首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a new pretreatment process for producing high-efficiency bioethanol from a lignocellulosic biomass. Barley straw was pretreated with sodium hydroxide in a twin-screw extruder for continuous pretreatment. The biomass to ethanol ratio (BTER) for optimal pretreatment conditions was evaluated by response surface methodology. Simultaneous saccharification and fermentation (SSF) was conducted to investigate the BTER with 30 FPU/g cellulose of enzyme and 7% (v/v) yeast (Saccharomyces cerevisiae CHY 1011) using 10% (w/v) pretreated biomass under various pretreatment conditions. The maximum BTER was 73.00% under optimal pretreatment conditions (86.61 °C, 0.58 M, and 84.79 mL/min for temperature, sodium hydroxide concentration, and solution flow rate, respectively) and the experimental BTER was 70.01 ± 0.59%. SSF was performed to investigate the optimal enzyme and biomass dosage. As a result, maximum ethanol concentration and ethanol yield were 46.00 g/L and 77.36% at a loading pretreated biomass of 20% with 30 FPU/g cellulose of the enzyme dosage for barley straw to bioethanol. These results are a significant contribution to the production of bioethanol from barley straw.  相似文献   

2.
《Process Biochemistry》2010,45(8):1299-1306
Neutralized hydrolysate and pretreated rice straw obtained from a 2% (w/v) sulfuric acid pretreatment were mixed at 10% (w/v) and subjected to simultaneous saccharification and co-fermentation (SSCF), with cellulase, β-glucosidase, and Candida tropicalis cells at 15 FPU/g-ds, 15 IU/g-ds and 1 × 109 cells/ml, respectively. A 36-h SSCF with adapted cells resulted in YP/S and ethanol volumetric productivity of 0.36 g/g and 0.57 g/l/h, respectively. In addition to ethanol, insignificant amounts of glycerol and xylitol were also produced. Adapted C. tropicalis cells produced nearly 1.6 times more ethanol than non-adapted cells. Ethanol yield (Yp/s), ethanol volumetric productivity and a xylitol concentration of 0.48 g/g, 0.33 g/l/h and 0.89 g/l, respectively, were produced from fermentation of remaining hydrolysate with adapted C. tropicalis cells. The 0.20 g/g ethanol yield and 77% production efficiency from SSCF of pretreated rice straw indicate scale-up potential for the process. This study demonstrated that C. tropicalis produced ethanol and xylitol from a mixed-sugar stream, although cell adaptation affected ethanol and xylitol yields. Scanning electron microscopy indicated agglomeration of cellulose microfibrils and globular deposition of lignin in acid-pretreated rice straw.  相似文献   

3.
A perfluoropolymer (PFP) membrane has been prepared for use in vapor permeation to separate aqueous ethanol mixtures produced from rice straw with xylose-assimilating recombinant Saccharomyces cerevisiae. PFP membranes commonly have been used for dehydration process and possess good selectivity and high permeances. The effects of by-products during dilute acid pretreatment, addition of yeast extract, and ethanol fermentation on PFP membrane performance were investigated. While feeding mixtures of ethanol (90 wt%) in water, to which individual by-products (0.1–2 g/L) were added, the PFP membrane demonstrated no clear change in permeation rate (439–507 g m−2 h−1) or separation factor (14.9–23.5) from 2 to 4 h of the process. The PFP membrane also showed no clear change in permeation rate (751–859 g m−2 h−1) or separation factor (12.5–13.8) while feeding the mixture (final ethanol conc.: 61 wt%) of ethanol and distillation of the fermentation broth using a suspended fraction of dilute acid-pretreated rice straw for 20 h. These results suggest that the PFP membrane can tolerate actual distillation liquids from ethanol fermentation broth obtained from lignocellulosic biomass pretreated with dilute acid.  相似文献   

