首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Objective: To examine the association of plasma interleukin‐6 (IL‐6) concentrations with adiposity and fat cell metabolism in women. Methods and Procedures: Omental (OM) and subcutaneous (SC) adipose tissue samples were obtained from 48 healthy women (age: 47 ± 5 years, BMI: 26.9 ± 5.3 kg/m2) undergoing gynecological surgeries. Total and visceral adiposity were assessed by dual‐energy X‐ray absorptiometry and computed tomography, respectively. Measures of adipocyte lipolysis (basal, isoproterenol‐, forskolin‐, and cyclic dibutyryl‐adenosine monophosphate (AMP)‐stimulated) and adipose tissue lipoprotein lipase (LPL) activity were obtained. Plasma IL‐6 was measured by radioimmunoassay. Results: Plasma IL‐6 was positively correlated with total body fat mass (r = 0.32, P < 0.05), SC adipose tissue area (r = 0.35, P < 0.05), SC adipocyte diameter (r = 0.30, P < 0.05), and a trend was observed with visceral adipose tissue area (r = 0.20, P < 0.07). Plasma IL‐6 was positively correlated with glycerol released in response to isoproterenol (10?5 to 10?8 mol/l) by isolated SC (0.31 ≤ r ≤ 0.65, P < 0.05) and OM (0.36 ≤ r ≤ 0.40, P < 0.02) adipocytes, independent of menopausal status. No correlation was found with LPL activity. A subsample of women with high plasma IL‐6 (n = 10) was matched with women with low plasma IL‐6 (n = 10) for total body fat mass. OM adipocyte glycerol release in response to isoproterenol (10?5 to 10?8 mol/l) was higher in the subsample of women with elevated plasma IL‐6 (P ≤ 0.07). Discussion: We observed that OM lipolysis was significantly higher in women with elevated plasma IL‐6 for a similar body fat mass and menopausal status. These results suggest that higher circulating IL‐6 concentrations are associated with increased isoproterenol‐stimulated lipolysis especially in OM abdominal adipocytes in women.  相似文献   

3.
Ceramides (Cer) are implicated in obesity‐associated skeletal muscle and perhaps adipocyte insulin resistance. We examined whether the sphingolipid content of human subcutaneous adipose tissue and plasma varies by obesity and sex as well as the relationship between ceramide content and metabolic indices. Abdominal subcutaneous adipose biopsies were performed on 12 lean adults (males = 6), 12 obese adults (males = 6) for measurement of sphingolipid content and activity of the main ceramide metabolism enzymes. Blood was sampled for glucose, insulin (to calculate homeostasis model assessment‐estimated insulin resistance (HOMAIR)) adiponectin, and interleukin‐6 (IL‐6) concentrations. Compared to lean controls, total ceramide content (pg/adipocyte) was increased by 31% (P < 0.05) and 34% (P < 0.05) in obese females and males, respectively. In adipocytes from obese adults sphingosine, sphinganine, sphingosine‐1‐phosphate, C14‐Cer, C16‐Cer, and C24‐Cer were all increased. C18:1‐Cer was increased in obese males and C24:1‐Cer in obese females. For women only, there was a negative correlation between C16‐Cer ceramide and plasma adiponectin (r = ?0.77, P = 0.003) and a positive correlation between total ceramide content and HOMAIR (r = 0.74, P = 0.006). For men only there were significant (at least P < 0.05), positive correlations between adipocyte Cer‐containing saturated fatty acid and plasma IL‐6 concentration. We conclude that the sexual dimorphism in adipose tissue behavior in humans extends to adipose tissue sphingolipid content its association with adiponectin, IL‐6 and insulin resistance.  相似文献   

