首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bryophyte consumption is uncommon among bird species globally and is often presumed incidental. We sought to determine whether herbivorous bird species of the high Andes, including the white‐bellied seedsnipe (Attagis malouinus) and Chloephaga geese (C. picta and C. poliocephala), consume bryophytes, and if so, how frequently. We collected 26 seedsnipe and 22 goose droppings from alpine and sub‐alpine habitats of Navarino Island, Chile and examined their contents for bryophyte diaspores. We detected bryophyte fragments in 84.6% and 90.9% of seedsnipe and Chloephaga goose faecal samples, respectively. We also extracted DNA from three bryophyte fragments isolated from goose droppings and sequenced three chloroplast loci for each sample. We inferred through a barcoding analysis that at least one species of Chloephaga goose consumes Polytrichum strictum and Notoligotrichum trichodon. The composition of 11 collected goose droppings was >50% Polytrichaceae bryophyte fragments, suggesting that at least one Chloephaga goose species foraged deliberately on moss species of this family. These new observations suggest that bryophytes are part of the diet of some high Andean birds and that birds might disperse bryophytes internally – via endozoochory – in the sub‐Antarctic.  相似文献   

2.
Faunal responses to anthropogenic habitat modification represent an important aspect of global change. In Puerto Rico, two species of arboreal lizard, Anolis cristatellus and A. stratulus, are commonly encountered in urban areas, yet seem to use the urban habitat in different ways. In this study, we quantified differences in habitat use between these two species in an urban setting. For each species, we measured habitat use and preference, and the niche space of each taxon, with respect to manmade features of the urban environment. To measure niche space of these species in an urban environment, we collected data from a total of six urban sites across four different municipalities on the island of Puerto Rico. We quantified relative abundance of both species, their habitat use, and the available habitat in the environment to measure both microhabitat preference in an urban setting, as well as niche partitioning between the two different lizards. Overall, we found that the two species utilize different portions of the urban habitat. Anolis stratulus tends to use more “natural” portions of the urban environment (i.e., trees and other cultivated vegetation), whereas A. cristatellus more frequently uses anthropogenic structures. We also found that aspects of habitat discrimination in urban areas mirror a pattern measured in prior studies for forested sites in which A. stratulus was found to perch higher than A. cristatellus and preferred lower temperatures and greater canopy cover. In our study, we found that the multivariate niche space occupied by A. stratulus did not differ from the available niche space in natural portions of the urban environment and in turn represented a subset of the niche space occupied by A. cristatellus. The unique niche space occupied by A. cristatellus corresponds to manmade aspects of the urban environment generally not utilized by A. stratulus. Our results demonstrate that some species are merely tolerant of urbanization while others utilize urban habitats in novel ways. This finding has implications for long‐term persistence in urban habitats and suggests that loss of natural habitat elements may lead to nonrandom species extirpations as urbanization intensifies.  相似文献   

3.
The objective of the current study was to identify pathogens of the large larch bark beetle, Ips cembrae, which is a secondary pest that has produced several local outbreaks across Europe in recent years. Beetles were collected from pheromone traps, trap trees and emergence traps (Larix decidua) during 2007 to 2011 at 10 study sites in central Europe. A total of 3379 mature and callow beetles were examined with a light microscope, and only two microsporidian pathogens [Chytridiopsis typographi and a diplokaryotic microsporidium (probably Nosema sp.)] and two gregarines (Gregarina typographi and Mattesia schwenkei) were found. Within the I. cembrae populations, the infection rate for C. typographi ranged from 2 to 58%. Nosema sp. occurred in only two beetles in 2007 (at two study sites). G. typographi was recorded only in Austria and Croatia and only in 1–2% of the beetles in those countries. Mattesia schwenkei was observed solely in Croatia in 0.6% of the beetles in that country. Only one fungal pathogen in the genus Fusarium was found and only in two mature beetles (0.7%) in 2010. The pathogen species found during our study of I. cembrae were very similar to the pathogens previously identified for Ips typographus. No species‐specific pathogen was detected.  相似文献   

