首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Yauk CL 《Mutation research》2004,566(2):169-182
Alterations in tandem repetitive DNA sequences such as minisatellite DNA and expanded simple tandem repeats (ESTRs) may provide useful biomarkers of induced germline effects. In this review, I describe the differences between ESTRs and minisatellites with respect to their structure and mutational mechanisms, and discuss field applications measuring induced germline instability. It is evident that both types of loci have high rates of mutation that facilitate the measurement of induced mutation measured in relatively small numbers of samples following environmentally relevant exposures. Several research groups have used these loci to demonstrate a significant increase in germline mutation in humans and animals exposed to radioactive or chemical pollutants in their natural environment. Mutations are manifested as gains or losses in repeat units and are detected either by pedigree screening or by PCR amplification of sperm DNA. Mutations at both ESTRs and minisatellites appear to arise via indirect mechanisms rather than by direct damage to the repeat locus itself. Most interestingly, ESTR instability following radiation has been shown to be heritable and transmitted to subsequent generations. An understanding of the mechanisms involved in induced instability is required in order to begin to decipher the potential biological implications of increased germline tandem repeat mutation. Furthermore, relatively few studies have investigated the ability of different genotoxins to induce tandem repeat instability. Such laboratory-based experiments will be crucial in clarifying the particular environmental or occupational exposures that should be targeted for future studies and for isolating and subsequently identifying the putative mutagens in complex environmental matrices.  相似文献   

2.
Factors affecting the type and frequency of germline mutations in animals are of significant interest from health and toxicology perspectives. However, studies in this field have been limited by the use of markers with low detection power or uncertain relevance to phenotype. Whole genome sequencing (WGS) is now a potential option to directly determine germline mutation type and frequency in family groups at all loci simultaneously. Medical studies have already capitalized on WGS to identify novel mutations in human families for clinical purposes, such as identifying candidate genes contributing to inherited conditions. However, WGS has not yet been used in any studies of vertebrates that aim to quantify changes in germline mutation frequency as a result of environmental factors. WGS is a promising tool for detecting mutation induction, but it is currently limited by several technical challenges. Perhaps the most pressing issue is sequencing error rates that are currently high in comparison to the intergenerational mutation frequency. Different platforms and depths of coverage currently result in a range of 10-10(3) false positives for every true mutation. In addition, the cost of WGS is still relatively high, particularly when comparing mutation frequencies among treatment groups with even moderate sample sizes. Despite these challenges, WGS offers the potential for unprecedented insight into germline mutation processes. Refinement of available tools and emergence of new technologies may be able to provide the improved accuracy and reduced costs necessary to make WGS viable in germline mutation studies in the very near future. To streamline studies, researchers may use multiple family triads per treatment group and sequence a targeted (reduced) portion of each genome with high (20-40 ×) depth of coverage. We are optimistic about the application of WGS for quantifying germline mutations, but caution researchers regarding the resource-intensive nature of the work using existing technology.  相似文献   

3.
Somers CM 《Mutation research》2006,598(1-2):35-49
Expanded simple tandem repeat (ESTR) DNA loci that are unstable in the germline have provided the most sensitive tool ever developed for investigating low-dose heritable mutation induction in laboratory mice. Ionizing radiation exposures have shown that ESTR mutations occur mainly in pre-meiotic spermatogonia and stem cells. The average spermatogonial doubling dose is 0.62-0.69 Gy for low LET, and 0.18-0.34 Gy for high LET radiation. Chemical alkylating agents also cause significant ESTR mutation induction in pre-meiotic spermatogonia and stem cells, but are much less effective per unit dose than radiation. ESTR mutation induction efficiency is maximal at low doses of radiation or chemical mutagens, and may decrease at higher dose ranges. DNA repair deficient mice (SCID and PARP-1) with elevated levels of single and double-strand DNA breaks have spontaneously elevated ESTR mutation frequencies, and surprisingly do not show additional ESTR mutation induction following irradiation. In contrast, ESTR mutation induction in p53 knock-outs is indistinguishable from that of wild-type mice. Studies of sentinel mice exposed in situ to ambient air pollution showed elevated ESTR mutation frequencies in males exposed to high levels of particulate matter. These studies highlight the application of the ESTR assay for assessing environmental hazards under real-world conditions. All ESTR studies to date have shown untargeted mutations that occur at much higher frequencies than predicted. The mechanism of this untargeted mutation induction is unknown, and must be elucidated before we can fully understand the biological significance of ESTR mutations, or use these markers for formal risk assessment. Future studies should focus on the mechanism of ESTR mutation induction, refining dose responses, and developing ESTR markers for other animal species.  相似文献   