4.
This study verifies the potential of fungal autolysis as an alternative process for the production of nutrient-rich solutions similar to yeast extracts. Autolytic experiments were carried out on fermentation solids derived from either batch or continuous submerged cultivations of Aspergillus awamori on various wheat flour milling streams. The degree of autolysis was not affected by the pH range used (3–6.5), whereas it was severely affected by temperature (30–55 °C), initial solids concentration (10–45 g/L) and incubation time. The enzymatic disruption of the fungal cell wall was identified by image analysis as well as by the reduction in total dry weight and the gradual release of various components, such as free amino nitrogen and phosphorus. The novel method of autolysate recycling enabled the enrichment of the solution with lytic enzymes leading to increased fungal cell degradation rates. In this way, it was made possible to reduce the initial total dry weight by 47% and produce a nutrient-rich solution containing 1.6 g/L free amino nitrogen, 5.3 g/L total nitrogen and 0.5 g/L phosphorus.  相似文献   

5.
《Process Biochemistry》2010,45(2):153-163
Restructuring the current fermentation and recovery practices employed for the production of polyhydroxyalkanoates is essential for the commercialisation of environmentally benign and cost competitive biodegradable plastics. This study presents the potential of a wheat-based biorefinery for the production of poly(3-hydroxybutyrate) (PHB). Fed-batch bioconversions using Wautersia eutropha growing on wheat-derived media led to the production of 162.8 g/l PHB. A high PHB to total dry weight (TDW) yield of 93% (w/w) was achieved due to microbial autolysis at the end of fermentation. Images of bacterial cells taken with a Transmission Electron Microscope (TEM) indicated the potential of bacterial autolysis as a mean to shorten downstream processing for PHB purification. The consumption of amino acids and peptides derived from wheat gluten hydrolysis resulted in a high glucose to PHB conversion yield of 0.47 g/g. The respective yield regarding the amount of wheat used for the production of enzymes and PHB was around 0.3 g PHB/g wheat, which corresponds to 82.8% of the maximum theoretical conversion yield. The productivity achieved was around 0.9 g/l h. Fermentations carried out on wheat-derived media and media formulated with various commercial sources of nutrients (glucose, yeast extract, soy-protein acid hydrolysate, casein hydrolysates, corn steep liquor and various inorganic chemicals) showed that the proposed wheat-based biorefinery strategy enhanced PHB production.  相似文献   

6.
7.
An efficient conversion of glucose and xylose is a requisite for a profitable process of bioethanol production from lignocellulose. Considering the approaches available for this conversion, co-culture is a simple process, employing two different organisms for the fermentation of the two sugars. An innovative fermentation scheme was designed, co-culturing immobilized Zymomonas mobilis and free cells of Pichia stipitis in a modified fermentor for the glucose and xylose fermentation, respectively. A sugar mixture of 30 g/l glucose and 20 g/l of xylose was completely converted to ethanol within 19 h. This gave a volumetric ethanol productivity of 1.277 g/l/h and an ethanol yield of 0.49–0.50 g/g, which is more than 96% of the theoretical value. Extension of this fermentation scheme to sugarcane bagasse hydrolysate resulted in a complete sugar utilisation within 26 h; ethanol production peaked at 40 h with a yield of 0.49 g/g. These values are comparable to the best results reported. Cell interaction was observed between Z. mobilis and P. stipitis. Viable cells of Z. mobilis inhibited the cell activity of P. stipitis and the xylose fermentation. Z. mobilis showed evidence of utilising a source other than glucose for growth when co-cultured with P. stipitis.  相似文献   

