首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
《Process Biochemistry》2010,45(10):1677-1682
A combination of two lipases was employed to catalyze methanolysis of soybean oil in aqueous medium for biodiesel production. The two lipase genes were cloned from fungal strains Rhizomucor miehei and Penicillium cyclopium, and each expressed successfully in Pichia pastoris. Activities of the 1,3-specific lipase from R. miehei (termed RML) and the non-specific mono- and diacylglycerol lipase from P. cyclopium (termed MDL) were 550 U and 1545 U per ml respectively, and enzymatic properties of these supernatant of fermentation broth (liquid lipase) were stable at 4 °C for >3 months. Under optimized conditions, the ratio of biodiesel conversion after 12 h at 30 °C, using RML alone, was 68.5%. When RML was assisted by addition of MDL, biodiesel conversion ratio was increased to >95% under the same reaction conditions. The results suggested that combination of lipases with different specificity, for enzymatic conversion of more complex lipid substrates, is a potentially useful strategy for biodiesel production.  相似文献   

2.
Lipase production by Bacillus subtilis CICC20034 was assessed by metabolic flux distribution analysis. Lipase production was tested under various oxygen supply conditions in a synthetic medium to obtain the optimal oxygen supply profile. Based on the metabolic flux analysis, a two-stage oxygen supply strategy (TOS) that maintained high oxygen supply conditions during early fermentation phase, and then step-wisely reduced aeration to keep a stable, smooth, and adequate changing dissolved oxygen (DO) level profile throughout the production phases was carried out. With the proposed control strategy, the final lipase activity in batch fermentation significantly increased and reached a high level at 0.56 U/ml, corresponding to a 51% increase. The relevant metabolic flux analysis verified the effectiveness of the proposed control strategy. By applying TOS in composite medium, the final lipase activity reached 5.0 U/ml.  相似文献   

3.
Performance of a new lipase from Novozymes (Callera Trans L) was studied for fatty acid methylesters (FAMEs) production. In order to reduce the costs of the industrial enzymatic biodiesel production process, the enzyme was used in its soluble form instead of the common immobilized preparations. Cost reduction was also achieved by using crude (non-degummed) soybean oil as a cheaper raw material. The effect of water content during Callera Trans L-catalyzed FAMEs production was explored from evaluation of free fatty acids (FFAs), tri- di or monoacylglycerides (TAGs, DAGs, MAGs) variation during 24 h reaction. An excellent 96% FAMEs release was achieved when low (3–5%) water concentrations were used in the conversion of crude soybean oil. Time course HPLC analysis of the reaction products suggests that the soluble enzyme proceeds through a mechanism of methylester formation based on a first hydrolysis step that releases FFAs, DAGs or MAGs, followed by esterification of FFAs with methanol for FAMEs production.  相似文献   

4.
An extracellular lipase gene ln1 from thermophilic fungus Thermomyces lanuginosus HSAUP0380006 was cloned through RT-PCR and RACE amplification. Its coding sequence predicted a 292 residues protein with a 17 amino acids signal peptide. The deduced amino acids showed 78.4% similarity to another lipase lgy from T. lanuginosus while shared low similarity with other fungi lipases. Higher frequencies hydrophobic amino acids related to lipase thermal stability, such as Ala, Val, Leu and Gly were observed in this lipase (named LN). The sequence, -Gly-His-Ser-Leu-Gly-, known as a lipase-specific consensus sequence of mould, was also found in LN. High level expression for recombinant lipase was achieved in Pichia pastoris GS115 under the control of strong AOX1 promoter. It was purified to homogeneity through only one step DEAE-Sepharose anion exchange chromatography and got activity of 1328 U/ml. The molecular mass of one single band of this lipase was estimated to be 33 kDa by SDS-PAGE. The enzyme was stable at 60 °C and kept 65% enzyme activity after 30 min incubation at 70 °C. It kept half-activity after incubated for 40 min at 80 °C. The optimum pH for enzyme activity was 9.0 and the lipase was stable from pH 8.0 to 12.0. Lipase activity was enhanced by Ca2+ and inhibited by Fe2+, Zn2+, K+, and Ag+. The cell-free enzyme hydrolyzed and synthesized esters efficiently, and the synthetic efficiency even reached 81.5%. The physicochemical and catalytic properties of the lipase are extensively investigated for its potential industrial applications.  相似文献   

