首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synopsis Extensive limestone reefs are a characteristic feature of much of the coastline of Western Australia, and potentially represent a major habitat feature influencing the structure of the coastal fish community. The structure and temporal dynamics of the fish fauna and its relationships to nearshore patch reefs and surrounding habitat near Dongara, Western Australia, were examined using (1) diel gill-netting and (2) quantitative rotenone sampling of enclosed areas of substratum. Long-term and day-to-day variability of the fauna was low. Dominant species of gill-net collections were either associated with reefs or occurred in similar abundances at both reefs and surrounding sand/seagrass flats. The overall abundance, number of species and biomass of netted fishes was higher around reefs. Rotenone collections of the more sedentary species showed a similar pattern, but suggested, however, that a simple reef versus surrounding sand and seagrass habitat comparison is complicated by the canopy-forming seagrass Amphibolis that occurs on reef tops. Time of day had an important effect on overall fish abundance and number of species, with peaks occurring at crepuscular periods. This reflected dusk and dawn activity peaks of a dominant species rather than overlapping activities of many diurnal and nocturnal species. Diel switches between reef-edge habitat and surrounding sand/seagrass flats were uncommon despite expectations (based on literature examples) that patch reefs would function primarily as sheltering habitats and surrounding non-reef areas act as foraging habitat. High catches at reef-edge sites suggest that the majority of fishes forage on or near limestone patch reefs. Fish densities of around 0.8 individuals per m-2 of bottom on these Western Australian reefs are relatively high in comparison to visual census estimates obtained for temperate reef systems in South Australia and New Zealand, but similar to those obtained using comparable netting methods in temperate Australian seagrass systems.  相似文献   

2.
The impact of grazing by herbivorous fishes (Acanthuridae, Scaridae, and Pomacentridae) on low coral-cover reefs was assessed by measuring rates of benthic algal production and consumption on inshore and offshore reefs in the upper Florida Keys. Algal production rates, determined in situ with caged and uncaged experimental plates, were low (mean 1.05 g C m−2 day−1) and similar among reef types. Algal consumption rates were estimated using two different models, a detailed model incorporating fish bite rates and algal yield-per-bite for one species extrapolated to a guild-wide value, and a general regression relating fish biomass to algal consumption. Algal consumption differed among reef types: a majority of algal production was consumed on offshore reefs (55–100%), whereas consumption on inshore patch reefs was 31–51%. Spatial variation in algal consumption was driven by differences in herbivorous fish species composition, density, and size-structure among reef types. Algal consumption rates also varied temporally due to seasonal declines in bite rates and intermittent presence of large-bodied, vagile, schooling species. Spatial coherence of benthic community structure and temporal stability of algal turf over 3 years suggests that grazing intensity is currently sufficient to limit further spread of macroalgal cover on these low coral-cover reefs, but not to exclude it from the system.  相似文献   

3.
Ecological theory suggests that the behaviour, growth and abundance of predators will be strongly influenced by the abundance of prey. Predators may in turn play an important role in structuring prey populations and communities. Responses of predators to variation in prey abundance have most commonly been demonstrated in low-diversity communities where food webs are relatively simple. How predators respond in highly diverse assemblages such as in coral reef habitats is largely unknown. This study describes an experiment that examined how the movement, diet and growth of the coral reef piscivore, Cephalopholis boenak (Serranidae) responded to variation in the abundance of its prey. Predator densities were standardised on small patch reefs made from the lagoonal reef-building coral, Porites cylindrica. These patch reefs exhibited natural variation in the abundance and community structure of multiple species of prey. However, our experiment generated a relatively simple predator–prey relationship, with C. boenak primarily responding to the most abundant species of prey. Three responses of predators were observed: aggregative, functional and developmental. Thirty-one per cent of individuals moved between patch reefs during the experiment, all from areas of relatively low to high prey density. Feeding rates were higher on patch reefs of high prey density, while growth rates of fish that remained on low prey density reefs throughout the experiment were lower. Growth rates of C. boenak on the experimental reefs were also much higher than for those living on natural patch reefs over the same time period, corresponding with overall differences in prey abundance. These results suggest that local abundance, feeding rate and growth of C. boenak were closely linked to the abundance of their main prey. This combination of predatory responses is a potential mechanism behind recent observations of density-dependent mortality and population regulation of prey in coral reef fish communities.  相似文献   