4.
Recent studies have suggested a beneficial effect of vitamin D and calcium on adipocyte metabolism and the metabolic profile. Our objective was to examine associations of vitamin D intake, calcium and dairy products as well as serum 25(OH)D concentration with adiposity measures and adipocyte size in women. Omental and subcutaneous adipose tissue samples were obtained from 43 women undergoing gynecological surgeries. Adipocyte size was measured using adipocyte suspensions from collagenase-digested fat tissues. Total and visceral adiposity were assessed by dual-energy X-ray absorptiometry and computed tomography, respectively. Serum 25(OH)D was measured by radioimmmunoassay. Dietary intakes were assessed using a food frequency questionnaire. Women consuming two or more dairy product portions daily had smaller adipocytes in the omental depot compared to women consuming less than two portions daily (79 ± 12 vs. 94 ± 16 μm, P ≤ 0.01). Dietary intakes of calcium (r = -0.55) and vitamin D (r = -0.43) as well as serum 25(OH)D (r = -0.35) were also inversely and significantly associated with omental adipocyte size (P ≤ 0.05 for all). Dietary vitamin D intake was inversely associated with visceral adipose tissue area (r = -0.34, P ≤ 0.05). Serum 25(OH)D was also inversely associated with visceral adipose tissue area (r = -0.32) as well as with total adipose tissue area (r = -0.44), subcutaneous adipose tissue area (r = -0.36), BMI (r =-0.43) and total body fat mass (r = -0.41, P ≤ 0.05 for all). In conclusion, elevated dietary vitamin D intake and serum 25(OH)D values are related to lower visceral adiposity and omental adipocyte size in women.  相似文献   

5.
Objective: African Americans (AAs) have less visceral and more subcutaneous fat than whites, thus the relationship of adiponectin and leptin to body fat and insulin sensitivity in AA may be different from that in whites. Methods and Procedures: Sixty‐nine non‐diabetic AA (37 men and 32 women), aged 33 ± 1 year participated. The percent fat was determined by dual‐energy X‐ray absorptiometry, abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) volume by computerized tomography (CT), and insulin sensitivity by homeostasis model assessment (HOMA). Results: VAT was greater in men (1,619 ± 177 cm3 vs. 1,022 ± 149 cm3; P = 0.01); women had a higher percentage of body fat (34.1 ± 1.4 vs. 24.0 ± 1.2; P < 0.0001), adiponectin (15.8 ± 1.2 μg/ml vs. 10.4 ± 0.8 μg/ml; P = 0.0004) and leptin (23.2 ± 15.8 ng/ml vs. 9.2 ± 7.2 ng/ml; P < 0.0001). SAT and HOMA did not differ because of the sex. Adiponectin negatively correlated with VAT (r = ?0.41, P < 0.05) in men, and with VAT (r = ?0.55, P < 0.01), and SAT (r = ?0.35, P < 0.05) in women. Adiponectin negatively correlated with HOMA in men (r = ?0.38, P < 0.05) and women (r = ?0.44, P < 0.05). In multiple regression, sex (P = 0.02), HOMA (P = 0.03) and VAT (P = 0.003) were significant predictors of adiponectin (adj R 2 = 0.38, P < 0.0001). Leptin positively correlated with VAT, SAT, percent fat and HOMA in men (r = 0.79, r = 0.86, r = 0.89, and r = 0.53; P < 0.001) and women (r = 0.62, r = 0.75, r = 0.83, and r = 0.55; P < 0.01). In multiple regression VAT (P = 0.04), percent body fat (P < 0.0001) and sex (P = 0.01), but not HOMA were significant predictors of serum leptin (adj R 2= 0.82, P < 0.0001). Discussion: The relationship of adiponectin and leptin to body fat content and distribution in AA is dependent on sex. Although VAT and insulin sensitivity are significant determinants of adiponectin, VAT and percent body fat determine leptin.  相似文献   