4.
Ips amitinus and I. typographus are two serious pests of spruce in Europe, have similar bionomics and are likely to occur and meet on the same host trees. We therefore hypothesized that the two species support similar levels of similar pathogens. To test this hypothesis, we collected mature beetles from three trap trees at each of eight study sites and determined beetle numbers and pathogen infection levels. In total, 938 mature I. amitinus beetles and 3435 of I. typographus were dissected; five pathogens, as well as intestinal nematodes and endoparasitoids, were detected. The neogregarine Mattesia schwenkei is reported here for the first time as a new pathogen in 9.4% of I. amitinus individuals at one site. Average infection levels of most pathogens (Chytridiopsis typographi, Gregarina typographi, Mattesia schwenkei and parasitoids) were significantly higher in I. typographus than in I. amitinus. Metschnikowia typographi was confirmed only in Ips amitinus, while the microsporidium of Nosema typographi occurred only in I. typographus. Within‐season increases in G. typographi infection levels were documented in Ips amitinus.  相似文献   

5.
6.
This study investigates two parasitic reptile ticks — Bothriocroton hydrosauri and Amblyomma limbatum — of the sleepy lizard (Tiliqua rugosa) that abut at a 1–2 km wide parapatric boundary in South Australia. Long‐term research has investigated potential mechanisms to explain the maintenance of this boundary but has not uncovered why the distribution of A. limbatum does not extend further south. It has been previously hypothesised that pathogens may be responsible for maintaining parapatric boundaries. Rickettsia spp. has previously been reported in B. hydrosauri ticks. This study explored whether Rickettsia spp. occurs in co‐occurring A. limbatum. We observed that Rickettsia spp. was absent from all A. limbatum ticks and that 83% of examined B. hydrosauri were found to be positive with a spotted fever group Rickettsia strain. This study puts forward the hypothesis that Rickettsia spp. could contribute to the maintenance of the Mt Mary parapatric boundary between these two tick species. Further work is required to determine whether Rickettsia spp. can be transmitted from B. hydrosauri to A. limbatum and — if transmission can occur — to explore whether Rickettsia is lethal to A. limbatum ticks.  相似文献   

7.
The taxonomically diverse phyllosphere fungi inhabit leaves of plants. Thus, apart from the fungi's dispersal capacities and environmental factors, the assembly of the phyllosphere community associated with a given host plant depends on factors encoded by the host's genome. The host genetic factors and their influence on the assembly of phyllosphere communities under natural conditions are poorly understood, especially in trees. Recent work indicates that Norway spruce (Picea abies) vegetative buds harbour active fungal communities, but these are hitherto largely uncharacterized. This study combines internal transcribed spacer sequencing of the fungal communities associated with dormant vegetative buds with a genome‐wide association study (GWAS) in 478 unrelated Norway spruce trees. The aim was to detect host loci associated with variation in the fungal communities across the population, and to identify loci correlating with the presence of specific, latent, pathogens. The fungal communities were dominated by known Norway spruce phyllosphere endophytes and pathogens. We identified six quantitative trait loci (QTLs) associated with the relative abundance of the dominating taxa (i.e., top 1% most abundant taxa). Three additional QTLs associated with colonization by the spruce needle cast pathogen Lirula macrospora or the cherry spruce rust (Thekopsora areolata) in asymptomatic tissues were detected. The identification of the nine QTLs shows that the genetic variation in Norway spruce influences the fungal community in dormant buds and that mechanisms underlying the assembly of the communities and the colonization of latent pathogens in trees may be uncovered by combining molecular identification of fungi with GWAS.  相似文献   

8.
Successful urban colonization by formerly rural species represents an ideal situation in which to study adaptation to novel environments. We address this issue using candidate genes for behavioural traits that are expected to play a role in such colonization events. We identified and genotyped 16 polymorphisms in candidate genes for circadian rhythms, harm avoidance and migratory and exploratory behaviour in 12 paired urban and rural populations of the blackbird Turdus merula across the Western Palaearctic. An exonic microsatellite in the SERT gene, a candidate gene for harm avoidance behaviour, exhibited a highly significant association with habitat type in an analysis conducted across all populations. Genetic divergence at this locus was consistent in 10 of the 12 population pairs; this contrasts with previously reported stochastic genetic divergence between these populations at random markers. Our results indicate that behavioural traits related to harm avoidance and associated with the SERT polymorphism experience selection pressures during most blackbird urbanization events. These events thus appear to be influenced by homogeneous adaptive processes in addition to previously reported demographic founder events.  相似文献   