5.
Lipase (EC 3.1.1.3) stands amongst the most important and promising biocatalysts for industrial applications. In this study, in order to realize a high-level expression of the Yarrowia lipolytica lipase gene in Pichia pastoris, we optimized the codon of LIP2 by de novo gene design and synthesis, which significantly improved the lipase expression when compared to the native lip2 gene. We also comparatively analyzed the effects of the promoter types (PAOX1 and PFLD1) and the Pichia expression systems, including the newly developed PichiaPink system, on lipase production and obtained the optimal recombinants. Bench-top scale fermentation studies indicated that the recombinant carrying the codon-optimized lipase gene syn-lip under the control of promoter PAOX1 has a significantly higher lipase production capacity in the fermenter than other types of recombinants. After undergoing methanol inducible expression for 96 h, the wet cell weight of Pichia, the lipase activity and the protein content in the fermentation broth reached their highest values of 262 g/L, 38,500 U/mL and 2.82 g/L, respectively. This study has not only greatly facilitated the bioapplication of lipase in industrial fields but the strategies utilized, such as de novo gene design and synthesis, the comparative analysis among promoters and different generations of Pichia expression systems will also be useful as references for future work in this field.  相似文献   

6.
Lipase production (8.02 ± 0.24 U/ml) by the yeast Aureobasidium pullulans HN2.3 isolated from sea saltern was carried by using time-dependent induction strategy. The lipase in the supernatant of the yeast cell culture was purified to homogeneity with a 3.4-fold increase in specific lipase activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography and anion-exchange chromatography. According to the data on SDS polyacrylamide gel electrophoresis, the molecular mass of the purified enzyme was estimated to be 63.5 kDa. The optimal pH and temperature of the purified enzyme were 8.5 and 35 °C, respectively. The enzyme was greatly inhibited by Hg2+, Fe2+ and Zn2+. The enzyme was strongly inhibited by phenylmethanesulphonyl fluoride, not inhibited by ethylene diamine tetraacetic acid (EDTA), but weakly inhibited by iodoacetic acid. It was found that the purified lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

7.
The Talaromyces thermophilus lipase (TTL) was immobilized by different methods namely adsorption, ionic binding and covalent coupling, using various carriers. Chitosan, pre-treated with glutaraldehyde, was selected as the most suitable support material preserving the catalytic activity almost intact and offering maximum immobilization capacity (76% and 91%, respectively). The chitosan-immobilized lipase could be reputably used for ten cycles with more than 80% of its initial hydrolytic activity. Shift in the optimal temperature from 50 to 60 °C and in the pH from 9.5 to 10, were observed for the immobilized lipase when compared to the free enzyme.The catalytic esterification of oleic acid with 1-butanol has been carried out using hexane as organic solvent. A high performance synthesis of 1-butyl oleate was obtained (95% of conversion yield) at 60 °C with a molar ratio of 1:1 oleic acid to butanol and using 100 U (0.2 g) of immobilized lipase. The esterification product is analysed by GC/MS to confirm the conversion percentage calculated by titration.  相似文献   

8.
This work investigates the enzyme-support equilibrium behaviour in immobilised lipase biocatalysts. Equilibrium data determines the maximum enzyme up-take by unit weight of support. Four lipases were immobilised on two polymeric supports, respectively. They were Lipase PS from Pseudomonas, Lipolase 100L from Humicola, SP871 from Rhizomucor miehel and QL from Alcaligenes. The supports were Accurel EP100 (a polypropylene material) and 45SAA (a polypropylene/silica composite). Experimentally, equilibrium was expressed in terms of lipase loading (LU/g support) versus residual lipase concentration (LU/dm3). Activity, efficiency and operational stability of the immobilised lipases were assayed by solvent-free esterification of oleic acid and octanol.Equilibrium data were modelled by the Langmuir, Freundlich and Redlich–Peterson formulae. It was found that Lipolase 100L/Accurel, PS/45SAA and SP871/45SAA systems conformed to the Langmuir behaviour, while Lipase PS/Accurel and SP871/Accurel systems followed the Freundlich behaviour and Lipolase 100L/45SAA, QL/45SAA and QL/Accurel EP100 resembled Redlich–Peterson behaviour. Whereas immobilisation on Accurel EP100 resulted in classical equilibrium isotherms with all four lipases, immobilisation on support 45SAA resulted in two-plateau equilibrium curves which included a step change in the isotherm for all lipases studied, except for SP871. Quantitatively, for 1 g lipase, Accurel and 45SAA had a maximum capacity of 140 and 260 kLU for PS, 112 and 550 kLU for Lipolase 100L, 320 and 800 kLU for SP871 and 18 and 29 kLU for QL, respectively.  相似文献   