8.
Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus was carried out for high yield of acetic acid. Acetic acid production process was divided into three stages. The first stage was the growth of S. cerevisiae and ethanol production, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. The second stage was the co-culture of S. cerevisiae and A. pasteurianus, fermentation temperature and aeration rate were maintained at 34 °C and 0.4 vvm, respectively. The third stage was the growth of A. pasteurianus and production of acetic acid, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. Inoculation volume of A. pasteurianus and S. cerevisiae was 16% and 0.06%, respectively. The average acetic acid concentration was 52.51 g/L under these optimum conditions. To enhance acetic acid production, a glucose feeding strategy was subsequently employed. When initial glucose concentration was 90 g/L and 120 g/L glucose was fed twice during fermentation, acetic acid concentration reached 66.0 g/L.  相似文献   

9.
Microbial biolipids/biodiesels derived from volatile fatty acids (VFAs) can be a valuable alternative to plant oils if optimum fermentation conditions are determined. VFAs were used for cell mass and microbial lipid production by Cryptococcus curvatus. The lipid content in the cells increased up to 48% and 28% in batch cultures with the use of 20 g/L glucose and 6 g/L of VFAs as the carbon source, respectively. In this study, C. curvatus used VFAs as a carbon source via anaerobic digestion of rice straw hydrolysates. VFAs produced from rice straw resulted in yield of 0.43 g VFAs/g substrate and 40% higher specific growth rate(0.305 h−1) than synthetic VFAs. The highest fatty acid composition observed was C18:1, was obtained using glucose and VFAs as the carbon source to yield a cetane number of 56–59, which is suitable for biodiesel production. The cost of microbial lipids was estimated to be 0.30–1.15 USD/L given 0–150 USD/ton of VFAs cost for a yield of 0.17 g/g of lipids. Thus, VFAs can be a suitable carbon source for economical biodiesel production.  相似文献   

10.
The perennial herbaceous crop Arundo donax is a potential feedstock for second-generation bioethanol production. In the present work, two different process options were investigated for the conversion of two differently steam-pretreated batches of A. donax. The pretreated raw material was converted to ethanol with a xylose-consuming Saccharomyces cerevisiae strain, VTT C-10880, by applying either separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF). The highest overall ethanol yield and final ethanol concentration were achieved using SHF (0.27 g g?1 and 20.6 g L?1 compared to 0.24 g g?1 and 19.0 g L?1 when SSF was used). The performance of both SHF and SSF was improved by complementing the cellulolytic enzymes with hemicellulases. The higher amount of acetic acid in one of the batches was shown to strongly affect xylose consumption in the fermentation. Only half of the xylose was consumed when batch 1 (high acetic acid) was fermented, compared to that 94% of the xylose was consumed in fermentation of batch 2 (lower acetic acid). Furthermore, the high amount of xylooligomers present in the pretreated materials considerably inhibited the enzymatic hydrolysis. Both the formation of xylooligomers and acetic acid thus need to be considered in the pretreatment process in order to achieve efficient conversion of A. donax to ethanol.  相似文献   

11.
In this work, straw hydrolysates were used to produce succinic acid by Actinobacillus succinogenes CGMCC1593 for the first time. Results indicated that both glucose and xylose in the straw hydrolysates were utilized in succinic acid production, and the hydrolysates of corn straw was better than that of rice or wheat straw in anaerobic fermentation of succinic acid. However, cell growth and succinic acid production were inhibited when the initial concentration of sugar, which was from corn straw hydrolysate (CSH), was higher than 60 g l?1. In batch fermentation, 45.5 g l?1 succinic acid concentration and 80.7% yield were attained after 48 h incubation with 58 g l?1 of initial sugar from corn straw hydrolysate in a 5-l stirred bioreactor. While in fed-batch fermentation, concentration of succinic acid achieved 53.2 g l?1 at a rate of 1.21 g l?1 h?1 after 44 h of fermentation. Our work suggested that corn straw could be utilized for the economical production of succinic acid by A. succinogenes.  相似文献   