6.
7.
Diacylglycerol acyltransferase (DGAT) could be a rate limiting step in triglyceride (TG) synthesis as it is the final step in this pathway. As such, between depot differences in DGAT activity could influence regional fat storage. DGAT activity and in vitro rates of direct free fatty acid (FFA) storage were measured in abdominal subcutaneous and omental adipose tissue samples from 12 nonobese (BMI <30 kg/m2) and 23 obese men and women (BMI >30 kg/m2) undergoing elective surgery. DGAT activity was greater in omental than in abdominal subcutaneous adipose tissue from nonobese patients (2.0 ± 0.9 vs. 0.9 ± 0.3 pmol/min/mg lipid, respectively, P = 0.003), but not from obese patients (1.4 ± 0.6 vs. 1.7 ± 0.7 pmol/min/mg lipid, respectively, P = 0.10). DGAT activity per unit adipose weight was negatively correlated with adipocyte size (P < 0.01) and positively correlated with direct FFA storage in omental (P < 0.001) but not in abdominal subcutaneous fat. Tissue DGAT activity varies as a function of adipocyte size, but this relationship differs between visceral and abdominal subcutaneous fat in obese and nonobese humans. Our results are consistent with the hypothesis that interindividual variations in DGAT activity may be an important regulatory step in visceral adipose tissue FFA uptake/storage.  相似文献   

8.
Aims of the study were to measure insulin‐like growth factor‐binding protein‐2 (IGFBP‐2) expression by abdominal subcutaneous adipocytes and to assess the relationship between IGFBP‐2 expression, circulating IGFBP‐2, obesity, and insulin sensitivity in obese children. Thirty‐eight obese children were recruited. Insulin sensitivity was assessed by intravenous glucose tolerance test and body composition by total‐body dual‐energy X‐ray absorptiometry. Serum free and total IGF‐I, IGFBP‐2, adiponectin, and leptin were measured. Relative quantification of IGFBP‐2 mRNA by subcutaneous adipose tissue biopsies was obtained using real‐time PCR. Circulating IGFBP‐2 was positively associated with insulin sensitivity, in agreement with previous studies. IGFBP‐2 expression was associated with fat mass percentage (r = 0.656; P < 0.02), insulin sensitivity (r = ?0.604; P < 0.05), free IGF‐I (r = 0.646; P < 0.05), and leptin (r = 0.603; P < 0.05), but not with circulating IGFBP‐2 (r = 0.003, P = ns). The association between IGFBP‐2 expression and adiposity (r = 0.648; P < 0.05) was independent of insulin sensitivity (covariate). In conclusion, circulating IGFBP‐2 was positively associated with insulin sensitivity. IGFBP‐2 was expressed by subcutaneous abdominal adipocytes of obese children and increased with adiposity, independently from the level of insulin sensitivity. IGFBP‐2 expression may potentially be one of the local mechanisms used by adipocytes to limit further fat gain.  相似文献   

9.
Contradictory findings regarding the gene expression of the main lipogenic enzymes in human adipose tissue depots have been reported. In this cross‐sectional study, we aimed to evaluate the mRNA expression of fatty acid synthase (FAS) and acetyl‐CoA carboxilase (ACC) in omental and subcutaneous (SC) fat depots from subjects who varied widely in terms of body fat mass. FAS and ACC gene expression were evaluated by real time‐PCR in 188 samples of visceral adipose tissue which were obtained during elective surgical procedures in 119 women and 69 men. Decreased sex‐adjusted FAS (?59%) and ACC (?49%) mRNA were found in visceral adipose tissue from obese subjects, with and without diabetes mellitus type 2 (DM‐2), compared with lean subjects (both P < 0.0001). FAS mRNA was also decreased (?40%) in fat depots from overweight subjects (P < 0.05). Indeed, FAS mRNA was significantly and positively associated with ACC gene expression (r = 0.316, P < 0.0001) and negatively with BMI (r = ?0.274), waist circumference (r = ?0.437), systolic blood pressure (r = ?0.310), serum glucose (r = ?0.277), and fasting triglycerides (r = ?0.226), among others (all P < 0.0001). Similar associations were observed for ACC gene expression levels. In a representative subgroup of nonobese (n = 4) and obese women (n = 6), relative FAS gene expression levels significantly correlated (r = 0.657, P = 0.034; n = 10) with FAS protein values. FAS protein levels were also inversely correlated with blood glucose (r = ?0.640, P = 0.046) and fasting triglycerides (r = ?0.832, P = 0.010). In conclusion, the gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue from obese subjects.  相似文献   