9.
A strategy for Rhizopus arrhizus lipase production enhancement by feeding oleic acid was developed. The oleic acid was proved to have strong inducing effect on lipase production, but high concentration oleic acid could repress lipase production. The decrease rate of oleic acid concentration using peanut oil as initial carbon source was figured out according to the change of oleic acid concentration in the fermentation broth. Our feeding strategy designed based on the decrease rate of oleic acid could avoid the repression of lipase production that is caused by high concentration of oleic acid in the fermenting liquor, and this strategy worked as a new feeding method showing excellent performance. The maximum lipase activity was gained by feeding dilute oleic acid every 12 h starting at 60 h, which maintained the oleic acid concentration around 18 mg/L, and the lipase activity was 31% higher than that of no feeding.  相似文献   

10.
In this study, Streptomyces sp. Al-Dhabi-49 was isolated from the soil sample of Saudi Arabian environment for the simultaneous production of lipase and protease in submerged fermentation. The process parameters were optimized to enhance enzymes production. The production of protease and lipase was found to be maximum after 5 days of incubation (139.2 ± 2.1 U/ml, 253 ± 4.4 U/ml). Proteolytic enzyme increases with the increase in pH up to 9.0 (147.2 ± 3.6 U/ml) and enzyme production depleted significantly at higher pH values. In the case of lipase, production was maximum in the culture medium containing pH 8.0 (166 ± 1.3 U/ml). The maximum production of protease was observed at 40 °C (174 ± 12.1 U/ml) by Streptomyces sp. Lipase activity was found to be optimum at the range of temperatures (30–50 °C) and maximum production was achieved at 35 °C (168 ± 7.8 U/ml). Among the evaluated carbon sources, maltose significantly influenced on protease production (218 ± 12.8 U/ml). Lipase production was maximum when Streptomyces sp. was cultured in the presence of glucose (162 ± 10.8U/ml). Among various concentrations of peptone, 1.0% (w/v) significantly enhanced protease production. The lipase production was very high in the culture medium containing malt extract as nitrogen source (86 ± 10.2 U/ml). Protease production was maximum in the presence of Ca2+ as ionic source (212 ± 3.8 U/ml) and lipase production was enhanced by the addition of Mg2+ with the fermentation medium (163.7 ± 6.2 U/ml).  相似文献   

11.
A psychrophilic bacterium producing cold-active lipase upon growth at low temperature was isolated from the soil samples of Gangotri glacier and identified as Microbacterium luteolum. The bacterial strain produced maximum lipase at 15 °C, at a pH of 8.0. Beef extract served as the best organic nitrogen source and ammonium nitrate as inorganic for maximum lipase production. Castor oil served as an inducer and glucose served as an additional carbon source for production of cold-active lipase. Ferric chloride as additional mineral salt in the medium, highly influenced the lipase production with an activity of 8.01 U ml?1. The cold-active lipase was purified to 35.64-fold by DEAE-cellulose column chromatography. It showed maximum activity at 5 °C and thermostability up to 35 °C. The purified lipase was stable between pH 5 and 9 and the optimal pH for enzymatic hydrolysis was 8.0. Lipase activity was stimulated in presence of all the solvents (5%) tested except with acetonitrile. Lipase activity was inhibited in presence of Mn2+, Cu2+, and Hg2+; whereas Fe+, Na+ did not have any inhibitory effect on the enzyme activity. The purified lipase was stable in the presence of SDS; however, EDTA and dithiothreitol inhibited enzyme activity. Presence of Ca2+ along with inhibitors stabilized lipase activity. The cold active lipase thus exhibiting activity and stability at a low temperature and alkaline pH appears to be practically useful in industrial applications especially in detergent formulations.  相似文献   

12.
Lipase produced by Penicillium expansum is widely used in laundry detergent and leather industry; however, the absence of an efficient transformation technology sets a major obstacle for further enhancement of its lipase productivity through advanced gene engineering. In this work, Agrobacterium tumefaciens-mediated transformation (ATMT) was investigated for P. expansum PE-12 transformation, using hygromycin phosphotransferase (hph) as a selectable marker gene. As a result, we revealed that the frequency of transformation surpassed 100 transformants/105 condida, most of the integrated T-DNA appeared as a single copy at a random position in chromosomal DNA, and all the transformants showed mitotic stability. Facilitated by this newly established method, for the first time, P. expansum PE-12 was genetically engineered to improve the lipase yield, through a homologous expression vector carrying the endogenous lipase gene (PEL) driven by the strong constitutive promoter of the glyceraldehydes-3-phosphate dehydrogenase gene (gpdA) from Aspergillus nidulans. The highest expression level of the engineered strain reached up to 1700 U/mL, nearly 2-fold of the original industrial strain (900 U/mL). Our reproducible ATMT system has not only revealed the great potential of homologous expression-directed genetic engineering, which is more efficient and specific compared to traditional mutagenesis, but also provided new possibilities and perspectives for any other practical applications of P. expansum-related genetic engineering in the future.  相似文献   