12.
The production of 1,3-propanediol, 2,3-butanediol and ethanol was studied, during cultivations of strain Klebsiella oxytoca FMCC-197 on biodiesel-derived glycerol based media. Different kinds of glycerol feedstocks and experimental conditions had an important impact upon the distribution of metabolic products; production of 1,3-propanediol was positively influenced by stable pH conditions and by the absence of N2 gas infusions throughout the fermentation. Thus, during batch bioreactor fermentations conducted at increasing glycerol concentrations, 1,3-propanediol at 41.3 g/L and yield ~47% (w/w) was achieved at initial glycerol concentration ~120 g/L. At even higher initial glycerol media (150 and 170 g/L), growth was not ceased, but 1,3-propanediol production declined. During fed-batch fermentation under optimal experimental conditions, 126 g/L of glycerol were converted into 50.1 g/L of 1,3-propanediol. In this experiment, also 25.2 g/L of ethanol (conversion yield ~20%, w/w) were formed. A batch-bioreactor culture was performed under non-sterilized conditions and the 1,3-propanediol production was almost equivalent to the sterilized process. Concerning 2,3-butanediol formation, the most detrimental parameter was the absence of N2 sparging and as a result, no 2,3-butanediol was produced. The presence of glucose as co-substrate seriously enhanced 2,3-butanediol production; when commercial glucose was employed as sole substrate, 32.1 g/L of 2,3-butanediol were formed.  相似文献   

13.
During pyruvate production, ethanol is produced as a by-product, which both decreases the amount of pyruvate and makes the recovery of pyruvate more difficult. Pyruvate decarboxylase (PDC, EC 4.1.1.1), which degrades pyruvate to acetaldehyde and ultimately to ethanol, is a key enzyme in the pyruvate metabolism of yeast. Therefore, to order to increase the yield of pyruvate in Torulopsis glabrata, targeted PDC-disrupted strains were metabolically engineered. First, T. glabrata ura3 strains that were suitable for genetic transformation were isolated and identified through ethyl methansulfonate mutagenesis, 5-fluoroortic acid media selection, and Sacchramyces cerevisiae URA3 complement. Next, the PDC gene in T. glabrata was specifically disrupted through homologous recombinant with the S. cerevisiae URA3 gene as the selective marker. The PDC activity of the disruptants was about 33% that of the parent strain. Targeted PDC gene disruption in T. glabrata was also confirmed by PCR amplification and sequencing of the PDC gene and its mutants, PDC activity staining, and PDC Western blot. The disruptants displayed higher pyruvate accumulation and less ethanol production. Under basal fermentation conditions (see Section 2), the disruptants accumulated about 20 g/L of pyruvate with 4.6 g/L of ethanol, whereas the parental strain (T. glabrata IFO005) only accumulated 7–8 g/L of pyruvate with 7.4 g/L of ethanol. Under favorable conditions in jar fermentation, the disruptants accumulated 82.2 g/L of pyruvate in 52 h.  相似文献   

14.
《Process Biochemistry》2007,42(5):834-839
Two different process configurations, simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF), were compared, at 8% water-insoluble solids (WIS), regarding ethanol production from steam-pretreated corn stover. The enzymatic loading in these experiments was 10 FPU/g WIS and the yeast concentration in SSF was 1 g/L (dry weight) of a Saccharomyces cerevisiae strain. When the whole slurry from the pretreatment stage was used as it was, diluted to 8% WIS with water and pH adjusted, SSF gave a 13% higher overall ethanol yield than SHF (72.4% versus 59.1% of the theoretical). The impact of the inhibitory compounds in the liquid fraction of the pretreated slurry was shown to affect SSF and SHF in different ways. The overall ethanol yield (based on the untreated raw material) decreased when SSF was run in absence on inhibitors compared to SSF with inhibitors present. On the contrary, the presence of inhibitors decreased the overall ethanol yield in the case of SHF. However, the SHF yield achieves in the absence of inhibitors was still lower than the SSF yield achieves with inhibitors present.  相似文献   

