首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Toll like receptor (TLR) 4 has been reported to promote inflammation in diabetic nephropathy. However the role of TLR4 in the complicated pathophysiology of diabetic nephropathy is not understood. In this study, we report elevated expression of TLR4, its endogenous ligands and downstream cytokines, chemokines and fibrogenic genes in diabetic nephropathy in WT mice with streptozotocin (STZ) diabetes. Subsequently, we demonstrated that TLR4−/− mice were protected against the development of diabetic nephropathy, exhibiting less albuminuria, inflammation, glomerular hypertrophy and hypercellularity, podocyte and tubular injury as compared to diabetic wild-type controls. Marked reductions in interstitial collagen deposition, myofibroblast activation (α-SMA) and expression of fibrogenic genes (TGF-β and fibronectin) were also evident in TLR4 deficient mice. Consistent with our in vivo results, high glucose directly promoted TLR4 activation in podocytes and tubular epithelial cells in vitro, resulting in NF-κB activation and consequent inflammatory and fibrogenic responses. Our data indicate that TLR4 activation may promote inflammation, podocyte and tubular epithelial cell injury and interstitial fibrosis, suggesting TLR4 is a potential therapeutic target for diabetic nephropathy.  相似文献   

2.

Background

Telomeres are essential to maintain chromosomal stability. Cells derived from mice lacking telomerase RNA component (mTERC−/− mice) display elevated telomere-mediated chromosome instability. Age-dependent telomere shortening and associated chromosome instability reduce the capacity to respond to cellular stress occurring during inflammation and cancer. Inflammation is one of the important risk factors in cancer progression. Controlled innate immune responses mediated by Toll-like receptors (TLR) are required for host defense against infection. Our aim was to understand the role of chromosome/genome instability in the initiation and maintenance of inflammation.

Methodology/Principal Findings

We examined the function of TLR4 in telomerase deficient mTERC−/− mice harbouring chromosome instability which did not develop any overt immunological disorder in pathogen-free condition or any form of cancers at this stage. Chromosome instability was measured in metaphase spreads prepared from wildtype (mTERC+/+), mTERC+/− and mTERC−/− mouse splenocytes. Peritoneal and/or bone marrow-derived macrophages were used to examine the responses of TLR4 by their ability to produce inflammatory mediators TNFα and IL6. Our results demonstrate that TLR4 is highly up-regulated in the immune cells derived from telomerase-null (mTERC−/−) mice and lipopolysaccharide, a natural ligand for TLR4 stabilises NF-κB binding to its promoter by down-regulating ATF-3 in mTERC−/− macrophages.

Conclusions/Significance

Our findings implied that background chromosome instability in the cellular level stabilises the action of TLR4-induced NF-κB action and sensitises cells to produce excess pro-inflammatory mediators. Chromosome/genomic instability data raises optimism for controlling inflammation by non-toxic TLR antagonists among high-risk groups.  相似文献   

3.
The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8+ T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-γ secreting CD8+ T cells specific for H-2Kb-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2−/−, Tlr4−/−, Tlr9−/ or Myd88−/− mice generated both specific cytotoxic responses and IFN-γ secreting CD8+ T cells at levels comparable to WT mice, although the frequency of IFN-γ+CD4+ cells was diminished in infected Myd88−/− mice. We also analyzed the efficiency of TLR4-driven immune responses against T. cruzi using TLR4-deficient mice on the C57BL genetic background (B6 and B10). Our studies demonstrated that TLR4 signaling is required for optimal production of IFN-γ, TNF-α and nitric oxide (NO) in the spleen of infected animals and, as a consequence, Tlr4−/− mice display higher parasitemia levels. Collectively, our results indicate that TLR4, as well as previously shown for TLR2, TLR9 and MyD88, contributes to the innate immune response and, consequently, resistance in the acute phase of infection, although each of these pathways is not individually essential for the generation of class I-restricted responses against T. cruzi.  相似文献   

