首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task. Young adults made aiming movements to targets on a horizontal plane, while looking at the rotated feedback (cursor) of hand movements on a monitor. To vary the task difficulty, three rotation angles (30°, 75°, and 150°) were tested in three groups. All groups shortened hand movement time and trajectory length with practice. However, control strategies used were different among groups. The 30° group used proportionately more implicit adjustments of hand movements than other groups. The 75° group used more on-line feedback control, whereas the 150° group used explicit strategic adjustments. Regarding eye-hand coordination, timing of gaze shift to the target was gradually changed with practice from the late to early phase of hand movements in all groups, indicating an emerging gaze-anchoring behavior. Gaze locations prior to the gaze anchoring were also modified with practice from the cursor vicinity to an area between the starting position and the target. Reflecting various task difficulties, these changes occurred fastest in the 30° group, followed by the 75° group. The 150° group persisted in gazing at the cursor vicinity. These results suggest that the function of gaze control during visuomotor adaptation changes from a reactive control for exploring the relation between cursor and hand movements to a predictive control for guiding the hand to the task goal. That gaze-anchoring behavior emerged in all groups despite various control strategies indicates a generality of this adaptive pattern for eye-hand coordination in goal-directed actions.  相似文献   

2.
One reason for the apparent gulf between animal and human communication systems is that the focus has been on the presence or the absence of language as a complex expressive system built on speech. But language normally occurs embedded within an interactional exchange of multi-modal signals. If this larger perspective takes central focus, then it becomes apparent that human communication has a layered structure, where the layers may be plausibly assigned different phylogenetic and evolutionary origins—especially in the light of recent thoughts on the emergence of voluntary breathing and spoken language. This perspective helps us to appreciate the different roles that the different modalities play in human communication, as well as how they function as one integrated system despite their different roles and origins. It also offers possibilities for reconciling the ‘gesture-first hypothesis’ with that of gesture and speech having evolved together, hand in hand—or hand in mouth, rather—as one system.  相似文献   

3.
When opposing force fields are presented alternately or randomly across trials for identical reaching movements, subjects learn neither force field, a behavior termed ‘interference’. Studies have shown that a small difference in the endpoint posture of the limb reduces this interference. However, any difference in the limb’s endpoint location typically changes the hand position, joint angles and the hand orientation making it ambiguous as to which of these changes underlies the ability to learn dynamics that normally interfere. Here we examine the extent to which each of these three possible coordinate systems—Cartesian hand position, shoulder and elbow joint angles, or hand orientation—underlies the reduction in interference. Subjects performed goal-directed reaching movements in five different limb configurations designed so that different pairs of these configurations involved a change in only one coordinate system. By specifically assigning clockwise and counter-clockwise force fields to the configurations we could create three different conditions in which the direction of the force field could only be uniquely distinguished in one of the three coordinate systems. We examined the ability to learn the two fields based on each of the coordinate systems. The largest reduction of interference was observed when the field direction was linked to the hand orientation with smaller reductions in the other two conditions. This result demonstrates that the strongest reduction in interference occurred with changes in the hand orientation, suggesting that hand orientation may have a privileged role in reducing motor interference for changes in the endpoint posture of the limb.  相似文献   

4.
Beat gestures—spontaneously produced biphasic movements of the hand—are among the most frequently encountered co-speech gestures in human communication. They are closely temporally aligned to the prosodic characteristics of the speech signal, typically occurring on lexically stressed syllables. Despite their prevalence across speakers of the world''s languages, how beat gestures impact spoken word recognition is unclear. Can these simple ‘flicks of the hand'' influence speech perception? Across a range of experiments, we demonstrate that beat gestures influence the explicit and implicit perception of lexical stress (e.g. distinguishing OBject from obJECT), and in turn can influence what vowels listeners hear. Thus, we provide converging evidence for a manual McGurk effect: relatively simple and widely occurring hand movements influence which speech sounds we hear.  相似文献   