15.
Conversion of xylose to ethanol by yeasts is a challenge because of the redox imbalances under oxygen-limited conditions. The thermotolerant yeast Kluyveromyces marxianus grows well with xylose as a carbon source at elevated temperatures, but its xylose fermentation ability is weak. In this study, a combination of the NADPH-preferring xylose reductase (XR) from Neurospora crassa and the NADP+-preferring xylitol dehydrogenase (XDH) mutant from Scheffersomyces stipitis (Pichia stipitis) was constructed. The xylose fermentation ability and redox balance of the recombinant strains were improved significantly by over-expression of several downstream genes. The intracellular concentrations of coenzymes and the reduced coenzyme/oxidized coenzyme ratio increased significantly in these metabolic strains. The byproducts, such as glycerol and acetic acid, were significantly reduced by the disruption of glycerol-3-phosphate dehydrogenase (GPD1). The resulting engineered K. marxianus YZJ088 strain produced 44.95 g/L ethanol from 118.39 g/L xylose with a productivity of 2.49 g/L/h at 42 °C. Additionally, YZJ088 realized glucose and xylose co-fermentation and produced 51.43 g/L ethanol from a mixture of 103.97 g/L xylose and 40.96 g/L glucose with a productivity of 2.14 g/L/h at 42 °C. These promising results validate the YZJ088 strain as an excellent producer of ethanol from xylose through the synthetic xylose assimilation pathway.  相似文献   

16.
Saccharum spontaneum is a wasteland weed consists of 45.10 ± 0.35% cellulose and 22.75 ± 0.28% of hemicellulose on dry solid (DS) basis. Aqueous ammonia delignified S. spontaneum yielded total reducing sugars, 53.91 ± 0.44 g/L (539.10 ± 0.55 mg/g of substrate) with a hydrolytic efficiency of 77.85 ± 0.45%. The enzymes required for hydrolysis were prepared from culture supernatants of Aspergillus oryzae MTCC 1846. A maximum of 0.85 ± 0.07 IU/mL of filter paperase (FPase), 1.25 ± 0.04 IU/mL of carboxy methyl cellulase (CMCase) and 55.56 ± 0.52 IU/mL of xylanase activity was obtained after 7 days of incubation at 28 ± 0.5 °C using delignified S. spontaneum as carbon source under submerged fermentation conditions. Enzymatic hydrolysate of S. spontaneum was then tested for ethanol production under batch and repeated batch production system using “in-situ” entrapped Saccharomyces cerevisiae VS3 cells in S. spontaneum stalks (1 cm × 1 cm) size. Immobilization was confirmed by the scanning electron microscopy (SEM). Batch fermentation of VS3 free cells and immobilized cells showed ethanol production, 19.45 ± 0.55 g/L (yield, 0.410 ± 0.010 g/g) and 21.66 ± 0.62 g/L (yield, 0.434 ± 0.021 g/g), respectively. Immobilized VS3 cells showed maximum ethanol production (22.85 ± 0.44 g/L, yield, 0.45 ± 0.04 g/g) up to 8th cycle during repeated batch fermentation followed by a gradual reduction in subsequent cycles of fermentation.  相似文献   

17.
The capability of two zygomycetes strains, Mucor indicus and an isolate from tempeh (Rhizopus sp.), to grow on orange peel hydrolysate and their tolerance to its antimicrobial activity, was investigated. Both fungi, in particular M. indicus, tolerated up to 2% d-limonene in semi-synthetic media during cultivation in shake flasks, under aerobic as well as anaerobic conditions. The tolerance of M. indicus was also tested in a bioreactor, giving rise to varying results in the presence of 2% limonene. Furthermore, both strains were capable of consuming galacturonic acid, the main monomer of pectin, under aerobic conditions when no other carbon source was present. The orange peel hydrolysate was based on 12% (dry w/v) orange peels, containing d-limonene at a concentration of 0.6% (v/v), which no other microorganism has been reported to be able to ferment. However, the hydrolysate was utilised by M. indicus under aerobic conditions, resulting in production of 410 and 400 mg ethanol/g hexoses and 57 and 75 mg fungal biomass/g sugars from cultivations in shake flasks and a bioreactor, respectively. Rhizopus sp., however, was slow to germinate aerobically, and neither of the zygomycetes was able to consistently germinate in orange peel hydrolysate, under anaerobic conditions. The zygomycetes strains used in the present study demonstrated a relatively high resistance to the antimicrobial compounds present in orange peel hydrolysate, and they were capable of producing ethanol and biomass in the presence of limonene, particularly when cultivated with air supply.  相似文献   