4.
Oyster reefs are among the most threatened coastal habitat types, but still provide critical habitat and food resources for many estuarine species. The structure of oyster reef food webs is an important framework from which to examine the role of these reefs in supporting high densities of associated fishes. We identified major trophic pathways to two abundant consumers, gray snapper (Lutjanus griseus) and crested goby (Lophogobius cyprinoides), from a subtropical oyster reef using stomach content and stable isotope analysis. The diet of gray snapper was dominated by crabs, with shrimp and fishes also important. Juvenile gray snapper fed almost entirely on oyster reef-associated prey items, while subadults fed on both oyster reef- and mangrove-associated prey. Based on trophic guilds of the gray snapper prey, as well as relative δ13C values, microphytobenthos is the most likely basal resource pool supporting gray snapper production on oyster reefs. Crested goby had omnivorous diets dominated by bivalves, small crabs, detritus, and algae, and thus were able to take advantage of prey relying on production from sestonic, as well as microphytobenthos, source pools. In this way, crested goby represent a critical link of sestonic production to higher trophic levels. These results highlight major trophic pathways supporting secondary production in oyster reef habitat, thereby elucidating the feeding relationships that render oyster reef critical habitat for many ecologically and economically important fish species.  相似文献   

5.
Mark A. Steele 《Oecologia》1998,115(1-2):222-232
Competition and predation may both strongly influence populations of reef fishes, but the importance of these processes relative to one another is poorly understood. I quantified the effects of predation and competition on the growth and survival of two temperate reef fishes, Lythrypnus dalli and Coryphopterus nicholsii, in field experiments in which I manipulated the densities of the two species and the abundance of predators (using exclosure cages) on small replicate patch reefs. I also evaluated the influence of predators on the behavior of the two species to help interpret the mechanisms of any predatory influences on growth or survival. Predation was much more important than competition (inter- or intraspecific) in Lythrypnus. For Coryphopterus, neither competition nor predation were particularly important. Behaviorally, both species responded to predators by reducing foraging rate and hiding. This altered behavior, however, had no repercussions for growth or survival of Coryphopterus. In contrast, Lythrypnus grew more slowly and suffered greater mortality when exposed to predators. Interspecific competition did not significantly influence either species. Intraspecific competition did not affect the growth of Coryphopterus, but survival tended to be lower at high densities. Growth of Lythrypnus was depressed by intraspecific competition, but survival was not, except that, in the presence of predators, survival was density dependent. In contrast to the historical emphasis placed on the role of competition, this study indicates that predation can be more important than competition in determining patterns of abundance of some reef fishes. For example, predators not only influenced foraging of both Lythrypnus and Coryphopterus, but they also reduced growth and survival of Lythrypnus, and therefore appear to help maintain the marked habitat segregation between the two species. Received: 16 June 1997 / Accepted: 3 December 1997  相似文献   