4.
Progressive renal disease is characterized by tubulo-interstitial injury with ongoing inflammation and fibrosis. The Nlrp3 inflammasome contributes to these pathophysiological processes through its canonical effects in cytokine maturation. Nlrp3 may additionally exert inflammasome-independent effects following tissue injury. Hence, in this study we investigated potential non-canonical effects of Nlrp3 following progressive renal injury by subjecting WT and Nlrp3-deficient (−/−) mice to unilateral ureter obstruction (UUO).Our results revealed a progressive increase of renal Nlrp3 mRNA in WT mice following UUO. The absence of Nlrp3 resulted in enhanced tubular injury and dilatation and an elevated expression of injury biomarker NGAL after UUO. Moreover, interstitial edema was significantly elevated in Nlrp3−/− mice. This could be explained by increased intratubular pressure and an enhanced tubular and vascular permeability. In accordance, renal vascular leakage was elevated in Nlrp3−/− mice that associated with reduced mRNA expression of intercellular junction components. The decreased epithelial barrier function in Nlrp3−/− mice was not associated with increased apoptosis and/or proliferation of renal epithelial cells. Nlrp3 deficiency did not affect renal fibrosis or inflammation.Together, our data reveal a novel non-canonical effect of Nlrp3 in preserving renal integrity and protection against early tubular injury and interstitial edema following progressive renal injury.  相似文献   

5.
Leptospirosis is a global zoonosis caused by pathogenic Leptospira, which can colonize the proximal renal tubules and persist for long periods in the kidneys of infected hosts. Here, we characterized the infection of C57BL/6J wild-type and Daf1−/− mice, which have an enhanced host response, with a virulent Leptospira interrogans strain at 14 days post-infection, its persistence in the kidney, and its link to kidney fibrosis at 90 days post-infection. We found that Leptospira interrogans can induce acute moderate nephritis in wild-type mice and is able to persist in some animals, inducing fibrosis in the absence of mortality. In contrast, Daf1−/− mice showed acute mortality, with a higher bacterial burden. At the chronic stage, Daf1−/− mice showed greater inflammation and fibrosis than at 14 days post-infection and higher levels at all times than the wild-type counterpart. Compared with uninfected mice, infected wild-type mice showed higher levels of IL-4, IL-10 and IL-13, with similar levels of α-smooth muscle actin, galectin-3, TGF-β1, IL-17, IFN-γ, and lower IL-12 levels at 90 days post-infection. In contrast, fibrosis in Daf1−/− mice was accompanied by high expression of α-smooth muscle actin, galectin-3, IL-10, IL-13, and IFN-γ, similar levels of TGF-β1, IL-12, and IL-17 and lower IL-4 levels. This study demonstrates the link between Leptospira-induced murine chronic nephritis with renal fibrosis and shows a protective role of Daf1.  相似文献   

6.
Introduction and Aims: Elevated plasma levels of C-reactive protein (CRP) are closely associated with progressive renal injury in patients with chronic kidney disease (CKD). Here, we tested a hypothesis that CRP may promote renal fibrosis and inflammation via a TGF-β/Smad3-dependent mechanism.Methods: Role and mechanisms of TGF-β/Smad3 in CRP-induced renal fibrosis and inflammation were examined in a mouse model of unilateral ureteral obstruction (UUO) induced in CRP Tg/Smad3 KO mice and in a rat tubular epithelial cell line in which Smad3 gene is stably knocked down (S3KD-NRK52E).Results: We found that mice overexpressing the human CRP gene were largely promoted renal inflammation and fibrosis as evidenced by increasing IL-1β, TNF-α, MCP-1 expression, F4/80+ macrophages infiltration, and marked accumulation of α-smooth muscle actin (α-SMA), collagen I and fibronectin in the UUO kidney, which were blunted when Smad3 gene was deleted in CRPtg-Smad3KO. Mechanistically, we found that the protection of renal inflammation and fibrosis in the UUO kidney of CRPtg-Smad3KO mice was associated with the inactivation of CD32-NF-κB and TGF-β/Smad3 signaling.Conclusion: In conclusion, Smad3 deficiency protects against CRP-mediated renal inflammation and fibrosis in the UUO kidney by inactivating CD32-NF-κB and TGF-β/Smad3 signaling.  相似文献   