4.
Heritable genetic alterations, although individually rare, have a substantial collective health impact. Approximately 20% of these are new mutations of unknown cause. Assessment of the effect of exposures to DNA damaging agents, i.e. mutagenic chemicals and radiations, on the integrity of the human genome and on the occurrence of genetic disease remains a daunting challenge. Recent insights may explain why previous examination of human exposures to ionizing radiation, as in Hiroshima and Nagasaki, failed to reveal heritable genetic effects. New opportunities to assess the heritable genetic damaging effects of environmental mutagens are afforded by: (1) integration of knowledge on the molecular nature of genetic disorders and the molecular effects of mutagens; (2) the development of more practical assays for germline mutagenesis; (3) the likely use of population-based genetic screening in personalized medicine.  相似文献   

5.
The MET proto-oncogene encodes a transmembrane tyrosine kinase receptor that mediates multiple functions such as migration, cycling and survival by binding to hepatocyte growth factor (HGF). Dysregulation of MET through inappropriate expression or mutation has been shown to play an important role in human cancers. Furthermore, inherited mutations in MET are known to contribute to the development of gastric and renal cancer in humans. Lastly, mouse models of MET mutations lead to the development of a wide variety of cancers including lymphomas, sarcomas and some forms of carcinoma. In the process of cloning canine MET, a novel germline point mutation was found in the juxtamembrane domain (G966S) in two of the templates used for cloning, both of which were derived from Rottweiler dogs, a breed believed to be at high risk for the development of several cancers. Screening of germline DNA from a variety of breeds revealed that this mutation was present in approximately 70% of Rottweiler dogs and <5% of all other breeds examined, suggesting a breed-specific heritable mutation. Stable transfection of the G966S mutant form of MET into NIH3T3 cells resulted in enhanced baseline scattering and migration of the cells, which was further increased in the presence of HGF. This study supports the notion that particular dog breeds may carry germline mutations that contribute to high rates of cancer in a manner similar to heritable, cancer-associated mutations in humans.  相似文献   

6.
Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently--the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.  相似文献   

7.
Yun-Xin Fu 《Genetics》2013,194(4):927-936
Most studies of mutation rates implicitly assume that they remain constant throughout development of the germline. However, researchers recently used a novel statistical framework to reveal that mutation rates differ dramatically during sperm development in Drosophila melanogaster. Here a general framework is described for the inference of germline mutation patterns, generated from either mutation screening experiments or DNA sequence polymorphism data, that enables analysis of more than two mutations per family. The inference is made more rigorous and flexible by providing a better approximation of the probabilities of patterns of mutations and an improved coalescent algorithm within a single host with realistic assumptions. The properties of the inference framework, both the estimation and the hypothesis testing, were investigated by simulation. The refined inference framework is shown to provide (1) nearly unbiased maximum-likelihood estimates of mutation rates and (2) robust hypothesis testing using the standard asymptotic distribution of the likelihood-ratio tests. It is readily applicable to data sets in which multiple mutations in the same family are common.  相似文献   

8.
Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities in our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our long-standing model of spermatogenesis. I consider possible explanations for these discrepancies, including evolutionary changes in life-history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and changes in cellular mutation processes at different stages of the germline. I suggest a revised model of stem-cell state transitions during spermatogenesis, in which ‘dark’ gonial stem cells play a more active role than hitherto envisaged, with a long cycle time undetected in experimental observations. More generally, I argue that the mutation rate and its evolution depend intimately on the structure of the germline in humans and other primates.This article is part of the themed issue ‘Dating species divergences using rocks and clocks''.  相似文献   

