首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In Drosophila, the sex of germ cells is determined by autonomous and inductive signals. Somatic inductive signals can drive XX germ cells into oogenesis or into spermatogenesis. An autonomous signal makes XY germ cells male and unresponsive to sex determination by induction. The elements forming the X:A ratio in the soma and the genes tra, tra2, dsx, and ix that determine the sex of somatic cells have no similar role in the germline. The gene Sxl, however, is required for female differentiation of somatic and germ cells. Inductive signals that are dependent on somatic tra and dsx expression already affect the sex-specific development of germ cells of first instar larvae. At this early stage, however, germline expression of Sxl does not appear to affect the sexual characteristics of germ cells. Since inductive signals dependent on tra and dsx nevertheless influence the choice of sex-specific splicing of Sxl, it can be concluded that Sxl is a target of the inductive signal, but that its product is required late for oogenesis. Other genes must therefore control the early sexual dimorphism of larval germ cells. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The hermaphrodite Caenorhabditis elegans germline has become a classic model for stem cell regulation, but the male C. elegans germline has been largely neglected. This work provides a cellular analysis of the adult C. elegans male germline, focusing on its predicted stem cell region in the distal gonad. The goals of this study were two-fold: to establish the C. elegans male germline as a stem cell model and to identify sex-specific traits of potential relevance to the sperm/oocyte decision. Our results support two major conclusions. First, adult males do indeed possess a population of germline stem cells (GSCs) with properties similar to those of hermaphrodite GSCs (lack of cell cycle quiescence and lack of reproducibly oriented divisions). Second, germ cells in the mitotic region, including those most distal within the niche, exhibit sex-specific behaviors (e.g. cell cycle length) and therefore have acquired sexual identity. Previous studies demonstrated that some germ cells are not committed to a sperm or oocyte cell fate, even in adults. We propose that germ cells can acquire sexual identity without being committed to a sperm or oocyte cell fate.  相似文献   

3.
Four new alleles, bn116, bn117, bn118, and bn119, on LG I were isolated in C. elegans with defects in germline stem cell proliferation. Using genetic mapping and snip-SNP mapping, bn116, bn117, bn118, and bn119 were located 5.0 cM, 1.3 cM, 2.3 cM, and 5.0 cM, respectively, to the right of dpy-5 on LG I. Further, bn116 and bn119 were grouped into the same complementation group by a complementation test. They are loss-of-function recessive alleles that produce homozygous sterile worms whose germ cells do not proliferate during larval development. However, the worms contained normal somatic gonadal structures including distal tip cells and gonadal sheath cells, suggesting that the defect in germline proliferation was not caused by the absence of somatic signaling. Although DAF-16 was localized to the nucleus in all four mutants, the life span was extended only in the three mutants except bn116. These results suggest that the defect in germline stem cell proliferation, the presence of normal somatic gonadal tissues, and DAF-16 nuclear translocation were sufficient for extending the lifespan of the bn117, bn118, and bn119 mutants, but not the bn116 mutant. Intriguingly, bn116 and bn119 were identified as two different mutations on the same gene, pab-1, which encodes a poly(A)-binding protein. Therefore, although the bn116 and bn119 mutations cause similar defects in germ cell proliferation, their effects on life span are different.  相似文献   

4.
By screening C. elegans mutants for severe defects in germline proliferation, we isolated a new loss-of-function allele of cdc-25.1, bn115. bn115 and another previously identified loss-of-function allele nr2036 do not exhibit noticeable cell division defects in the somatic tissues but have reduced numbers of germ cells and are sterile, indicating that cdc-25.1 functions predominantly in the germ line during postembryonic development, and that cdc-25.1 activity is probably not required in somatic lineages during larval development. We analyzed cell division of germ cells and somatic tissues in bn115 homozygotes with germline-specific anti-PGL-1 immunofluorescence and GFP transgenes that express in intestinal cells, in distal tip cells, and in gonadal sheath cells, respectively. We also analyzed the expression pattern of cdc-25.1 with conventional and quantitative RT-PCR. In the presence of three other family members of cdc-25 in C. elegans defects are observed only in the germ line but not in the somatic tissues in cdc-25.1 single mutants, and cdc-25.1 is expressed predominantly, if not exclusively, in the germ line during postembryonic stages. Our findings indicate that the function of cdc-25.1 is unique in the germ line but likely redundant with other members in the soma.  相似文献   