10.
Endothelial dysfunction and increased intima–media thickness (IMT) have been found in obese patients. Both regional fat distribution and liver steatosis may influence these markers of subclinical atherosclerosis. We sought to determine the interrelationships of endothelial function, carotid IMT, visceral and subcutaneous adipose tissue accumulation, and liver steatosis in severely obese subjects. In 64 severely obese patients (BMI 42.3 ± 4.3 kg/m²), we determined (i) endothelial function as flow‐mediated dilation (FMD) of the brachial artery, (ii) carotid IMT, (iii) visceral fat diameter, and (iv) degree of liver steatosis using ultrasound. FMD was associated inversely with visceral fat diameter and degree of steatosis (r = ?0.577, P < 0.0001 and r = ?0.523, P < 0.0001, respectively). Carotid IMT correlated with visceral fat mass (r = 0.343, P = 0.007) but not with liver steatosis. After adjustment for conventional cardiovascular risk factors, FMD was predicted independently by the visceral fat diameter, age, and sex (r2 = 0.48, P < 0.0001), but not by the degree of liver steatosis or plasma adiponectin levels. In contrast, age and sex were the only predictors of IMT (r2 = 0.33, P < 0.001). In obese patients, visceral fat diameter is a major determinant of endothelial dysfunction, independent of traditional risk factors or the degree of liver steatosis and plasma adiponectin. Measurement of visceral fat diameter by ultrasound is a novel and simple method to identify subjects with an increased risk for atherosclerosis within an obese population.  相似文献   

11.
Kim C  Park J  Park J  Kang E  Ahn C  Cha B  Lim S  Kim K  Lee H 《Obesity (Silver Spring, Md.)》2006,14(7):1164-1171
Objective: Clinical aspects of diabetes and obesity are somewhat different, even at similar levels of insulin resistance. The purpose of this study was to determine differences in body fat distribution and serum adiponectin concentrations in diabetic and non‐diabetic obese participants. We were also interested in identifying the characteristics of insulin resistance in these two groups, particularly from the standpoint of adiponectin. Research Methods and Procedures: Adiponectin concentrations of 112 type 2 diabetic obese participants and 124 non‐diabetic obese participants were determined. Abdominal adipose tissue areas and midthigh skeletal muscle areas were measured by computed tomography. A homeostasis model assessment of the insulin resistance score was calculated to assess insulin sensitivity. The relationships among serum adiponectin, body fat distribution, and clinical characteristics were also analyzed. Results: Both abdominal subcutaneous and visceral fat areas were higher in the non‐diabetic obese group, whereas midthigh low‐density muscle area was higher in the diabetic obese group. The homeostasis model assessment of the insulin resistance score was similar between groups, whereas serum adiponectin was lower in the diabetic obese group. Abdominal visceral fat (β = ?0.381, p = 0.012) was a more important predictor of adiponectin concentration than low‐density muscle (β = ?0.218, p = 0.026) in cases of non‐diabetic obesity, whereas low‐density muscle (β = ?0.413, p = 0.013) was a better predictor of adiponectin level than abdominal visceral fat (β = ? 0.228, p = 0.044) in diabetic obese patients. Discussion: Therefore, factors involved in pathophysiology, including different serum adiponectin levels and body fat distributions, are believed to be responsible for differences in clinical characteristics, even at similar levels of insulin resistance in both diseases.  相似文献   