6.
We evaluated movements of 25 species of coral reef fishes from Malindi and Watamu Marine National Parks (created 1968) in coastal Kenya from February 2001 to March 2002. Only three species, the commercially important whitespotted rabbitfish, Siganus sutor, the sky emperor (SEM), Lethrinus mahsena and the trumpet emperor, L. miniatus, exhibited consistent movements from the parks. At Malindi Park, more fishes were recaptured by fishermen off a fringing reef than off a patch reef. The rabbitfish had a higher monthly spillover rate from the fringing reef than from the patch reef. In contrast, the SEM had low monthly spillover rates from both reefs. The rabbitfish moved greater distances off the fringing reef than off the patch reef. At Watamu Park, the SEM, L. miniatus and the gold-spotted sweetlips, Gaterin flavomaculatus, had equal monthly spillover rates. In contrast, the rabbitfish had a lower monthly rate. The emperors showed no difference in net distance moved from the park boundary, however, L. miniatus traveled significantly longer distances than did the SEM. Distances between release and capture sites were either random (SEM), increasing (L. miniatus), or decreasing (rabbitfish) with respect to time at liberty.  相似文献   

7.
Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.  相似文献   

8.
Polymerase chain reaction primer pairs for a total of 25 nuclear‐encoded microsatellites (loci) were developed from genomic DNA libraries of lane snapper (Lutjanus synagris), mutton snapper (Lutjanus analis), and yellowtail snapper (Ocyurus chrysurus). The microsatellites include 24 perfect (21 dinucleotide and three trinucleotide) and one imperfect (combination tetranucleotide/tetranucleotide) repeat motifs. A total of 32 individuals of each species were assayed for allelic variation at all 25 microsatellites; reliable amplification products were generated for lane snapper (25 loci), mutton snapper (21 loci), and yellowtail snapper (24 loci). Significant deviations from Hardy–Weinberg expectations, following Bonferroni corrections, were found for one microsatellite in lane and yellowtail snappers, and for three microsatellites in mutton snapper. All pairwise comparisons of microsatellites (all three species) did not deviate significantly from genotypic equilibrium.  相似文献   

9.
Stable isotope (δ13C and δ15N) and gut content analyses were used to investigate size‐related feeding habits of four reef fishes (the beaugregory Stegastes leucostictus, the french grunt Haemulon flavolineatum, the schoolmaster snapper Lutjanus apodus and the yellowtail snapper Ocyurus chrysurus) inhabiting an offshore (non‐estuarine) mangrove islet off Belize, Central America. Comparisons of isotopic niche space and Schoener diet similarity index suggested a low to moderate degree of niche overlap between fish size groups. The δ13C gradient between mangrove and seagrass prey as well as results of Bayesian mixing models revealed that sampled fishes relied mostly on seagrass prey items. Only small and large juveniles of the carnivorous species L. apodus derived a part of their diet from mangroves by targeting mangrove‐associated Grapsidae crabs and fish prey, respectively. Isotopic niche shifts were particularly obvious for carnivorous fishes that ingested larger prey items (Xanthidae crabs and fishes) during their ontogeny. The utilization of mangrove food resources is less than expected and depends on the ecology and life history of the fish species considered. This research highlights that mangrove‐derived carbon contributed relatively little to the diets of four fish taxa from an offshore mangrove islet.  相似文献   

10.
Srinivasan M 《Oecologia》2003,137(1):76-84
Many coral reef fishes have restricted depth ranges that are established at settlement or soon after, but the factors limiting these distributions are largely unknown. This study examines whether the availability of microhabitats (reef substrata) explains depth limits, and evaluates whether juvenile growth and survival are lower beyond these limits. Depth-stratified surveys of reef fishes at Kimbe Bay (Papua New Guinea) showed that the abundance of new settlers and the cover of coral substrata differed significantly among depths. A field experiment investigated whether settling coral reef fishes preferred particular depths, and whether these depth preferences were dependent on microhabitat. Small patch reefs composed of identical coral substrata were set up at five depths (3, 6, 10, 15 and 20 m), and settlement patterns were compared to those on unmanipulated reef habitat at the same five depths. For all species, settlement on patch reefs differed significantly among depths despite uniform substratum composition. For four of the six species tested, depth-related settlement patterns on unmanipulated habitat and on patch reefs did not differ, while for the other two, depth ranges were greater on the patch reefs than on unmanipulated habitat. A second experiment examined whether depth preferences reflected variation in growth and survival when microhabitat was similar. Newly settled individuals of Chrysiptera parasema and Dascyllus melanurus were placed, separately, on patch reefs at five depths (as above) and their survival and growth monitored. D. melanurus, which is restricted to shallow depths, had highest survival and growth at the shallowest depth. Depth did not affect either survival or growth of C. parasema, which has a broader depth range than D. melanurus (between 6 and 15 m). This suggests that the fitness costs potentially incurred by settling outside a preferred depth range may depend on the strength of the depth preference.  相似文献   