7.
The bone and immune systems are closely interconnected. The immediate inflammatory response after fracture is known to trigger a healing cascade which plays an important role in bone repair. Toll-like receptor 4 (TLR4) is a member of a highly conserved receptor family and is a critical activator of the innate immune response after tissue injury. TLR4 signaling has been shown to regulate the systemic inflammatory response induced by exposed bone components during long-bone fracture. Here we tested the hypothesis that TLR4 activation affects the healing of calvarial defects. A 1.8 mm diameter calvarial defect was created in wild-type (WT) and TLR4 knockout (TLR4−/−) mice. Bone healing was tested using radiographic, histologic and gene expression analyses. Radiographic and histomorphometric analyses revealed that calvarial healing was accelerated in TLR4−/− mice. More bone was observed in TLR4−/− mice compared to WT mice at postoperative days 7 and 14, although comparable healing was achieved in both groups by day 21. Bone remodeling was detected in both groups on postoperative day 28. In TLR4−/− mice compared to WT mice, gene expression analysis revealed that higher expression levels of IL-1β, IL-6, TNF-α,TGF-β1, TGF-β3, PDGF and RANKL and lower expression level of RANK were detected at earlier time points (≤ postoperative 4 days); while higher expression levels of IL-1β and lower expression levels of VEGF, RANK, RANKL and OPG were detected at late time points (> postoperative 4 days). This study provides evidence of accelerated bone healing in TLR4−/− mice with earlier and higher expression of inflammatory cytokines and with increased osteoclastic activity. Further work is required to determine if this is due to inflammation driven by TLR4 activation.  相似文献   

8.
Enteroviruses such as coxsackievirus B3 (CVB3) are able to induce lethal acute and chronic myocarditis. In resistant C57BL/6 mice, CVB3 myocarditis is abrogated by T-cell-dependent mechanisms, whereas major histocompatibility complex (MHC)-matched permissive A.BY/SnJ mice develop chronic myocarditis based on virus persistence. To define the role of T-cell-priming dendritic cells (DCs) in the outcome of CVB3 myocarditis, DCs were analyzed in this animal model in the course of CVB3 infection. In both mouse strains, DCs were found to be infectible with CVB3; however, formation of infectious virions was impaired. In DCs derived from C57BL/6 mice, significantly higher quantities of interleukin-10 (IL-10) and the proinflammatory cytokines IL-6 and tumor necrosis factor alpha were measured compared to those from A.BY/SnJ mice. Additionally, the chemokines interferon-inducible protein 10 (IP-10) and RANTES were secreted by DCs from resistant C57BL/6 mice earlier in infection and at significantly higher levels. The protective role of IP-10 in CVB3 myocarditis was confirmed in IP-10−/− mice, which had increased myocardial injury compared to the immunocompetent control animals. Also, major differences in resistant and permissive mice were found in DC subsets, with C57BL/6 mice harboring more cross-priming CD4 CD8+ DCs. As CD4 CD8+ DCs are known to express 10 times more Toll-like receptor 3 (TLR3) than other DC subsets, we followed the course of CVB3 infection in TLR3−/− mice. These mice developed a fulminant acute myocarditis and secreted sustained low amounts of type I interferons; secretion of IP-10 and RANTES was nearly abrogated in DCs. We conclude that MHC-independent genetic factors involving DC-related IP-10 secretion and TLR3 expression are beneficial in the prevention of chronic coxsackievirus myocarditis.  相似文献   

9.
Specific intestinal microbiota has been shown to induce Foxp3+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103+ dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103+ DCs from Il10 −/−, Tlr2 −/−, and Myd88 −/− mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103+ DCs failed to induce IL-10 production from co-cultured Il27ra −/− T cells. B. breve treatment of Tlr2 −/− mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4+ T cells from wild-type mice, but not Il10 −/− mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.  相似文献   

10.
High mobility group box 1 (HMGB1) is a DNA-binding protein that possesses cytokinelike, proinflammatory properties when released extracellularly in the C23–C45 disulfide form. HMGB1 also plays a key role as a mediator of acute and chronic inflammation in models of sterile injury. Although HMGB1 interacts with multiple pattern recognition receptors (PRRs), many of its effects in injury models occur through an interaction with toll-like receptor 4 (TLR4). HMGB1 interacts directly with the TLR4/myeloid differentiation protein 2 (MD2) complex, although the nature of this interaction remains unclear. We demonstrate that optimal HMGB1-dependent TLR4 activation in vitro requires the coreceptor CD14. TLR4 and MD2 are recruited into CD14-containing lipid rafts of RAW264.7 macrophages after stimulation with HMGB1, and TLR4 interacts closely with the lipid raft protein GM1. Furthermore, we show that HMGB1 stimulates tumor necrosis factor (TNF)-α release in WT but not in TLR4−/−, CD14−/−, TIR domain-containing adapter-inducing interferon-β (TRIF)−/− or myeloid differentiation primary response protein 88 (MyD88)−/− macrophages. HMGB1 induces the release of monocyte chemotactic protein 1 (MCP-1), interferon gamma–induced protein 10 (IP-10) and macrophage inflammatory protein 1α (MIP-1α) in a TLR4- and CD14-dependent manner. Thus, efficient recognition of HMGB1 by the TLR4/MD2 complex requires CD14.  相似文献   

11.

