactions with NPC proteins that harbor FG (phenylalanine-glycine) repeat domains. Specialized transport receptors that recognize cargo and bind FG domains facilitate these interactions. Whether different transport receptors utilize preferential FG domains in intact NPCs is not fully resolved. In this study, we use a large-scale deletion strategy in Saccharomyces cerevisiae to generate a new set of more minimal pore (mmp) mutants that lack specific FG domains. A comparison of messenger RNA (mRNA) export versus protein import reveals unique subsets of mmp mutants with functional defects in specific transport receptors. Thus, multiple functionally independent NPC translocation routes exist for different transport receptors. Our global analysis of the FG domain requirements in mRNA export also finds a requirement for two NPC substructures-one on the nuclear NPC face and one in the NPC central core. These results pinpoint distinct steps in the mRNA export mechanism that regulate NPC translocation efficiency.  相似文献   

18.
In the nuclear pore complex, intrinsically disordered proteins (FG Nups), along with their interactions with more globular proteins called nuclear transport receptors (NTRs), are vital to the selectivity of transport into and out of the cell nucleus. Although such interactions can be modeled at different levels of coarse graining, in vitro experimental data have been quantitatively described by minimal models that describe FG Nups as cohesive homogeneous polymers and NTRs as uniformly cohesive spheres, in which the heterogeneous effects have been smeared out. By definition, these minimal models do not account for the explicit heterogeneities in FG Nup sequences, essentially a string of cohesive and noncohesive polymer units, and at the NTR surface. Here, we develop computational and analytical models that do take into account such heterogeneity in a minimal fashion and compare them with experimental data on single-molecule interactions between FG Nups and NTRs. Overall, we find that the heterogeneous nature of FG Nups and NTRs does play a role in determining equilibrium binding properties but is of much greater significance when it comes to unbinding and binding kinetics. Using our models, we predict how binding equilibria and kinetics depend on the distribution of cohesive blocks in the FG Nup sequences and of the binding pockets at the NTR surface, with multivalency playing a key role. Finally, we observe that single-molecule binding kinetics has a rather minor influence on the diffusion of NTRs in polymer melts consisting of FG-Nup-like sequences.  相似文献   

19.
Nucleoporins with phenylalanine-glycine repeats (FG Nups) function at the nuclear pore complex (NPC) to facilitate nucleocytoplasmic transport. In Saccharomyces cerevisiae, each FG Nup contains a large natively unfolded domain that is punctuated by FG repeats. These FG repeats are surrounded by hydrophilic amino acids (AAs) common to disordered protein domains. Here we show that the FG domain of Nups from human, fly, worm, and other yeast species is also enriched in these disorder-associated AAs, indicating that structural disorder is a conserved feature of FG Nups and likely serves an important role in NPC function. Despite the conservation of AA composition, FG Nup sequences from different species show extensive divergence. A comparison of the AA substitution rates of proteins with syntenic orthologs in four Saccharomyces species revealed that FG Nups have evolved at twice the rate of average yeast proteins with most substitutions occurring in sequences between FG repeats. The rapid evolution of FG Nups is poorly explained by parameters known to influence AA substitution rate, such as protein expression level, interactivity, and essentiality; instead their rapid evolution may reflect an intrinsic permissiveness of natively unfolded structures to AA substitutions. The overall lack of AA sequence conservation in FG Nups is sharply contrasted by discrete stretches of conserved sequences. These conserved sequences highlight known karyopherin and nucleoporin binding sites as well as other uncharacterized sites that may have important structural and functional properties.  相似文献   

20.
The interaction between nuclear pore proteins (nucleoporins) and transport factors is crucial for the translocation of macromolecules through nuclear pores. Many nucleoporins contain FG sequence repeats, and previous studies have demonstrated interactions between repeats containing FxFG or GLFG cores and transport factors. The crystal structure of residues 1-442 of importin-beta bound to a GLFG peptide indicates that this repeat core binds to the same primary site as FxFG cores. Importin-beta-I178D shows reduced binding to both FxFG and GLFG repeats, consistent with both binding to an overlapping site in the hydrophobic groove between the A-helices of HEAT repeats 5 and 6. Moreover, FxFG repeats can displace importin-beta or its S. cerevisiae homologue, Kap95, bound to GLFG repeats. Addition of soluble GLFG repeats decreases the rate of nuclear protein import in digitonin-permeabilized HeLa cells, indicating that this interaction has a role in the translocation of carrier-cargo complexes through nuclear pores. The binding of GLFG and FxFG repeats to overlapping sites on importin-beta indicates that functional differences between different repeats probably arise from differences in their spatial organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号