9.
Bryophytes (mosses) are non‐vascular plants inhabited by a large number of fungal species, but whether mosses can act as reservoirs of fungal pathogens of crop plants has gained little attention. A few moss species including the Sunagoke moss (Racomitrium japonicum; family Grimmiaceae) are found to have modern economical applications in uses such as greening of urban environments. In a previous study, we identified fungi causing symptoms of varying severity in the commercially grown Sunagoke moss. The aim of this study was to test whether the same fungal isolates are pathogenic to vascular plants. An isolate of Fusarium avenaceum lethal to the Sunagoke moss caused root and crown rot in barley (Hordeum vulgare) and reduced germination of tomato (Solanum lycopersicum) and carrot (Daucus carota) grown in the infested soil. An isolate of Cladosporium oxysporum causing mild symptoms in moss reduced growth and caused reddening and premature death of carrot seedlings. On the other hand, isolates of Alternaria alternata and Fusarium oxysporum lethal to the Sunagoke moss caused no detectable symptoms in any tested vascular plant, suggesting specialisation of these isolates to moss. Chloroplast repositioning was observed in the neighbouring cells towards the initially infected cell following infection with F. avenaceum and A. alternata in Physcomitrella patens (family Funariaceae), a model moss used to study microscopic symptoms. Infection of P. patens with a non‐virulent Apiospora montagnei isolate induced formation of papillae in the moss cells, indicating activation of host defence as described in vascular plants. Results suggest that mosses and vascular plants may be linked by a common microbial interface constituted by pathogenic fungi. The findings have epidemiological implications that have gained little previous attention.  相似文献   

10.
In the past 10 years, there has been a substantial increase in reports, from growers and extension personnel, on bulb and root rots in lily (Lilium longiflorum) in Israel. Rot in these plants, when grown as cut flowers, caused serious economic damage expressed in reduction in yield and quality. In lily, the fungal pathogens involved in the rot were characterized as binucleate Rhizoctonia AG‐A, Rhizoctonia solani, Pythium oligandrum, Fusarium proliferatum (white and purple isolates) and F. oxysporum, using morphological and molecular criteria. These fungi were the prevalent pathogens in diseased plants collected from commercial greenhouses. Pathogenicity trials were conducted on lily bulbs and onion seedlings under controlled conditions in a greenhouse to complete Koch's postulates. Disease symptoms on lily were most severe in treatments inoculated with binucleate Rhizoctonia AG‐A, P. oligandrum and F. proliferatum. Plant height was lower in the above treatments compared with the control plants. The least aggressive fungus was R. solani. In artificial inoculations of onion, seedling survival was significantly affected by all fungi. The most pathogenic fungus was F. proliferatum w and the least were isolates of F. oxysporum (II and III). All fungi were successfully re‐isolated from the inoculated plants.  相似文献   

11.
As globalization lowers geographic barriers to movement, coinfection with novel and enzootic pathogens is increasingly likely. Novel and enzootic pathogens can interact synergistically or antagonistically, leading to increased or decreased disease severity. Here we examine host immune responses to coinfection with two closely related fungal pathogens: Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Both pathogens have had detrimental effects on amphibian populations, with Bd now largely enzootic, while Bsal is currently spreading and causing epizootics. Recent experimental work revealed that newts coinfected with Bd and Bsal had significantly higher mortality than those infected with either pathogen alone. Here we characterize host immunogenomic responses to chytrid coinfection relative to single infection. Across several classes of immune genes including pattern recognition receptors, cytokines, and MHC, coinfected host gene expression was weakly upregulated or comparable to that seen in single Bd infection, but significantly decreased when compared to Bsal infection. Combined with strong complement pathway downregulation and keratin upregulation, these results indicate that coinfection with Bd and Bsal compromises immune responses active against Bsal alone. As Bsal continues to invade naïve habitats where Bd is enzootic, coinfection will be increasingly common. If other Bd‐susceptible species in the region have similar responses, interactions between the two pathogens could cause severe population and community‐level declines.  相似文献   