12.
The ability of alternate‐day fasting (ADF) to modulate adipocyte parameters in a way that is protective against coronary heart disease (CHD) has yet to be tested. Accordingly, we examined the effects of ADF on adipokine profile, body composition, and CHD risk indicators in obese adults. Sixteen obese subjects (12 women/4 men) participated in a 10‐week trial with three consecutive dietary intervention phases: (i) 2‐week baseline control phase, (ii) 4‐week ADF controlled feeding phase, and (iii) 4‐week ADF self‐selected feeding phase. After 8 weeks of treatment, body weight and waist circumference were reduced (P < 0.05) by 5.7 ± 0.9 kg, and 4.0 ± 0.9 cm, respectively. Fat mass decreased (P < 0.05) by 5.4 ± 0.8 kg, whereas fat‐free mass did not change. Plasma adiponectin was augmented (P < 0.05) by 30% from baseline. Leptin and resistin concentrations were reduced (P < 0.05) by 21 and 23%, respectively, post treatment. Low‐density lipoprotein cholesterol (LDL‐C) and triacylglycerol concentrations were 25% and 32% lower (P < 0.05), respectively, after 8 weeks of ADF. High‐density lipoprotein cholesterol (HDL‐C), C‐reactive protein, and homocysteine concentrations did not change. Decreases in LDL‐C were related to increased adiponectin (r = ?0.61, P = 0.01) and reduced waist circumference (r = 0.39, P = 0.04). Lower triacylglycerol concentrations were associated with augmented adiponectin (r = ?0.39, P = 0.04) and reduced leptin concentrations (r = 0.45, P = 0.03) post‐treatment. These findings suggest that adipose tissue parameters may play an important role in mediating the cardioprotective effects of ADF in obese humans.  相似文献   

13.
Objectives: In ideopathic obesity, there is evidence that enhanced cortisol regeneration within abdominal subcutaneous adipose tissue may contribute to adiposity and metabolic disease. Whether the cortisol regenerating enzyme, 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1), or glucocorticoid receptor (GRα) levels are altered in other adipose depots remains uncertain. Our objective was to determine the association between 11βHSD1 and GRα mRNA levels in four distinct adipose depots and measures of obesity and the metabolic syndrome. Research Methods and Procedures: Adipose tissue biopsies were collected from subcutaneous (abdominal, thigh, gluteal) and intra‐abdominal (omental) adipose depots from 21 women. 11βHSD1 and GRα mRNA levels were measured by real‐time polymerase chain reaction. Body composition, fat distribution, fat cell size, and blood lipid, glucose, and insulin levels were measured. Results: 11βHSD1 mRNA was highest in abdominal subcutaneous (p < 0.001) and omental (p < 0.001) depots and was positively correlated with BMI and visceral adiposity in all depots. Omental 11βHSD1 correlated with percent body fat (R = 0.462, p < 0.05), fat cell size (R = 0.72, p < 0.001), and plasma triglycerides (R = 0.46, p < 0.05). Conversely, GRα mRNA was highest in omental fat (p < 0.001). GRα mRNA was negatively correlated with BMI in the abdominal subcutaneous (R = ?0.589, p < 0.05) and omental depots (R = ?0.627, p < 0.05). Omental GRα mRNA was inversely associated with visceral adiposity (R = ?0.507, p < 0.05), fat cell size (R = ?0.52, p < 0.01), and triglycerides (R = ?0.50, p < 0.05). Discussion: Obesity was associated with elevated 11βHSD1 mRNA in all adipose compartments. GRα mRNA is reduced in the omental depot with obesity. The novel correlation of 11βHSD1 with omental fat cell size, independent of obesity, suggests that intracellular cortisol regeneration is a strong predictor of hypertrophy in the omentum.  相似文献   