5.
In this paper, we investigate the impact of inaccurate forecasting on the coordination of distributed investment decisions. In particular, by setting up a computational multi-agent model of a stylized firm, we investigate the case of investment opportunities that are mutually carried out by organizational departments. The forecasts of concern pertain to the initial amount of money necessary to launch and operate an investment opportunity, to the expected intertemporal distribution of cash flows, and the departments’ efficiency in operating the investment opportunity at hand. We propose a budget allocation mechanism for coordinating such distributed decisions The paper provides guidance on how to set framework conditions, in terms of the number of investment opportunities considered in one round of funding and the number of departments operating one investment opportunity, so that the coordination mechanism is highly robust to forecasting errors. Furthermore, we show that—in some setups—a certain extent of misforecasting is desirable from the firm’s point of view as it supports the achievement of the corporate objective of value maximization. We then address the question of how to improve forecasting quality in the best possible way, and provide policy advice on how to sequence activities for improving forecasting quality so that the robustness of the coordination mechanism to errors increases in the best possible way. At the same time, we show that wrong decisions regarding the sequencing can lead to a decrease in robustness. Finally, we conduct a comprehensive sensitivity analysis and prove that—in particular for relatively good forecasters—most of our results are robust to changes in setting the parameters of our multi-agent simulation model.  相似文献   

6.
Human interaction partners tend to synchronize their movements during repetitive actions such as walking. Research of inter-human coordination in purely rhythmic action tasks reveals that the observed patterns of interaction are dominated by synchronization effects. Initiated by our finding that human dyads synchronize their arm movements even in a goal-directed action task, we present a step-wise approach to a model of inter-human movement coordination. In an experiment, the hand trajectories of ten human dyads are recorded. Governed by a dynamical process of phase synchronization, the participants establish in-phase as well as anti-phase relations. The emerging relations are successfully reproduced by the attractor dynamics of coupled phase oscillators inspired by the Kuramoto model. Three different methods on transforming the motion trajectories into instantaneous phases are investigated and their influence on the model fit to the experimental data is evaluated. System identification technique allows us to estimate the model parameters, which are the coupling strength and the frequency detuning among the dyad. The stability properties of the identified model match the relations observed in the experimental data. In short, our model predicts the dynamics of inter-human movement coordination. It can directly be implemented to enrich human-robot interaction.  相似文献   

7.
To date, experiments in economics are restricted to situations in which individuals are not influenced by the physical presence of other people. In such contexts, interactions remain at an abstract level, agents guessing what another person is thinking or is about to decide based on money exchange. Physical presence and bodily signals are therefore left out of the picture. However, in real life, social interactions (involving economic decisions or not) are not solely determined by a person''s inference about someone else''s state-of-mind. In this essay, we argue for embodied economics: an approach to neuroeconomics that takes into account how information provided by the entire body and its coordination dynamics influences the way we make economic decisions. Considering the role of embodiment in economics—movements, posture, sensitivity to mimicry and every kind of information the body conveys—makes sense. This is what we claim in this essay which, to some extent, constitutes a plea to consider bodily interactions between agents in social (neuro)economics.  相似文献   

8.
 Initiation of rapid discrete flexion movements is significantly altered when a secondary rhythmic movement is performed simultaneously with the same limb; the onset of a stimulus-evoked discrete movement tends to occur time-locked to the oscillation: i.e., the rhythmic movement entrains the discrete response. This nonlinear interaction may reflect a specific principle of coordination of motor tasks which are simultaneously executed with the same effector. This part II of a tripartite research report on such single-muscle multiple-task coordination investigates the contribution of the dynamic properties of the muscle and its reflex circuitry to phase entrainment. Assuming a simple threshold-linear relationship between the control signals generated by the central nervous system and the observable kinematic and electromyographic signals, a secondary rhythmic movement will cause an additional phase-dependent delay between the central “go” command and the first observable change in actual kinematics of the compound movement. Several indicators for such threshold-linear interaction are derived and tested on real data obtained in psychophysical experiments. Four healthy subjects performed rapid lateral abductions of the index finger in response to a visual “go” signal. During a portion of the experiments, subjects produced additional low-amplitude oscillatory movements before stimulus presentation with either the same finger (one-handed task), or with the index finger of the other hand (two-handed task). Results showed phase entrainment and modulation of reaction times when the cyclic and the discrete movements were simultaneously executed by the same finger. But there was no entrainment in the bimanual execution of the tasks. The model was capable of reproducing the observed effects. It is concluded that coordination of voluntary movements which are concurrently performed by the same effector involves specific discontinuous operations, which represents an essential part of the mechanism of motor coordination. Phase entrainment reflects this characteristic discontinuous behavior of the lower stages of motor execution and does not necessarily require nonlinear interaction of motor commands at higher levels of motor processing. Received: 5 September 2001 / Accepted in revised form: 19 December 2001  相似文献   