5.
The microtubule (MT)‐associated putative kinase RUNKEL (RUK) is an important component of the phragmoplast machinery involved in cell plate formation in Arabidopsis somatic cytokinesis. Since loss‐of‐function ruk mutants display seedling lethality, it was previously not known whether RUK functions in mature sporophytes or during gametophyte development. In this study we utilized RUK proteins that lack the N‐terminal kinase domain to further examine biological processes related to RUK function. Truncated RUK proteins when expressed in wild‐type Arabidopsis plants cause cellularization defects not only in seedlings and adult tissues but also during male meiocyte development, resulting in abnormal pollen and reduced fertility. Ultrastructural analysis of male tetrads revealed irregular and incomplete or absent intersporal cell walls, caused by disorganized radial MT arrays. Moreover, in ruk mutants endosperm cellularization defects were also caused by disorganized radial MT arrays. Intriguingly, in seedlings expressing truncated RUK proteins, the kinesin HINKEL, which is required for the activation of a mitogen‐activated protein kinase signaling pathway regulating phragmoplast expansion, was mislocalized. Together, these observations support a common role for RUK in both phragmoplast‐based cytokinesis in somatic cells and syncytial cytokinesis in reproductive cells.  相似文献   

6.
Seed plant female gametophytes are focal points for the evolutionary modification of development. From a structural perspective, the most divergent female gametophytes among all seed plants are found in Gnetum, a clade within Gnetales. Coenocytic organization at sexual maturity, absence of defined egg cells (free nuclei are fertilized), lack of centripetal cellularization, and postfertilization development of embryo-nourishing tissues are features of the female gametophytes of Gnetum unparalleled among seed plants. Although the female gametophyte of Gnetum retains the three basic phases of somatic development common to female gametophytes of plesiomorphic seed plants (free nuclear development, cellularization, cellular growth), the timing of fertilization has been accelerated relative to the rate of somatic development. As a consequence, the female gametophyte of Gnetum matures sexually (is fertilized) at a juvenile (compared with the ancestral somatic ontogeny) and free nuclear stage of somatic development, thereby precluding differentiation of egg cells. Unlike progenetic animals, where truncation of somatic ontogeny evolves in tandem with acceleration in the timing of sexual maturation, the female gametophyte of Gnetum completes the entire ancestral somatic ontogeny after precocious sexual maturation. This results in the evolution of postfertilization development of embryo-nourishing female gametophyte tissues, a phenomenon unique among seed plants. Nonheterochronic developmental innovations have also played important roles in the evolution of the female gametophyte of Gnetum. Centripetal cellularization, which is always associated with the phase change from coenocytic to cellular organization among plesiomorphic seed plant female gametophytes, is lacking in Gnetum. Instead, during early phases of development, apomorphic free nuclear organization is coupled with a highly anomalous pattern of cellularization. Stage-specific innovations during early development in the female gametophyte of Gnetum do not affect plesiomorphic aspects of later phases of development. Thus, a complex array of heterochronic and nonheterochronic developmental innovations have played critical roles in the ontogenetic evolution of the highly apomorphic female gametophyte of Gnetum.  相似文献   

7.
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells.  相似文献   

8.
Previous studies demonstrated that a subset of synMuv B mutants ectopically misexpress germline-specific P-granule proteins in their somatic cells, suggesting a failure to properly orchestrate a soma/germline fate decision. Surprisingly, this fate confusion does not affect viability at low to ambient temperatures. Here, we show that, when grown at high temperature, a majority of synMuv B mutants irreversibly arrest at the L1 stage. High temperature arrest (HTA) is accompanied by upregulation of many genes characteristic of germ line, including genes encoding components of the synaptonemal complex and other meiosis proteins. HTA is suppressed by loss of global regulators of germline chromatin, including MES-4, MRG-1, ISW-1 and the MES-2/3/6 complex, revealing that arrest is caused by somatic cells possessing a germline-like chromatin state. Germline genes are preferentially misregulated in the intestine, and necessity and sufficiency tests demonstrate that the intestine is the tissue responsible for HTA. We propose that synMuv B mutants fail to erase or antagonize an inherited germline chromatin state in somatic cells during embryonic and early larval development. As a consequence, somatic cells gain a germline program of gene expression in addition to their somatic program, leading to a mixed fate. Somatic expression of germline genes is enhanced at elevated temperature, leading to developmentally compromised somatic cells and arrest of newly hatched larvae.  相似文献   