14.
We examined expression and activity of steroid aldoketoreductase (AKR) 1C enzymes in adipose tissue in women. AKR1C1 (20alpha-hydroxysteroid dehydrogenase; 20alpha-HSD), AKR1C2 (3alpha-HSD-3), and AKR1C3 (17beta-HSD-5) are involved mainly in conversion of progesterone to 20alpha-hydroxyprogesterone and inactivation of dihydrotestosterone to 5alpha-androstane-3alpha,17beta-diol. Abdominal subcutaneous and omental adipose tissue biopsies were obtained during abdominal hysterectomies in seven women with low visceral adipose tissue (VAT) area and seven age- and total body fat mass-matched women with visceral obesity. Women with elevated VAT areas were characterized by significantly higher omental adipose tissue 20alpha-HSD and 3alpha-HSD-3 mRNA abundance compared with women with low VAT accumulations (1.4- and 1.6-fold differences, respectively; P < 0.05). Omental and subcutaneous adipose tissue 3alpha-HSD activities were significantly higher in women with high vs. low VAT areas (P < 0.05 for both comparisons). Total and visceral adiposities were positively associated with omental 20alpha-HSD mRNA level (r = 0.75, P < 0.003 for fat mass; r = 0.57, P < 0.04 for VAT area) and omental 3alpha-HSD-3 mRNA level (r = 0.68, P < 0.01 for fat mass; r = 0.74, P < 0.003 for VAT area). Enzyme activities in both depots were also positively correlated with adiposity measures. Omental adipose tissue enzyme expression and activity were positively associated with omental adipocyte size and LPL activity. In conclusion, mRNA abundance and activity of AKR1C enzymes in abdominal adipose tissue compartments are positive correlates of adiposity in women. Increased progesterone and/or dihydrotestosterone reduction in abdominal adipose tissue may impact locally on fat cell metabolism.  相似文献   

15.
Adiponectin is an adipocytokine with profound anti-diabetic and anti-atherogenic effects. Even though adiponectin expression is restricted to adipocytes, serum levels are paradoxically decreased in obesity. We characterized how adiponectin expression and regulation relates to adipocyte differentiation in a human adipocyte cell culture model. Adiponectin was not expressed by human preadipocytes. Differentiation into adipocytes was necessary to induce an increasing expression of adiponectin (359 +/- 64-fold, P < 0.001) in parallel to an increasing expression of adipocyte differentiation markers. Adiponectin protein synthesis and secretion occurred specifically in mature adipocytes and may thus serve as a distinctive marker of adipocyte differentiation. Addition of serum during the course of differentiation as well as acutely to mature adipocytes significantly and concentration-dependently suppressed adiponectin to almost non-detectable levels (to 9.8 +/- 0.03%, P = 0.0043), suggesting a strong humoral serum component of adiponectin down-regulation. This serum component is present in both obese and lean individuals with a tendency to a stronger effect in obese men and women. Separation by molecular size suggests that higher molecular weight (>30 kDa) fractions exert inhibition of adiponectin. Withdrawal of adipogenic ingredients from the culture medium also resulted in a decrease of adiponectin expression and secretion to 62.01 +/- 0.09% and 70.86 +/- 0.05%, respectively. We identified insulin as a critical component to maintain adiponectin expression with a down-regulation to 61.6 +/- 0.1% (P = 0.0011) in the absence of insulin. These dynamic changes of adiponectin expression and regulation with adipocyte differentiation are of physiological interest in the light of the paradoxical decrease of adiponectin levels and the continuous recruitment of preadipocytes for differentiation in obesity.  相似文献   