9.
Nasal chondromesenchymal hamartoma (NCMH) is a rare nasal tumor that typically presents in young children. We previously reported on NCMH occurrence in children with pleuropulmonary blastoma (PPB), a rare pulmonary dysembryonic sarcoma that is the hallmark neoplasm in the PPB-associated DICER1 tumor predisposition disorder. Original pathologic materials from individuals with a PPB, PPB-associated tumor and/or a DICER1 mutation were centrally reviewed by the International PPB Registry. Paraffin-embedded NCMH tumor tissue was available in three cases. Laser-capture microdissection was used to isolate mesenchymal spindle cells and cartilage in one case for Sanger sequencing of DICER1. Nine patients (5F/4M) had PPB and NCMH. NCMH was diagnosed at a median age of 10 years (range 6–21 years). NCMH developed 4.5–13 years after PPB. Presenting NCMH symptoms included chronic sinusitis and nasal congestion. Five patients had bilateral tumors. Local NCMH recurrences required several surgical resections in two patients, but all nine patients were alive at 0–16 years of follow-up. Pathogenic germline DICER1 mutations were found in 6/8 NCMH patients tested. In 2 of the patients with germline DICER1 mutations, somatic DICER1 missense mutations were also identified in their NCMH (E1813D; n = 2). Three additional PPB patients developed other nasal lesions seen in the general population (a Schneiderian papilloma, chronic sinusitis with cysts, and allergic nasal polyps with eosinophils). Two of these patients had germline DICER1 mutations. Pathogenic germline and somatic mutations of DICER1 in NCMH establishes that the genetic etiology of NCMH is similar to PPB, despite the disparate biological potential of these neoplasms.  相似文献   

10.
Although no statistically significant hereditary effects have yet been detected in the children of survivors from the atomic bombings in Hiroshima and Nagasaki, recent animal studies have found that exposure to ionizing radiation can cause genomic and epigenomic instability in the exposed individuals, as well as their offspring, and therefore, may have much larger genetic effects than predicted by earlier studies. When individuals are exposed to various environmental insults, including radiation, individual sensitivity to the insults often varies. Variance in germ-line response to radiation among individuals has been widely recognized, but it is difficult to address due to the use of inbred strains and the limited number of offspring that can be produced by a pair of mice, the common model used to study genetic effects of radiation. Herein is the first study to examine individual family responses to ionizing radiation using a parent-pedigree approach in an outbred strain of a vertebrate model, the Japanese medaka fish. Changes in frequencies of radiation-induced germline mutations at nine microsatellite loci were examined in the same families before and after exposure to one of four acute doses of ionizing radiation (0.1, 0.5, 2.5, 5Gy, plus sham-exposed controls). Families varied significantly in pre-exposure mutation frequencies and responses to irradiation, but germline mutations were elevated in at least one family after 0.1, 0.5, and 5Gy exposures. Variance among individuals in sensitivity to radiation is well documented for many endpoints, and our work now extends these endpoints to include germ-line mutations. Further studies are needed to elucidate dose response, effects at varying stages of spermatogenesis, and the mechanisms underlying the variance in these individual responses to radiation.  相似文献   

11.
Microsatellites mutate frequently by replication slippage. Empirical evidence shows that the probability of such slippage mutations may increase with the length of the repeat region as well as exposure to environmental mutagens, but the mutation rate can also differ between the male and female germline. It has been hypothesized that more intense sexual selection or sperm competition can also lead to elevated mutation rates, but the empirical evidence is inconclusive. Here, we analyzed the occurrence of germline slippage mutations in the hypervariable pentanucleotide microsatellite locus HrU10 across six species of swallow (Aves: Hirundinidae). These species exhibit marked differences in the length range of the microsatellite, as well as differences in the intensity of sperm competition. We found a strong effect of microsatellite length on the probability of mutation, but no residual effect of species or their level of sperm competition when the length effect was accounted for. Neither could we detect any difference in mutation rate between tree swallows (Tachycineta bicolor) breeding in Hamilton Harbour, Ontario, an industrial site with previous documentation of elevated mutation rates for minisatellite DNA, and a rural reference population. However, our cross-species analysis revealed two significant patterns of sex differences in HrU10 germline mutations: (1) mutations in longer alleles occurred typically in the male germline, those in shorter alleles in the female germline, and (2) male germline mutations were more often expansions than contractions, whereas no directional bias was evident in the female germline. These results indicate some fundamental differences in male and female gametogenesis affecting the probability of slippage mutations. Our study also reflects the value of a comparative, multi-species approach for locus-specific mutation analyses, through which a wider range of influential factors can be assessed than in single-species studies.  相似文献   