12.
13.
K. S. Kim  Y. Tsuda 《Molecular ecology》2012,21(21):5374-5385
The ecology and geographical distribution of disease vectors are major determinants of spatial and temporal variations in the transmission dynamics of vector‐borne pathogens. However, there are limited studies on the ecology of vectors that contribute to the natural transmission of most vector‐borne pathogens. Avian Plasmodium parasites are multihost mosquito‐borne pathogens transmitted by multiple mosquito species, which might regulate the diversity and persistence of these parasites. From 2007 to 2010, we conducted entomological surveys at Sakata wetland in central Japan, to investigate temporal variation in mosquito occurrence and prevalence of avian Plasmodium lineages in the mosquito populations. A polymerase chain reaction (PCR)‐based method was used to detect Plasmodium parasites and identify the blood sources of mosquitoes. Culex inatomii and Cpipiens pallens represented 60.0% and 34.8% of 11 mosquito species collected, respectively. Our results showed that the two dominant mosquito species most likely serve as principal vectors of avian Plasmodium parasites during June, which coincides with the breeding season of bird species nesting in the wetland reed beds. Fourteen animal species were identified as blood sources of mosquitoes, with the oriental reed warbler (Acrocephalus orientalis) being the commonest blood source. Although there was significant temporal variation in the occurrence of mosquitoes and prevalence of Plasmodium lineages in the mosquitoes, the dominant Plasmodium lineages shared by the two dominant mosquito species were consistently found at the same time during transmission seasons. Because vector competence cannot be confirmed solely by PCR approaches, experimental demonstration is required to provide definitive evidence of transmission suggested in this study.  相似文献   

14.
Establishing whether herb seed endozoochory is accidental or has evolved independently or in combination with other dispersal mechanisms may be valuable in the study of plant–animal interactions, but it remains unexplored for birds. We tested whether an Australian cockatoo, the galah (Eolophus roseicapilla), swallows entire seeds when feeding on other tissues without subsequent seed digestion, thus enhancing seed dispersal (the ‘foliage is the fruit’ hypothesis). Our preliminary sampling provides strong evidence supporting that this seed predator also acts as a legitimate endozoochorous disperser. A large proportion of droppings contained numerous seeds of six herb species of three plant families, surviving gut passage to be dispersed as viable propagules. The wide range in the number of seeds found in combinations with up to five species in particular droppings suggests both simultaneous and sequential passive ingestion without seed digestion and/or focused seed predation and digestion. As expected for inadvertent ingestion and inefficient digestion, our findings suggest that seed number and richness of dispersed plants are associated traits in this particular mutualistic interaction. This relationship can have important implications in community‐wide processes, favouring herbs whose seeds are disseminated in a viable state over those predated or negatively affected by gut transit.  相似文献   

15.
16.

Aims

The present study was carried out to screen the phylloplane bacteria from tea for antagonism against grey blight caused by Pestalotiopsis theae and blister bight caused by Exobasidium vexans and to further evaluate the efficient isolates for disease control potential under field condition.

Methods and Results

A total of 316 morphologically different phylloplane bacteria were isolated. Among the antagonists, the isolates designated as BMO‐075, BMO‐111 and BMO‐147 exhibited maximum inhibitory activity against both the pathogens under in vitro conditions and hence were selected for further evaluation under microplot field trial. Foliar application of 36‐h‐old culture of BMO‐111 (1 × 108 colony‐forming units ml?1) significantly reduced the blister blight disease incidence than the other isolates. The culture of BMO‐111 as well as its culture filtrate effectively inhibited the mycelial growth of various fungal plant pathogens. The isolate BMO‐111 was identified as Ochrobactrum anthropi based on the morphological and 16S rDNA sequence analyses.

Conclusions

It could be concluded that the biocontrol agent O. anthropi BMO‐111 was effective against blister blight disease of tea.

Significance and Impact of the Study

Further study is required to demonstrate the mechanism of its action and formulation for the biocontrol potential against blister blight disease of tea.  相似文献   

17.
The 12th International Workshops on Opportunistic Protists (IWOP‐12) was held in August 2012 in Tarrytown, New York. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency‐associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and (2) foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists, e.g. the free‐living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference that brings together research groups working on these opportunistic pathogens. Slow but steady progress is being achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune‐deficient and immune‐competent hosts, and is providing critical insights into these emerging and reemerging pathogens. This IWOP meeting demonstrated the importance of newly developed genomic level information for many of these pathogens and how analysis of such large data sets is providing key insights into the basic biology of these organisms. A great concern is the loss of scientific expertise and diversity in the research community due to the ongoing decline in research funding. This loss of researchers is due to the small size of many of these research communities and a lack of appreciation by the larger scientific community concerning the state of art and challenges faced by researchers working on these organisms.  相似文献   