16.
To elucidate cellular mechanisms of sex‐related differences in fat distribution, we determined body fat distribution (dual‐energy X‐ray absorptiometry and single‐slice abdominal computed tomography (CT)), adipocyte size, adipocyte number, and proportion of early‐differentiated adipocytes (aP2+CD68?) in the stromovascular fraction (SVF) in the upper and lower body of normal‐weight healthy men (n = 12) and premenopausal women (n = 20) (age: 18–49 years, BMI: 18–26 kg/m2). Women had more subcutaneous and less visceral fat than men. The proportion of early differentiated adipocytes in the subcutaneous adipose tissue SVF of women was greater than in men (P = 0.01), especially in the femoral depot, although in vitro adipogenesis, as assessed by peroxisome proliferator activated receptor‐γ (PPARγ) expression, was not increased in femoral preadipocytes cultured from women compared with men. In women, differentiation of femoral preadipocytes was less than that of abdominal subcutaneous preadipocytes (P = 0.04), and femoral subcutaneous preadipocytes tended to be more resistant to tumor necrosis factor‐α (TNFα)–induced apoptosis (P = 0.06). Thus, turnover and utilization of the preadipocyte pool may be reduced in lower vs. the upper‐body fat in women. Collectively, these data indicate that the microenvironment, rather than differences in inherent properties of preadipocytes between genders, may explain the gynoid obesity phenotype and higher percent body fat in women compared to men.  相似文献   

17.
Objective: Accumulation of visceral fat is recognized as a predictor of obesity‐related metabolic disturbances. Factors that are predominantly expressed in this depot could mediate the link between visceral obesity and associated diseases. Research Methods and Procedures: Paired subcutaneous and omental adipose tissue biopsies were obtained from 10 obese men. Gene expression was analyzed by DNA microarrays in triplicate and by real‐time polymerase chain reaction. Serum C3 and C4 were analyzed by radial immunodiffusion assays in 91 subjects representing a cross section of the general population. Body composition was measured by computerized tomography. Results: Complement components C2, C3, C4, C7, and Factor B had higher expression in omental compared with subcutaneous adipose tissue (~2‐, 4‐, 17‐, 10‐, and 7‐fold, respectively). In addition, adipsin, which belongs to the alternative pathway, and the classical pathway components C1QB, C1R, and C1S were expressed in both depots. Analysis of tissue distribution showed high expression of C2, C3, and C4 in omental adipose tissue, and only liver had higher expression of these genes. Serum C3 levels correlated with both visceral and subcutaneous adipose tissue in both men (r = 0.65 and p < 0.001 and r = 0.52 and p < 0.001, respectively) and women (r = 0.34 and p = 0.023 and r = 0.49 and p < 0.001, respectively), whereas C4 levels correlated with only visceral fat in men (r = 0.36, p = 0.015) and with both depots in women (visceral: r = 0.58, p < 0.001; and subcutaneous: r = 0.51, p < 0.001). Discussion: Recent studies show that the metabolic syndrome is associated with chronically elevated levels of several immune markers, some of which may have metabolic effects. The high expression of complement genes in intra‐abdominal adipose tissue might suggest that the complement system is involved in the development of visceral adiposity and/or contributes to the metabolic complications associated with increased visceral fat mass.  相似文献   

18.
Background: Increased visceral adipose tissue (VAT) is a risk factor for an unfavorable cardio‐metabolic profile and fatty liver. Individuals with human immunodeficiency virus (HIV) on highly active antiretroviral therapy (HAART) can be associated with metabolic syndrome (MS) and higher visceral fat. However, the potential link between cardiac adiposity, emerging index of visceral adiposity, and fatty liver is still unexplored. Objective: To evaluate whether echocardiographic epicardial adipose tissue, index of cardiac adiposity, could be related to serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, surrogate markers of fatty liver, in HIV‐infected patients with (HIV+MS+) and without HAART‐associated MS (HIV+MS‐). Methods and Procedures: This was a cross‐sectional observational study on 57 HIV+MS+ patients, 52 HIV+MS? and 57 HIV‐negative subjects with MS (HIV?MS+), as control group. Epicardial fat thickness and intra‐abdominal VAT were obtained by echocardiography and magnetic resonance imaging (MRI), respectively. Serum ALT and AST activity, plasma adiponectin levels, and MS biochemical parameters were measured. Results: Echocardiographic epicardial fat thickness was correlated with MRI‐VAT (r = 0.83, P < 0.01), AST/ALT ratio (r = 0.77, P < 0.01), ALT (r = 0.58, P < 0.01), AST (r = 0.56, P < 0.01), and adiponectin (r = ?0.45, P < 0.01) in HIV+MS+. MRI‐VAT and AST/ALT ratio were the best correlates of epicardial fat thickness (r 2 = 0.45, P < 0.01). Discussion: This study shows for the first time a clear relationship of epicardial fat, index of cardiac and visceral adiposity, and serum ALT and AST activity, markers of fatty liver, in subjects with increased visceral adiposity and cardio‐metabolic risk. This correlation seems to be independent of overall adiposity and rather function of excess visceral adiposity.  相似文献   