12.
Understanding the genetic causes of neurodegenerative disease (ND) can be useful for their prevention and treatment. Among the genetic variations responsible for ND, heritable germline variants have been discovered in genome-wide association studies (GWAS), and nonheritable somatic mutations have been discovered in sequencing projects. Distinguishing the important initiating genes in ND and comparing the importance of heritable and nonheritable genetic variants for treating ND are important challenges. In this study, we analysed GWAS results, somatic mutations and drug targets of ND from large databanks by performing directed network-based analysis considering a randomised network hypothesis testing procedure. A disease-associated biological network was created in the context of the functional interactome, and the nonrandom topological characteristics of directed-edge classes were interpreted. Hierarchical network analysis indicated that drug targets tend to lie upstream of somatic mutations and germline variants. Furthermore, using directed path length information and biological explanations, we provide information on the most important genes in these created node classes and their associated drugs. Finally, we identified nine germline variants overlapping with drug targets for ND, seven somatic mutations close to drug targets from the hierarchical network analysis and six crucial genes in controlling other genes from the network analysis. Based on these findings, some drugs have been proposed for treating ND via drug repurposing. Our results provide new insights into the therapeutic actionability of GWAS results and somatic mutations for ND. The interesting properties of each node class and the existing relationships between them can broaden our knowledge of ND.  相似文献   

13.
Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or “Accelerated Resistance to Multiple Drugs” (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring detrimental fitness costs.  相似文献   

14.

Background

Li-Fraumeni syndrome is caused by germline TP53 mutations and is clinically characterized by a predisposition to a range of cancers, most commonly sarcoma, brain tumours and leukemia. Pathogenic mosaic TP53 mutations have only rarely been described.

Methods and Findings

We describe a 2 years old child presenting with three separate cancers over a 6 month period; two soft tissue mesenchymal tumors and an aggressive metastatic neuroblastoma. As conventional testing of blood DNA by Sanger sequencing for mutations in TP53, ALK, and SDH was negative, whole exome sequencing of the blood DNA of the patient and both parents was performed to screen more widely for cancer predisposing mutations. In the patient''s but not the parents'' DNA we found a c.743 G>A, p.Arg248Gln (CCDS11118.1) TP53 mutation in 3–20% of sequencing reads, a level that would not generally be detectable by Sanger sequencing. Homozygosity for this mutation was detected in all tumor samples analyzed, and germline mosaicism was demonstrated by analysis of the child''s newborn blood spot DNA. The occurrence of separate tumors derived from different germ layers suggests that this de novo mutation occurred early in embryogenesis, prior to gastrulation.

Conclusion

The case demonstrates pathogenic mosaicim, detected by next generation deep sequencing, that arose in the early stages of embryogenesis.  相似文献   

15.
16.
Cowden syndrome (CS) is a difficult-to-recognize multiple hamartoma syndrome with high risks of breast, thyroid, and other cancers. Germline mutations in PTEN on 10q23 were found to cause 85% of CS when accrued from tertiary academic centers, but prospective accrual from the community over the last 12 years has revealed a 25% PTEN mutation frequency. PTEN is the phosphatase that has been implicated in a heritable cancer syndrome and subsequently in multiple sporadic cancers and developmental processes. PTEN antagonizes the AKT1/PI3K signaling pathway and has roles in cell cycle, migration, cell polarity, and apoptosis. We report that 8 of 91 (8.8%) unrelated CS individuals without germline PTEN mutations carried 10 germline PIK3CA mutations (7 missense, 1 nonsense, and 2 indels) and 2 (2.2%) AKT1 mutations. These mutations result in significantly increased P-Thr308-AKT and increased cellular PIP3. Our observations suggest that PIK3CA and AKT1 are CS susceptibility genes.  相似文献   