9.
We examined an eye-hand coordination task where optimal visual search and hand movement strategies were inter-related. Observers were asked to find and touch a target among five distractors on a touch screen. Their reward for touching the target was reduced by an amount proportional to how long they took to locate and reach to it. Coordinating the eye and the hand appropriately would markedly reduce the search-reach time. Using statistical decision theory we derived the sequence of interrelated eye and hand movements that would maximize expected gain and we predicted how hand movements should change as the eye gathered further information about target location. We recorded human observers'' eye movements and hand movements and compared them with the optimal strategy that would have maximized expected gain. We found that most observers failed to adopt the optimal search-reach strategy. We analyze and describe the strategies they did adopt.  相似文献   

10.
We investigated coordinated movements between the eyes and head (“eye-head coordination”) in relation to vision for action. Several studies have measured eye and head movements during a single gaze shift, focusing on the mechanisms of motor control during eye-head coordination. However, in everyday life, gaze shifts occur sequentially and are accompanied by movements of the head and body. Under such conditions, visual cognitive processing influences eye movements and might also influence eye-head coordination because sequential gaze shifts include cycles of visual processing (fixation) and data acquisition (gaze shifts). In the present study, we examined how the eyes and head move in coordination during visual search in a large visual field. Subjects moved their eyes, head, and body without restriction inside a 360° visual display system. We found patterns of eye-head coordination that differed those observed in single gaze-shift studies. First, we frequently observed multiple saccades during one continuous head movement, and the contribution of head movement to gaze shifts increased as the number of saccades increased. This relationship between head movements and sequential gaze shifts suggests eye-head coordination over several saccade-fixation sequences; this could be related to cognitive processing because saccade-fixation cycles are the result of visual cognitive processing. Second, distribution bias of eye position during gaze fixation was highly correlated with head orientation. The distribution peak of eye position was biased in the same direction as head orientation. This influence of head orientation suggests that eye-head coordination is involved in gaze fixation, when the visual system processes retinal information. This further supports the role of eye-head coordination in visual cognitive processing.  相似文献   

11.
Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans.  相似文献   

12.
Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken—Kelso—Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1), the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2), pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure.  相似文献   

13.
The hand is one of the most fascinating and sophisticated biological motor systems. The complex biomechanical and neural architecture of the hand poses challenging questions for understanding the control strategies that underlie the coordination of finger movements and forces required for a wide variety of behavioral tasks, ranging from multidigit grasping to the individuated movements of single digits. Hence, a number of experimental approaches, from studies of finger movement kinematics to the recording of electromyographic and cortical activities, have been used to extend our knowledge of neural control of the hand. Experimental evidence indicates that the simultaneous motion and force of the fingers are characterized by coordination patterns that reduce the number of independent degrees of freedom to be controlled. Peripheral and central constraints in the neuromuscular apparatus have been identified that may in part underlie these coordination patterns, simplifying the control of multi-digit grasping while placing certain limitations on individuation of finger movements. We review this evidence, with a particular emphasis on how these constraints extend through the neuromuscular system from the behavioral aspects of finger movements and forces to the control of the hand from the motor cortex.  相似文献   

14.
Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes.  相似文献   

15.
On the basis of a scientific-philosophical analysis, this paper tries to show that the approaches in current nutritional science—including its subdisciplines which focus on molecular aspects—are predominantly application-oriented. This becomes particularly evident through a number of conceptual problems characterized by the triad of ‘dearth of theoretical foundation,’ ‘particularist research questions,’ and ‘reductionist understanding of nutrition.’ The thesis presented here is that an interpretive framework based on nutritional biology is able to shed constructive light on the fundamental problems of nutritional science. In this context, the establishment of ‘nutritional biology’ as a basic discipline in research and education would be a first step toward recognizing the phenomenon of ‘nutrition’ as an oecic process as a special case of an organism–environment interaction. Modern nutritional science should be substantively grounded on ecological—and therefore systems biology as well as organismic—principles. The aim of nutritional biology, then, should be to develop near-universal ‘law statements’ in nutritional science—a task which presents a major challenge for the current science system.  相似文献   

16.
Understanding the intentions of others while watching their actions is a fundamental building block of social behavior. The neural and functional mechanisms underlying this ability are still poorly understood. To investigate these mechanisms we used functional magnetic resonance imaging. Twenty-three subjects watched three kinds of stimuli: grasping hand actions without a context, context only (scenes containing objects), and grasping hand actions performed in two different contexts. In the latter condition the context suggested the intention associated with the grasping action (either drinking or cleaning). Actions embedded in contexts, compared with the other two conditions, yielded a significant signal increase in the posterior part of the inferior frontal gyrus and the adjacent sector of the ventral premotor cortex where hand actions are represented. Thus, premotor mirror neuron areas—areas active during the execution and the observation of an action—previously thought to be involved only in action recognition are actually also involved in understanding the intentions of others. To ascribe an intention is to infer a forthcoming new goal, and this is an operation that the motor system does automatically.  相似文献   