Background

Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C+ monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14+CD16 and non-classical CD14+CD16+ cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that ‘non-classical’ monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression.

Methodology/Principal Findings

We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD) and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14+CD16+ subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14+CD16+ macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC) in vitro. CD14+CD16+ monocytes released abundant proinflammatory cytokines. Furthermore, CD14+CD16+, but not CD14+CD16 monocytes could directly activate collagen-producing HSC.

Conclusions/Significance

Our data demonstrate the expansion of CD14+CD16+ monocytes in the circulation and liver of CLD-patients upon disease progression and suggest their functional contribution to the perpetuation of intrahepatic inflammation and profibrogenic HSC activation in liver cirrhosis. The modulation of monocyte-subset recruitment into the liver via chemokines/chemokine receptors and their subsequent differentiation may represent promising approaches for therapeutic interventions in human liver fibrosis.  相似文献   

12.
In Chagas disease, CD8+ T-cells are critical for the control of Trypanosoma cruzi during acute infection. Conversely, CD8+ T-cell accumulation in the myocardium during chronic infection may cause tissue injury leading to chronic chagasic cardiomyopathy (CCC). Here we explored the role of CD8+ T-cells in T. cruzi-elicited heart injury in C57BL/6 mice infected with the Colombian strain. Cardiomyocyte lesion evaluated by creatine kinase-MB isoenzyme activity levels in the serum and electrical abnormalities revealed by electrocardiogram were not associated with the intensity of heart parasitism and myocarditis in the chronic infection. Further, there was no association between heart injury and systemic anti-T. cruzi CD8+ T-cell capacity to produce interferon-gamma (IFNγ) and to perform specific cytotoxicity. Heart injury, however, paralleled accumulation of anti-T. cruzi cells in the cardiac tissue. In T. cruzi infection, most of the CD8+ T-cells segregated into IFNγ+ perforin (Pfn)neg or IFNγnegPfn+ cell populations. Colonization of the cardiac tissue by anti-T. cruzi CD8+Pfn+ cells paralleled the worsening of CCC. The adoptive cell transfer to T. cruzi-infected cd8 −/− recipients showed that the CD8+ cells from infected ifnγ−/− pfn +/+ donors migrate towards the cardiac tissue to a greater extent and caused a more severe cardiomyocyte lesion than CD8+ cells from ifnγ +/+ pfn −/− donors. Moreover, the reconstitution of naïve cd8 −/− mice with CD8+ cells from naïve ifnγ +/+ pfn −/− donors ameliorated T. cruzi-elicited heart injury paralleled IFNγ+ cells accumulation, whereas reconstitution with CD8+ cells from naïve ifnγ −/− pfn +/+ donors led to an aggravation of the cardiomyocyte lesion, which was associated with the accumulation of Pfn+ cells in the cardiac tissue. Our data support a possible antagonist effect of CD8+Pfn+ and CD8+IFNγ+ cells during CCC. CD8+IFNγ+ cells may exert a beneficial role, whereas CD8+Pfn+ may play a detrimental role in T. cruzi-elicited heart injury.  相似文献   