9.
10.
11.
Maintenance of mitotically cycling germline stem cells (GSCs) is vital for continuous production of gametes. In worms and insects, signaling from surrounding somatic cells play an essential role in the maintenance of GSCs by preventing premature differentiation. In addition, germ cell proteins such as the Drosophila Pumilio and Caenorhabditis elegans FBF, both members of the PUF family translational regulators, contribute to GSC maintenance. FBF functions by suppressing GLD-1, which promotes meiotic entry. However, factors that directly promote GSC proliferation, rather than prevent differentiation, are not known. Here we show that PUF-8, another C. elegans member of the PUF family and MEX-3, a KH domain translational regulator, function redundantly to promote GSC mitosis. We find that PUF-8 protein is highly enriched in mitotic germ cells, which is similar to the expression pattern of MEX-3 described earlier. The puf-8(−) mex-3(−) double mutant gonads contain far fewer germ cells than both single mutants and wild-type. While these cells lack mitotic, meiotic and sperm markers, they retain the germ cell-specific P granules, and are capable of gametogenesis if GLP-1, which normally blocks meiotic entry, is removed. Significantly, we find that at least one of these two proteins is essential for germ cell proliferation even in meiotic entry-defective mutants, which otherwise produce germ cell tumors. We conclude PUF-8 and MEX-3 contribute to GSC maintenance by promoting mitotic proliferation rather than by blocking meiotic entry.  相似文献   

12.
DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements.  相似文献   

13.
In Caenorhabditis elegans, cdc-25.1 loss-of-function mutants display a lack of germline proliferation. We found that the proliferation defect of cdc-25.1 mutants was suppressed by wee-1.3 RNAi. Further, among the seven cdk and seven cyclin homologs examined, cdk-1 and cyb-3 RNAi treatment caused the most severe germline proliferation defects in an rrf-1 mutant background, which were similar to those of the cdc-25.1 mutants. In addition, while RNAi of cyd-1 and cye-1 caused significant germline proliferation defects, RNAi of cdk-2 and cdk-4 did not. Compared with the number of germ nuclei in wee-1.3(RNAi) worms, the number in wee-1.3(RNAi);cdk-1(RNAi) and wee-1.3(RNAi);cyb-3(RNAi) worms further decreased to the level of cdk-1(RNAi) and cyb-3(RNAi) worms, respectively, indicating that cdk-1 and cyb-3 are epistatic and function downstream of cdc-25.1 and wee-1.3 in the control of the cell cycle. BrdU labeling of adult worms showed that, while 100% of the wild-type germ nuclei in the mitotic region incorporated BrdU when labeled for more than 12 h at 20°C, a small fraction of the cdc-25.1 mutant germ nuclei failed to incorporate BrdU even when labeled for 68 h. These results indicate that CDC-25.1 is required for maintaining proper rate of germline mitotic cell cycle. We propose that CDC-25.1 regulates the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively controlling CDK-1, which forms a complex primarily with CYB-3, but also possibly with CYD-1 and CYE-1.  相似文献   

14.
15.
16.
17.
18.
19.
Asexual reproduction in the annelid Enchytraeus japonensis entails the regeneration of primordial germ cells from body parts that lack gonads. New primordial germ cells arise from piwi-expressing germline stem cells that are distinct from somatic stem cells.  相似文献   

20.
Quiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. The sole PTEN ortholog in Caenorhabditis elegans is daf-18. In a C. elegans loss-of-function mutant for daf-18, primordial germ cells (PGCs) divide inappropriately in L1 larvae hatched into starvation conditions, in a TOR-dependent manner. Here, we further investigated the role of daf-18 in maintaining PGC quiescence in L1 starvation. We found that maternal or zygotic daf-18 is sufficient to maintain cell cycle quiescence, that daf-18 acts in the germ line and soma, and that daf-18 affects timing of PGC divisions in fed animals. Importantly, our results also implicate daf-18 in repression of germline zygotic gene activation, though not in germline fate specification. However, TOR is less important to germline zygotic gene expression, suggesting that in the absence of food, daf-18/PTEN prevents inappropriate germline zygotic gene activation and cell division by distinct mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号