11.
Small patch reefs can harbor many reef fishes because most fishes have a drifting larval phase to randomly disperse over patchy habitats. We examined the species–area relationship (SAR) of damselfish (Pomacentridae) assemblages over 84 small patch reefs (0.05–45.4 m2) using an enlarged section of a high-resolution color aerial photograph as a field map (1/2500) in a shallow coral reef shore zone (<2 m deep, 3.6 ha, Shiraho Reef, Ishigaki Island, Japan). This study confirmed that the logarithmic function is better than other functions (including the power function) to explain the SAR in this scale. Actual species richness (24) over the entire study site was much higher than the species richness (15.4) extrapolated from the regression line in semi-log space. Better estimates were obtained using random placement models and computer simulations. These results suggest that several small patch reefs are likely to have higher species richness than a single large reef of equivalent area at the study site. The total number of individuals of the four most abundant territorial herbivores increased almost linearly with patch reef area, but that of other species roughly increased with the square root of the area. While no territorial species were found in the smallest reefs, the large territorial herbivore, Hemiglyphidodon plagiometopon, was abundant and had negative effects on species richness in large reefs. Although the well-known single-large-or-several-small (SLOSS) debate has largely been settled, this dichotomy can be important in places where territorial herbivores do not occupy the smallest reefs.  相似文献   

12.
Movement of coral reef fishes across marine reserve boundaries subsequent to their initial settlement from the plankton will affect the ability of no-take reserves to conserve stocks and to benefit adjacent fisheries. However, the mobility of most exploited reef species is poorly known. We tagged 1443 individuals of 35 reef fish species captured in Antillean fish traps in the Barbados Marine Reserve and adjacent non-reserve over a two-month period. Trapping and visual surveys were used to monitor the movements of these fish during the trapping period and the subsequent two months. Estimates of distances moved were corrected for the spatial distribution of sampling effort and for the number of recaptures of individual fish. Recapture rates for individual species ranged from 0–100% (median=38%). Species mobility estimated by recapture and resighting were highly correlated. Most species were strongly site attached, with the majority of recaptures and resightings occurring at the site of tagging. However, only one of 59 tagged jacks (Caranx latus, C. ruber) was ever resighted, suggesting emigration from the study area. All species were occasionally recorded away from the sites where they had been tagged (20–500m), and several species, including surgeonfish, Acanthurus bahianus, A. coeruleus, filefish, Cantherhines pullus, butterflyfish, Chaetodon striatus, angelfish Holocanthus tricolor and parrotfish, Sparisoma viride, ranged widely within reefs. In contrast, few movements were observed between reefs separated by more than 20m of sand and rubble, and no emigration from the Reserve was recorded. Most reef fishes vulnerable to Antillean traps appear sufficiently site-attached to benefit from reserves. However, many species move over a wide enough area to take them out of small reserves on continuous reef. Use of natural home range boundaries could minimize exposure of fishes in reserves to mortality from adjacent fisheries.  相似文献   