17.
Mutation primarily occurs when cells divide and it is highly desirable to have knowledge of the rate of mutations for each of the cell divisions during individual development. Recently, recessive lethal or nearly lethal mutations which were observed in a large mutation accumulation experiment using Drosophila melanogaster suggested that mutation rates vary significantly during the germline development of male Drosophila melanogaster. The analysis of the data was based on a combination of the maximum likelihood framework with numerical assistance from a newly developed coalescent algorithm. Although powerful, the likelihood based framework is computationally highly demanding which limited the scope of the inference. This paper presents a new estimation approach by minimizing chi-square statistics which is asymptotically consistent with the maximum likelihood method. When only at most one mutation in a family is considered the minimization of chi-square is simplified to a constrained weighted minimum least square method which can be solved easily by optimization theory. The new methods effectively eliminates the computational bottleneck of the likelihood. Reanalysis of the published Drosophila melanogaster mutation data results in similar estimates of mutation rates. The new method is also expected to be applicable to the analysis of mutation data generated by next-generation sequencing technology.  相似文献   

18.
Currently, the types of factors that impact the mutation rate is a controversial issue. The marked attention towards identifying the factors that impact the genomic mutation rate is justified because mutations are the source of genetic variation underlying evolution and because many mutations have deleterious effects and can cause diseases. Although data showing correlations between germ cell division number and mutation rates (from epidemiological studies and molecular evolutionary rate analyses) have suggested that most mutations in animals are replication errors, this notion is highly debated and inconsistencies in the correlations suggest that other, replication-independent factors, could play an important role. Likely candidates include environmental parameters and cell age, but these issues have proved to be difficult to study using animals and in vitro systems, and consequently, very few or no data currently exist. The specific features of plants that make them powerful model systems for revealing the influence of the environment (natural environmental factors) and cell age on the spontaneous genomic mutation rate are discussed here. Overall, the evidence suggests that plants could be key biological systems for advancing our knowledge about how and why heritable mutations arise.  相似文献   

19.
Neurofibromatosis type 1 (NF1) is a common monogenic disorder whereby affected individuals are predisposed to developing CNS tumors, including optic pathway gliomas (OPGs, occurring in ~15 to 20 % of cases). So far, no definite genotype–phenotype correlation determining NF1 patients at risk for tumor formation has been described, although enrichment for mutations in the 5′ region of the NF1 gene in OPG patients has been suggested. We used whole exome sequencing, targeted sequencing, and copy number analysis to screen 77 unrelated NF1 patients with (n = 41) or without (n = 36; age ≥10 years) optic pathway glioma for germline NF1 alterations. We identified germline NF1 mutations in 69 of 77 patients (90 %), but no genotype–phenotype correlation was observed. Our data using a larger patient cohort did not confirm the previously reported clustering of mutations in the 5′ region of the NF1 gene in patients with OPG. Thus, NF1 mutation location should not currently be used as a clinical criterion to assess the risk of developing OPGs.  相似文献   

20.
The genetic etiology of hereditary breast cancer has not been fully elucidated. Although germline mutations of high-penetrance genes such as BRCA1/2 are implicated in development of hereditary breast cancers, at least half of all breast cancer families are not linked to these genes. To identify a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population, we performed an analysis of germline mutations in 2,165 coding exons of 152 genes associated with hereditary cancer using next-generation sequencing (NGS) in 99 breast cancer patients from families of cancer patients regardless of cancer types. Forty-two deleterious germline mutations were identified in 21 genes of 34 patients, including 18 (18.2%) BRCA1 or BRCA2 mutations, 3 (3%) TP53 mutations, 5 (5.1%) DNA mismatch repair gene mutations, 1 (1%) CDH1 mutation, 6 (6.1%) Fanconi anemia pathway gene mutations, and 9 (9.1%) mutations in other genes. Of seven patients who carried mutations in more than one gene, 4 were BRCA1/2 mutation carriers, and their average onset age was much younger than patients with only BRCA1/2 mutations. Almost all identified high-penetrance gene mutations in those families fulfill the typical phenotypes of hereditary cancer syndromes listed in the National Comprehensive Cancer Network (NCCN) guidelines, except two TP53 and three mismatch repair gene mutations. Furthermore, functional studies of MSH3 germline mutations confirmed the association between MSH3 mutation and tumorigenesis, and segregation analysis suggested antagonism between BRCA1 and MSH3. We also identified a lot of low-penetrance gene mutations. Although the clinical significance of those newly identified low-penetrance gene mutations has not been fully appreciated yet, these new findings do provide valuable epidemiological information for the future studies. Together, these findings highlight the importance of genetic testing based on NCCN guidelines and a multi-gene analysis using NGS may be a supplement to traditional genetic counseling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号