19.
Objective: The ability to form new adipose cells is important to adipose tissue physiology; however, the mechanisms controlling the recruitment of adipocyte progenitors are poorly understood. A role for locally generated angiotensin II in this process is currently proposed. Given that visceral adipose tissue reportedly expresses higher levels of angiotensinogen compared with other depots and the strong association of augmented visceral fat mass with the adverse consequences of obesity, we studied the role of angiotensin II in regulating adipogenic differentiation in omental fat of obese and non‐obese humans. Research Methods and Procedures: The angiotensin II effect on adipose cell formation was evaluated in human omental adipocyte progenitor cells that were stimulated to adipogenic differentiation in vitro. The adipogenic response was measured by the activity of the differentiation marker glycerol‐3‐phosphate dehydrogenase. Results: Angiotensin II reduced the adipogenic response of adipocyte progenitor cells, and the extent of the decrease correlated directly with the subjects’ BMI (p = 0.01, R2 = 0.30). A 56.3 ± 3.4% and 44.5 ± 2.7% reduction of adipogenesis was found in obese and non‐obese donors’ cells, respectively (p < 0.01). The effect of angiotensin II was reversed by type 1 angiotensin receptor antagonist losartan. Discussion: A greater anti‐adipogenic response to angiotensin II in omental adipose progenitor cells from obese subjects opens a venue to understand the deregulation of visceral fat tissue cellularity that has been associated with severe functional abnormalities of the obese condition.  相似文献   

20.
Hepcidin, the body's main regulator of systemic iron homeostasis, is upregulated in response to inflammation and is thought to play a role in the manifestation of iron deficiency (ID) observed in obese populations. We determined systemic hepcidin levels and its association with body mass, inflammation, erythropoiesis, and iron status in premenopausal obese and nonobese women (n = 20/group) matched for hemoglobin (Hb). The obese participants also had liver and abdominal visceral and subcutaneous adipose tissue assessed for tissue iron accumulation and hepcidin mRNA expression. Despite similar Hb levels, the obese women had significantly higher serum hepcidin (88.02 vs. 9.70 ng/ml; P < 0.0001) and serum transferrin receptor (sTfR) (P = 0.001) compared to nonobese. In the obese women hepcidin was not correlated with serum iron (r = ?0.02), transferrin saturation (Tsat) (r = 0.17) or sTfR (r = ?0.12); in the nonobese it was significantly positively correlated with Tsat (r = 0.70) and serum iron (r = 0.58), and inversely with sTfR (r = ?0.63). Detectable iron accumulation in the liver and abdominal adipose tissue of the obese women was minimal. Liver hepcidin mRNA expression was ~700 times greater than adipose tissue production and highly correlated with circulating hepcidin levels (r = 0.61). Serum hepcidin is elevated in obese women despite iron depletion, suggesting that it is responding to inflammation rather than iron status. The source of excess hepcidin appears to be the liver and not adipose tissue. The ID of obesity is predominantly a condition of a true body iron deficit rather than maldistribution of iron due to inflammation. However, these findings suggest inflammation may perpetuate this condition by hepcidin‐mediated inhibition of dietary iron absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号