13.
Branching corals, like many in the genus Acropora, provide structurally complex habitats for reef fishes and other organisms. Fluctuations in the abundance, distribution and characteristics of thicket-forming staghorn Acroporids may contribute to changes in the abundance and species composition of reef fishes due to changes in the availability of shelter habitat and food. Farming damselfishes of the genus Stegastes can occur in high abundances in staghorn corals and actively defend food and nest space against organisms that threaten these resources. Here we assess the value of staghorn as habitat for fishes in the central South Pacific, and how the presence of territorial farming damselfishes may influence the assemblage of fishes that associate with staghorn corals. Surveys of 185 Acropora pulchra patches located in the lagoons surrounding the island of Moorea, French Polynesia revealed 85 species of fish from 25 families. Total fish abundance and species richness values ranged from no fish on a patch to a high of 275 individuals and 26 species. Patch area was the most important characteristic in explaining variation in attributes of the fish assemblage, with other characteristics explaining little of the species composition or trophic structure. Behavioral observations revealed that farming damselfishes were most aggressive toward corallivores, herbivores, and egg predators, while they ignored most carnivores and omnivores. Despite this pattern, we observed positive covariance between Stegastes and the group of fishes that elicited the strongest aggressive response when the effect of patch area was removed, suggesting these fishes remain drawn to the resources produced or enhanced by Stegastes on A. pulchra.  相似文献   

14.
Patterns in juvenile mortality rates can have a profound affect on the distribution and abundance of adult individuals, and may be the result of a number of interacting factors. Field observations at Lizard Island (Great Barrier Reef, Australia) showed that for a coral reef damselfish, Pomacentrus moluccensis, juvenile mortality (over 1 year) varied between 20 and almost 100% among sites. Correlative data showed that juvenile mortality increased as a function of initial densities (recruitment), predator densities and the availability of preferred coral substrata. A multiple regression showed that these three variables together did not explain significantly more variation in mortality than the single factor showing the strongest relationship. This appeared to be because recruitment, predator densities and preferred coral substrata were all highly correlated, suggesting that one, two or all of these factors may be influencing juvenile mortality rates. One hypothesis was that density-dependent mortality in juveniles was the result of an interaction between predators (which appear to aggregate at high-recruitment sites) and the availability of preferred substrata (predator refuges). We tested this hypothesis by using both laboratory and field experiments to see whether fish predation could significantly alter survivorship of this damselfish, and whether this impact was dependent upon the coral substratum. The laboratory experiment was designed to test the effects of three common predators (Pseudochromis fuscus, Cephalopholis boenak and Thalassoma lunare) and three different coral substrata that varied in their complexity (Pocillopora damicornis, Acropora nasuta and A. nobilis) on the survival of juvenile Pomacentrus moluccensis. There was a significant interaction between predator species and microhabitat in determining survival. Pseudochromis fuscus and C. boenak were both significantly better at capturing juvenile damselfish than T. lunare. Juvenile survivorship was significantly better when they were given the more complex corals, Pocillopora damicornis and A. nasuta, compared with those given the open-structured species A. nobilis. This pattern reflects habitat selection in the field. Predators differed in their strike rates and the proportion of strikes that were successful, but all exhibited greater success at prey capture where A. nobilis was provided as shelter. The interaction between the effect of predator species and microhabitat structure on damselfish survival was tested in the field for a cohort of juvenile Pomacentrus moluccensis. We examined juvenile survival in the presence and absence of two predators that co-occur on natural patch reefs (C. boenak and Pseudochromis fuscus). The experimental patch reefs we used for this purpose were constructed from both high complexity (Pocillopora damicornis) and low complexity (A. nobilis) coral substrata. Both juveniles and predators were translocated to reefs at natural densities. The effects of predation were clearly dependent upon the microhabitat. Reefs of the high-complexity coral with predators supported the same high numbers of Pomacentrus moluccensis as the reefs with no resident predators. However, damselfish abundance was significantly lower on low-complexity reefs with resident predators, relative to the other treatments. Background rates of loss were high, even on preferred coral in the absence of the manipulated predator, suggesting that transient predators may be even more important than the residents. We suggest that adult abundances in this species were strongly influenced by the densities of different predators and the availability of preferred refuges. Received: 3 April 1997 / Accepted: 26 August 1997  相似文献   