13.
Lipase (E.C.3.1.1.3) from Thermomyces lanuginosus (TL) was directly bonded, through multiple physical interactions, on citric acid functionalized monodispersed Fe3O4 nanoparticles (NPs) in presence of a small amount of hydrophobic functionalities. A very promising scalable synthetic approach ensuring high control and reproducibility of the results, and an easy and green immobilization procedure was chosen for NPs synthesis and lipase anchoring. The size and structure of magnetic nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The samples at different degree of functionalization were analysed through thermogravimetric measurements. Lipase immobilization was further confirmed by enzymatic assay and Fourier transform infrared (FT-IR) spectra. Immobilized lipase showed a very high activity recovery up to 144% at pH = 7 and 323% at pH = 7.5 (activity of the immobilized enzyme compared to that of its free form). The enzyme, anchored to the Fe3O4 nanoparticles, to be easy recovered and reused, resulted more stable than the native counterpart and useful to produce banana flavour. The immobilized lipase results less sensitive to the temperature and pH, with the optimum temperature higher of 5 °C and optimum pH up shifted to 7.5 (free lipase optimum pH = 7.0). After 120 days, free and immobilized lipases retained 64% and 51% of their initial activity, respectively. Ester yield at 40 °C for immobilized lipase reached 88% and 100% selectivity.  相似文献   

14.
In this study, polyurethane foam (PUF) was used for immobilization of Yarrowia lipolytica lipase Lip2 via polyethyleneimine (PEI) coating and glutaraldehyde (GA) coupling. The activity of immobilized lipases was found to depend upon the size of the PEI polymers and the way of GA treatment, with best results obtained for covalent-bind enzyme on glutaraldehyde activated PEI-PUF (MW 70,000 Da), which was 1.7 time greater activity compared to the same enzyme immobilized without PEI and GA. Kinetic analysis shows the hydrolytic activity of both free and immobilized lipases on triolein substrate can be described by Michaelis–Menten model. The Km for the immobilized and free lipases on PEI-coated PUF was 58.9 and 9.73 mM, respectively. The Vmax values of free and immobilized enzymes on PEI-coated PUF were calculated as 102 and 48.6 U/mg enzyme, respectively. Thermal stability for the immobilization preparations was enhanced compared with that for free preparations. At 50 °C, the free enzyme lost most of its initial activity after a 30 min of heat treatment, while the immobilized enzymes showed significant resistance to thermal inactivation (retaining about 70% of its initial activity). Finally, the immobilized lipase was used for the production of lauryl laurate in hexane medium. Lipase immobilization on the PEI support exhibited a significantly improved operational stability in esterification system. After re-use in 30 successive batches, a high ester yield (88%) was maintained. These results indicate that PEI, a polymeric bed, could not only bridge support and immobilized enzymes but also create a favorable micro-environment for lipase. This study provides a simple, efficient protocol for the immobilization of Y. lipolytica lipase Lip2 using PUF as a cheap and effective material.  相似文献   

15.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

16.
We report for the first time both the production of the lipase of Burkholderia cepacia in solid-state fermentation and the biocatalysis of esterification and transesterification reactions through the direct addition of the lyophilised fermented solids to organic reaction media. B. cepacia produced a lipolytic activity equivalent to 108 U of pNPP-hydrolysing activity per gram of dry solids after 72 h growth on corn bran with 5% (v/w) commercial corn oil as the inducer. The fermented solid material was lyophilised and added directly to the reaction medium in esterification and transesterification reactions. A factorial design was used to study the effects on esterification of temperature, alcohol-to-acid molar ratio and amount of lipolytic activity added. All three variables affected the ester yield significantly, with the amount of enzyme being most important. A 94% ester yield was obtained at 18 h at 37 °C, with an alcohol-to-acid molar ratio of 5:1 and 60 U of added lipolytic activity. For the transesterification reaction, a factorial design was undertaken with the variables being the alcohol-to-acid molar ratio and the added lipolytic activity. Ester yields of over 95% were obtained after 120 h. Our results suggest that biocatalysis using direct addition of fermented solids to organic reaction medium should be further explored.  相似文献   