13.
Toll-like receptor (TLR) activation has been implicated in acetaminophen (APAP)-induced hepatotoxicity. Herein, we hypothesize that TLR3 activation significantly contributed to APAP-induced liver injury. In fasted wildtype (WT) mice, APAP caused significant cellular necrosis, edema, and inflammation in the liver, and the de novo expression and activation of TLR3 was found to be necessary for APAP-induced liver failure. Specifically, liver tissues from similarly fasted TLR3-deficient (tlr3−/−) mice exhibited significantly less histological and biochemical evidence of injury after APAP challenge. Similar protective effects were observed in WT mice in which TLR3 was targeted through immunoneutralization at 3 h post-APAP challenge. Among three important death ligands (i.e. TNFα, TRAIL, and FASL) known to promote hepatocyte death after APAP challenge, TNFα was the only ligand that was significantly reduced in APAP-challenged tlr3−/− mice compared with APAP-challenged WT controls. In vivo studies demonstrated that TLR3 activation contributed to TNFα production in the liver presumably via F4/80+ and CD11c+ immune cells. In vitro studies indicated that there was cooperation between TNFα and TLR3 in the activation of JNK signaling in isolated and cultured liver epithelial cells (i.e. nMuLi). Moreover, TLR3 activation enhanced the expression of phosphorylated JNK in APAP injured livers. Thus, the current study demonstrates that TLR3 activation contributes to APAP-induced hepatotoxicity.  相似文献   

14.
Renal tubular cell (RTC) death and inflammation contribute to the progression of obstructive nephropathy, but its underlying mechanisms have not been fully elucidated. Here, we showed that Gasdermin E (GSDME) expression level and GSDME-N domain generation determined the RTC fate response to TNFα under the condition of oxygen-glucose-serum deprivation. Deletion of Caspase-3 (Casp3) or Gsdme alleviated renal tubule damage and inflammation and finally prevented the development of hydronephrosis and kidney fibrosis after ureteral obstruction. Using bone marrow transplantation and cell type-specific Casp3 knockout mice, we demonstrated that Casp3/GSDME-mediated pyroptosis in renal parenchymal cells, but not in hematopoietic cells, played predominant roles in this process. We further showed that HMGB1 released from pyroptotic RTCs amplified inflammatory responses, which critically contributed to renal fibrogenesis. Specific deletion of Hmgb1 in RTCs alleviated caspase11 and IL-1β activation in macrophages. Collectively, our results uncovered that TNFα/Casp3/GSDME-mediated pyroptosis is responsible for the initiation of ureteral obstruction-induced renal tubule injury, which subsequentially contributes to the late-stage progression of hydronephrosis, inflammation, and fibrosis. This novel mechanism will provide valuable therapeutic insights for the treatment of obstructive nephropathy.Subject terms: Cell death and immune response, Kidney diseases  相似文献   

15.
Prior studies in our laboratory have suggested that the CC chemokine macrophage inflammatory protein-1α (MIP-1α) may be an important mediator in the blinding ocular inflammation which develops following herpes simplex virus type 1 (HSV-1) infection of the murine cornea. To directly test this hypothesis, MIP-1α-deficient (−/−) mice and their wild-type (+/+) counterparts were infected topically on the scarified cornea with 2.5 × 105 PFU of HSV-1 strain RE and subsequently graded for corneal opacity. Four weeks postinfection (p.i.), the mean corneal opacity score of −/− mice was 1.1 ± 0.3 while that of the +/+ mice was 3.7 ± 0.5. No detectable infiltrating CD4+ T cells were seen histologically at 14 or 21 days p.i. in −/− animals, whereas the mean CD4+ T-cell count per field (36 fields counted) in +/+ hosts was 26 ± 2 (P < 0.001). In addition, neutrophil counts in the −/− mouse corneas were reduced by >80% in comparison to the wild-type controls. At 2 weeks p.i., no interleukin-2 or gamma interferon could be detected in six of seven −/− mice, whereas both T-cell cytokines were readily demonstrable in +/+ mouse corneas. Also, MIP-2 and monocyte chemoattractant protein-1 protein levels were significantly lower in MIP-1α −/− mouse corneas than in +/+ host corneas, suggesting that MIP-1α directly, or more likely indirectly, influences the expression of other chemokines. Interestingly, despite the paucity of infiltrating cells, HSV-1 clearance from the eyes of −/− mice was not significantly different from that observed in +/+ hosts. We conclude that MIP-1α is not needed to control virus growth in the cornea but is essential for the development of severe stromal keratitis.  相似文献   