15.
A 9-year study of the structure of assemblages of fish on 20 coral patch reefs, based on 20 non-manipulative censuses, revealed a total of 141 species from 34 families, although 40 species accounted for over 95% of sightings of fish. The average patch reef was 8.5 m2 in surface area, and supported 125 fish of 20 species at a census. All reefs showed at least a two-fold variation among censuses in total numbers of fish present, and 12 showed ten-fold variations. There was also substantial variation in the composition and relative abundances of species present on each patch reef, such that censuses of a single patch reef were on average about 50% different from each other in percent similarity of species composition (Czekanowski's index). Species differed substantially in the degree to which their numbers varied from census to census, and in the degree to which their dispersion among patch reefs was modified from census to census. We characterize the 40 most common species with respect to these attributes. The variations in assemblage structure cannot be attributed to responses of fish to a changing physical structure of patch reefs, nor to the comings and goings of numerous rare species. Our results support and extend earlier reports on this study, which have stressed the lack of persistant structure for assemblages on these patch reefs. While reef fishes clearly have microhabitat preferences which are expressed at settlement, the variations in microhabitat offered by the patch reefs are insufficient to segregate many species of fish by patch reef. Instead, at the scale of single patch reefs, and, to a degree, at the larger scale of the 20 patch reefs, most of the 141 species of fish are distributed without regard to differences in habitat structure among reefs, and patterns of distribution change over time. Implications for general understanding of assemblage dynamics for fish over more extensive patches of reef habitat are considered.  相似文献   

16.
Coral-dwelling fishes from the genus Gobiodon are some of the most habitat specialised fishes on coral reefs. Consequently, we might expect that their population dynamics will be closely associated with the abundance of host corals. I used a combination of log-linear modelling and resource selection ratios to examine patterns of habitat use among eight species of Gobiodon in Kimbe Bay, Papua New Guinea. I then used multiple regression analysis to investigate relationships between the abundance of each species of Gobiodon and the abundance of the corals they inhabited. Each species of Gobiodon used one or more species of coral more frequently than expected by chance. The pattern of habitat use exhibited by each species of Gobiodon did not vary among reef zones or among reefs with different exposures to prevailing winds, despite changes in the relative abundances of corals among reef zones. This consistency in habitat use might be expected if the coral species inhabited confer considerable fitness advantages and, therefore, are strongly preferred. For most species of Gobiodon, abundances among reef zones and exposure regimes were correlated with the abundance of the coral species usually inhabited. Therefore, it appears that habitat availability helps determine abundances of most species of Gobiodon in Kimbe Bay. In addition to correlations with habitat availability, the abundances of G. histrio, G. quinquestrigatus, G. rivulatus (dark form) and the group others were also associated with particular reef zones and exposure regimes. Therefore, in these species, reef type appears to influence patterns of abundance independently of coral availability. In contrast to other species of Gobiodon, the abundance of the most specialised species, Gobiodon sp.A, was not closely associated with the abundance of the only coral species it inhabited. This study demonstrates that even for habitat specialised species, the relationship between habitat availability and abundance varies widely and is multiscale.  相似文献   