18.
We have explored the fungal diversity in asymptomatic twigs of apple, peach, pear and blueberry trees, with the objective of discerning between true endophytes and latent pathogens. Several fungal genera containing known bark pathogens were found. Seven Diaporthe species—D. oxe, D. infecunda, D. serafiniae, D. phaseolorum, D. terebinthifolii, Dfoeniculina and D. brasiliensis—were identified, along with Botryosphaeria dothidea, Neofusicoccum parvum, Neofusicoccum australe, Cytospora sp., Cytospora acaciae and Pestalotiopsis spp. A pathogenicity trial was undertaken to determine the role of these species on apple, pear, blueberry and peach shoots. Diaporthe brasiliensis, D. foeniculina, Diaporthe inconspicua, D. terebinthifolii, Diaporthe sp.1, Cytospora‐like isolates and Pestalotiopsis spp. isolates produced no lesions on inoculated shoots, suggesting that they could be considered true endophytes on their respective hosts. Meanwhile, some of the isolates of Diaporthe—D. oxe, Diaporthe sp.2, D. infecunda and D. serafiniae, B. dothidea, N. parvum and N. australe could be regarded as latent pathogens in their respective hosts as they produced sunken cankers and necrosis on inoculated shoots. These results demonstrate that apple, pear, blueberry and peach healthy shoots can host many known endophytic fungi along with potential wood disease‐causing fungi that should be regarded as latent pathogens.  相似文献   

19.
Three tetraploid somatic hybrid lines produced by protoplast fusion between a dihaploid potato, Solanum tuberosum, cultivar BF15 and the wild potato species Solanum berthaultii were evaluated here for their response to different soil‐borne pathogens, that is Fusarium solani, Pythium aphanidermatum and Rhizoctonia solani as well as to infection by potato virus Y (PVY). Both hybrid and BF15 plants grown in vitro were inoculated with the tested pathogen strains, that is R. solani, P. aphanidermatum, or F. solani. The growth level and disease severity index of these plants were compared to the susceptible commercial cultivar Spunta. A better growth of inoculated hybrid plants and restricted disease symptoms were observed in comparison with the commercial plants. Under glasshouse conditions and after inoculation with R. solani and P. aphanidermatum, improved resistance of the hybrid plants to these pathogens was confirmed. Indeed, these plants showed no significant damage following inoculation and a better development in R. solani‐infected plants. The susceptibility of the hybrid tubers to R. solani, P. aphanidermatum, and to F. solani infection was also determined. A significant reduction of tissue colonisation was observed in all the hybrid lines compared to the cultivated cultivars. The STBc and STBd hybrids also showed improved resistance to the PVY ordinary strain (PVYo) under glasshouse conditions.  相似文献   

20.
Shoe soles are possible vectors for infectious diseases. Although studies have been performed to assess the prevalence of infectious pathogens on shoe soles and decontamination techniques, no systematic review has ever occurred. The aim of this study was to perform a systematic review of the literature to determine the prevalence of infectious agents on shoe bottoms and possible decontamination strategies. Three electronic bibliographic databases were searched using a predefined search strategy evaluating prevalence of infectious pathogens on shoe bottoms and decontamination strategies. Quality assessment was performed independently by two reviews with disagreements resolved by consensus. Thirteen studies were identified that supported the hypothesis that shoe soles are a vector for infectious pathogens. Methicillin‐resistant Staphylococcus aureus, Clostridium difficile and multidrug‐resistant Gram‐negative species among other pathogens were documented on shoe bottoms in the health care setting, in the community and among food workers. Fifteen studies were identified that investigated decontamination strategies for shoe soles. A number of decontamination strategies have been studied of which none have been shown to be consistently successful at disinfecting shoe soles. In conclusion, a high prevalence of microbiological pathogens was identified from shoe soles studied in the health care, community and animal worker setting. An effective decontamination strategy for shoe soles was not identified. Studies are needed to assess the potential for contaminated shoes to contribute to the transmission of infectious pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号