17.
Our ability to perceive a stable visual world in the presence of continuous movements of the body, head, and eyes has puzzled researchers in the neuroscience field for a long time. We reformulated this problem in the context of hierarchical convolutional neural networks (CNNs)—whose architectures have been inspired by the hierarchical signal processing of the mammalian visual system—and examined perceptual stability as an optimization process that identifies image-defining features for accurate image classification in the presence of movements. Movement signals, multiplexed with visual inputs along overlapping convolutional layers, aided classification invariance of shifted images by making the classification faster to learn and more robust relative to input noise. Classification invariance was reflected in activity manifolds associated with image categories emerging in late CNN layers and with network units acquiring movement-associated activity modulations as observed experimentally during saccadic eye movements. Our findings provide a computational framework that unifies a multitude of biological observations on perceptual stability under optimality principles for image classification in artificial neural networks.  相似文献   

18.
Australia, home to the iconic dingo, is currently free from canine rabies. However northern Australia, including Indigenous communities with large free-roaming domestic dog populations, is at increased risk of rabies incursion from nearby Indonesia. We developed a novel agent-based stochastic spatial rabies spread model to evaluate the potential spread of rabies within the dingo population of the Northern Peninsula Area (NPA) region of northern Australia. The model incorporated spatio-temporal features specific to this host-environment system, including landscape heterogeneity, demographic fluctuations, dispersal movements and dingo ecological parameters—such as home range size and density—derived from NPA field studies. Rabies spread between dingo packs in nearly 60% of simulations. In such situations rabies would affect a median of 22 dingoes (approximately 14% of the population; 2.5–97.5 percentiles: 2–101 dingoes) within the study area which covered 1,131 km2, and spread 0.52 km/week for 191 days. Larger outbreaks occurred in scenarios in which an incursion was introduced during the dry season (vs. wet season), and close to communities (vs. areas with high risk of interaction between dingoes and hunting community dogs). Sensitivity analyses revealed that home range size and duration of infectious clinical period contributed most to the variance of outputs. Although conditions in the NPA would most likely not support a sustained propagation of the disease in the dingo population, due to the predicted number of infected dingoes following a rabies incursion and the proximity of Indigenous communities to dingo habitat, we conclude that the risk for human transmission could be substantial.  相似文献   

19.
Mammalian development involves significant interactions between offspring and mother. But is this interaction a carefully coordinated effort by two individuals with a common goal—offspring survival? Or is it an evolutionary battleground (a central idea in our understanding of reproduction). The conflict between parents and offspring extends to an offspring''s genes, where paternally inherited genes favor demanding more from the mother, while maternally inherited genes favor restraint. This “intragenomic conflict” (among genes within a genome) is the dominant evolutionary explanation for “genomic imprinting.” But a new study in PLOS Biology provides support for a different perspective: that imprinting might facilitate coordination between mother and offspring. According to this “coadaptation theory,” paternally inherited genes might be inactivated because maternally inherited genes are adapted to function harmoniously with the mother. As discussed in this article, the growth effects associated with the imprinted gene Grb10 are consistent with this idea, but it remains to be seen just how general the pattern is.  相似文献   

20.
Reaching-to-grasp has generally been classified as the coordination of two separate visuomotor processes: transporting the hand to the target object and performing the grip. An alternative view has recently been formed that grasping can be explained as pointing movements performed by the digits of the hand to target positions on the object. We have previously implemented the minimum variance model of human movement as an optimal control scheme suitable for control of a robot arm reaching to a target. Here, we extend that scheme to perform grasping movements with a hand and arm model. Since the minimum variance model requires that signal-dependent noise be present on the motor commands to the actuators of the movement, our approach is to plan the reach and the grasp separately, in line with the classical view, but using the same computational model for pointing, in line with the alternative view. We show that our model successfully captures some of the key characteristics of human grasping movements, including the observations that maximum grip size increases with object size (with a slope of approximately 0.8) and that this maximum grip occurs at 60–80% of the movement time. We then use our model to analyse contributions to the digit end-point variance from the two components of the grasp (the transport and the grip). We also briefly discuss further areas of investigation that are prompted by our model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号