17.
Seascape-scale trophic links for fish on inshore coral reefs   总被引:2,自引:0,他引:2  
It is increasingly accepted that coastal habitats such as inshore coral reefs do not function in isolation but rather as part of a larger habitat network. In the Caribbean, trophic subsidies from habitats adjacent to coral reefs support the diet of reef fishes, but it is not known whether similar trophic links occur on reefs in the Indo-Pacific. Here, we test whether reef fishes in inshore coral, mangrove, and seagrass habitats are supported by trophic links. We used carbon stable isotopes and mathematical mixing models to determine the minimum proportion of resources from mangrove or seagrass habitats in the diet of five fish species from coral reefs at varying distances (0–2,200 m) from these habitats in Moreton Bay, Queensland, eastern Australia. Of the fish species that are more abundant on reefs near to mangroves, Lutjanus russelli and Acanthopagrus australis showed no minimum use of diet sources from mangrove habitat. Siganus fuscescens utilized a minimum of 25–44 % mangrove sources and this contribution increased with the proximity of reefs to mangroves (R 2 = 0.91). Seagrass or reef flat sources contributed a minimum of 14–78 % to the diet of Diagramma labiosum, a species found in higher abundance on reefs near seagrass beds, but variation in diet among reefs was unrelated to seascape structure. Seagrass or reef flat sources also contributed a minimum of 8–55 % to a fish species found only on reefs (Pseudolabrus guentheri), indicating that detrital subsidies from these habitats may subsidize fish diet on reefs. These results suggest that carbon sources from multiple habitats contribute to the functioning of inshore coral reef ecosystems and that trophic connectivity between reefs and mangroves may enhance production of a functionally important herbivore.  相似文献   

18.
Direct evaluation of macroalgal removal by herbivorous coral reef fishes   总被引:5,自引:5,他引:0  
Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.  相似文献   

19.
Many parrotfishes (Scaridae) co-occur in mixed-species aggregations as juveniles, but diverge in resource use and social structure as adults. Focal observations of three juvenile parrotfishes (Scarus coeruleus, Sparisoma aurofrenatum, and Sparisoma viride) were conducted on inshore patch reefs in the Florida Keys to determine how feeding and aggressive interactions vary with group participation. All three species spent more time in groups than alone, most often in groups of less than ten individuals. Feeding rates were significantly higher for S. viride when foraging in groups than when alone. All species fed most often from Halimeda, and overall diet composition was similar for fish whether feeding in groups or alone. The frequency of aggressive interactions varied with group participation. Focal S. aurofrenatum were more aggressive when in groups than when alone, and both S. aurofrenatum and S. viride were attacked more often by damselfishes when they were alone than when in groups. In contrast, feeding rates, diet breadth, and aggressive interactions of S. coeruleus were less affected by group participation. Small mixed-species aggregations of coral reef fishes may be large enough for individuals to assume some of the benefits of group participation while at the same time avoiding the costs of competition realized in larger groups.  相似文献   

20.
 Visual censusing was used to characterize fish assemblages on artificial and natural reefs located within the boundaries of the Flower Garden Banks National Marine Sanctuary (FGBNMS) in the northwestern Gulf of Mexico. Emphasis was placed on determining spatial and temporal patterns in habitat utilization by fishes on an offshore artificial reef (Mobil Platform HI-A389A). Overall, 43 species were observed during diurnal surveys in the upper 24 m of the artificial reef. Midwater pelagic fishes (i.e., carangids and scombrids) accounted for over 50% of all taxa enumerated on the artificial reef; however, these taxa were transient members of the assemblage and were observed infrequently. Labrids, pomacentrids, and serranids were the dominant reef-dependent taxa. Distinct trends in vertical, diel, and seasonal abundances were observed for juvenile and adult fishes. Of the three designated depth zones (upper 1.5–9.0, middle 9.0–16.5; lower 16.5–24.0 m), abundance and species diversity were lowest in the upper zone. Nocturnal counts were characterized by a marked reduction or complete absence of most species, due in part to twilight cover-seeking and movement activities. Seasonal variation in community composition and species abundance (May versus September) was primarily due to recruitment of juveniles (0-age fishes) to the artificial reef in late summer. Increases in total fish abundance (all taxa combined) coincided with both increasing habitat rugosity and degree of fouling. Species richness on natural coral reefs in the FGBNMS was higher than on the artificial reef. Unlike the artificial reef, fish assemblages on the natural reefs were dominated by a single family (Pomacentridae) which accounted for over 50% of all individuals observed. Accepted: 1 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号