18.
In this study, the saccharification and fermentation of the by-product of starch manufacture, potato pulp, were investigated. Analytic results of the components show that the potato pulp contains large amounts of starch, cellulose, and pectin. A commercial enzyme from Acremonium cellulolyticus was found to be highly efficient in the saccharification of potato pulp, since it exhibited high pectinase, α-amylase, and cellulase activities. Hydrothermal treatment of the potato pulp increased the saccharification rate, with a corresponding glucose concentration of 114 g/L and yield of 68% compared to the glucose concentration of 47 g/L and yield of 28% in the untreated case. The hydrolyzate could be used as both nitrogen and carbon sources for ethanol fermentation, showing that bioconversion of potato pulp to ethanol is feasible.  相似文献   

19.
Xylanase production by Aspergillus foetidus MTCC 4898 was carried out under solid state fermentation using wheat bran and anaerobically treated distillery spent wash. Response surface methodology involving Box–Behnken design was employed for optimizing xylanase production. The interactions among various fermentation parameters viz. moisture to substrate ratio, inoculum size, initial pH, effluent concentration and incubation time were investigated and modeled. The predicted xylanase activity under optimized parameters was 8200–8400 U/g and validated xylanase activity was 8450 U/g with very poor cellulase activity. Crude xylanase was used for enzymatic saccharification of agroresidues like wheat straw, rice straw and corncobs. Dilute NaOH and ammonia pretreatments were found to be beneficial for the efficient enzymatic hydrolysis of all the three substrates. Dilute NaOH pretreated wheat straw, rice straw and corncobs yielded 4, 4.2, 4.6 g/l reducing sugars, respectively whereas ammonia treated wheat straw, rice straw and corncobs yielded 4.9, 4.7, 4.6 g/l reducing sugars, respectively. The hydrolyzates were analysed by HPTLC. Xylose was found to be the major end product with traces of glucose in the enzymatic hydrolyzates of all the substrates.  相似文献   

20.
Enzyme hydrolysis of pretreated cellulosic materials slows as the concentration of solid biomass material increases, even though the ratio of enzyme to cellulose is kept constant. This form of inhibition is distinct from substrate and product inhibition, and has been noted for lignocellulosic materials including wood, corn stover, switch grass, and corn wet cake at solids concentrations greater than 10 g/L. Identification of enzyme inhibitors and moderation of their effects is of considerable practical importance since favorable ethanol production economics require that at least 200 g/L of cellulosic substrates be used to enable monosaccharide concentrations of 100 g/L, which result in ethanol titers of 50 g/L. Below about 45 g/L ethanol, distillation becomes energy inefficient. This work confirms that the phenols: vanillin, syringaldehyde, trans-cinnamic acid, and hydroxybenzoic acid, inhibit cellulose hydrolysis in wet cake by endo- and exo-cellulases, and cellobiose hydrolysis by β-glucosidase. A ratio of 4 mg of vanillin to 1 mg protein (0.5 FPU) reduces the rate of cellulose hydrolysis by 50%. β-Glucosidases from Trichoderma reesei and Aspergillus niger are less susceptible to inhibition and require about 10× and 100× higher concentrations of phenols for the same levels of inhibition. Phenols introduced with pretreated cellulose must be removed to maximize enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号