16.
Smad7 is an inhibitory Smad and plays a protective role in obstructive and diabetic kidney disease. However, the role and mechanisms of Smad7 in hypertensive nephropathy remains unexplored. Thus, the aim of this study was to investigate the role and regulatory mechanisms of Smad7 in ANG II-induced hypertensive nephropathy. Smad7 gene knockout (KO) and wild-type (WT) mice received a subcutaneous infusion of ANG II or control saline for 4 weeks via osmotic mini-pumps. ANG II infusion produced equivalent hypertension in Smad7 KO and WT mice; however, Smad7 KO mice exhibited more severe renal functional injury as shown by increased proteinuria and reduced renal function (both p<0.05) when compared with Smad7 WT mice. Enhanced renal injury in Smad7 KO mice was associated with more progressive renal fibrosis with elevated TGF-β/Smad3 signalling. Smad7 KO mice also showed more profound renal inflammation including increased macrophage infiltration, enhanced IL-1β and TNF-α expression, and a marked activation of NF-κB signaling (all p<0.01). Further studies revealed that enhanced ANG II-mediated renal inflammation and fibrosis in Smad7 KO mice were also associated with up-regulation of Sp1 but downregulation of miR-29b expression. Taken together, the present study revealed that enhanced Sp1-TGF-β1/Smad3-NF-κB signaling and loss of miR-29 may be mechanisms by which deletion of Smad7 promotes ANG II-mediated renal fibrosis and inflammation. Thus, Smad7 may play a protective role in ANG II-induced hypertensive kidney disease.  相似文献   

17.
Angiotensin‐converting enzyme‐2 (ACE2) and Mas receptor are the major components of the ACE2/Ang 1‐7/Mas axis and have been shown to play a protective role in hypertension and hypertensive nephropathy individually. However, the effects of dual deficiency of ACE2 and Mas (ACE2/Mas) on Ang II‐induced hypertensive nephropathy remain unexplored, which was investigated in this study in a mouse model of hypertension induced in either ACE2 knockout (KO) or Mas KO mice and in double ACE2/Mas KO mice by subcutaneously chronic infusion of Ang II. Compared with wild‐type (WT) animals, mice lacking either ACE2 or Mas significantly increased blood pressure over 7‐28 days following a chronic Ang II infusion (P < .001), which was further exacerbated in double ACE2/Mas KO mice (P < .001). Furthermore, compared to a single ACE2 or Mas KO mice, mice lacking ACE2/Mas developed more severe renal injury including higher levels of serum creatinine and a further reduction in creatinine clearance, and progressive renal inflammation and fibrosis. Mechanistically, worsen hypertensive nephropathy in double ACE2/Mas KO mice was associated with markedly enhanced AT1‐ERK1/2‐Smad3 and NF‐κB signalling, thereby promoting renal fibrosis and renal inflammation in the hypertensive kidney. In conclusion, ACE2 and Mas play an additive protective role in Ang II‐induced hypertension and hypertensive nephropathy. Thus, restoring the ACE2/Ang1‐7/Mas axis may represent a novel therapy for hypertension and hypertensive nephropathy.  相似文献   

18.
19.
20.
Mesenchymal stem cells (MSCs) are believed to exert their regenerative effects through differentiation and modulation of inflammatory responses. However, the relationship between the severity of inflammation and stem cell-mediated tissue repair has not been formally investigated. In this study, we applied different concentrations of dexamethasone (Dex) to anti-CD3-activated splenocyte cultured with or without MSCs. As expected, Dex exhibited a classical dose-dependent inhibition of T-cell proliferation. Surprisingly, although MSCs also blocked T-cell proliferation, the presence of Dex unexpectedly showed a dose-dependent reversion of T-cell proliferation. This effect of Dex was found to be exerted through interfering STAT1 phosphorylation-prompted expression of inducible nitric oxide synthase (iNOS). Interestingly, inflammation-induced chemokines in MSCs was unaffected. To test the role of inflammation severity in stem cell-mediated tissue repair, we employed mice with carbon tetrachloride-induced advanced liver fibrosis and found that although MSCs alone were effective, concurrent administration of Dex abrogated the therapeutic effects of MSCs on fibrin deposition, serum levels of bilirubin, albumin, and aminotransferases, as well as T-lymphocyte infiltration, especially IFN-γ+CD4+ and IL-17A+CD4+T cells. Likewise, iNOS−/− MSCs, which produce chemokines but not nitric oxide under inflammatory conditions, are ineffective in treating advanced liver fibrosis. Therefore, inflammation has a critical role in MSC-mediated tissue repair. In addition, concomitant application of MSCs with steroids should be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号