17.
The castor bean (Ricinus communis) represents a potential candidate for biodiesel production. The Petrobras Research Center is developing a biodiesel production process from castor bean seeds, in which an unwanted byproduct named castor bean waste is produced. This extremely alkaline waste is toxic and allergenic and, as such, poses a significant environmental problem. Solid-state fermentation (SSF) of castor bean waste was carried out to achieve ricin detoxification, reduce allergenic potential and stimulate lipase production. The fungus, Penicillium simplicissimum, an excellent lipase producer, was able to grow and produce lipase enzyme. After an optimization process, the maximum lipase activity achieved was 44.8 U/g. Moreover, the fungus P. simplicissimum was able to reduce the ricin content to non-detectable levels in addition to diminishing castor bean waste allergenic potential by approximately 16%. In this way, SSF of castor bean waste by P. simplicissimum may increase the utility of the waste by promoting enzyme production and eliminating the principal toxic element, ricin.  相似文献   

18.
Ligninolytic enzyme production and polyphenolic compound extraction by liquid-state culture of Phanerochaete chrysosporium ATCC 24275 was investigated by employing apple pomace sludge and synthetic medium. Different physico-chemical and biological parameters namely viscosity, zeta potential and particle size, viability and enzyme production were investigated. The ligninolytic enzyme production was higher in apple pomace sludge (45 U/l of laccase, 220 U/l of MnP and 6.5 U/l of LiP) than in synthetic medium (17 U/l of laccase, 37 U/l of MnP and 6 U/l). These maximal activities were found during the stationary and decline phase. It was also found that enzyme production was strongly correlated with P. chrysoporium viability in both synthetic medium and apple pomace sludge. Moreover, physico-chemical parameters, such as particle size, zeta potential and viscosity were strongly correlated to the viability of P. chrysosporium and to the ligninolytic enzyme production. An increase in polyphenol content extracted by acetone (383–720 mg GAE/l) was observed during fermentation of apple pomace and it was found that the polyphenol content extracted by ethanol increased ~1.5 fold until 67 h of fermentation and later it decreased. It was found that antioxidant activity increased to 35% and eventually decreased based on the change in the polyphenol content.  相似文献   

19.
In this study an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and potassium phosphate was tested for the purification of lipase from Yarrowia lipolytica IMUFRJ 50682. Ultrafiltration and precipitation with acetone and kaolin were also used as traditional comparison methods Ultrafiltration was a good method with a purification factor of 6.55, but protease was also purified in this extract. For the precipitation with acetone and kaolin lower values of lipase and protease activity were found in relation to the original crude enzyme extract. Under the best conditions of ATPS (pH 6 and 4 °C), the purification fold was greater than 40 and selectivity was almost 500. Lipase was recovered in the salty phase which makes it easier to purify it. The optimum pH and temperature ranges for purified lipase with this system was 6–7 and 35–40 °C, respectively. Lipase thermostability was increased in relation to crude extract after the purification with the PEG/phosphate buffer system for temperatures lower than 50 °C. All enzyme extracts showed good stability to a wide pH range. Y. lipolytca lipase was successfully purified by using ATPS in a single downstream processing step and presented good process characteristics after this treatment.  相似文献   

20.
《Process Biochemistry》2007,42(4):518-526
An alkaline lipase from Burkholderia multivorans was produced within 15 h of growth in a 14 L bioreactor. An overall 12-fold enhanced production (58 U mL−1 and 36 U mg−1 protein) was achieved after medium optimization following the “one-variable-at-a-time” and the statistical approaches. The optimal composition of the lipase production medium was determined to be (% w/v or v/v): KH2PO4 0.1; K2HPO4 0.3; NH4Cl 0.5; MgSO4·7H2O 0.01; yeast extract 0.36; glucose 0.1; olive oil 3.0; CaCl2 0.4 mM; pH 7.0; inoculum density 3% (v/v) and incubation time 36 h in shake flasks. Lipase production was maximally influenced by olive oil/oleic acid as the inducer and yeast extract as the additive nitrogen. Plackett–Burman screening suggested catabolite repression by glucose. Amongst the divalent cations, Ca2+ was a positive signal while Mg2+ was a negative signal for lipase production. RSM predicted that incubation time, inoculum density and oil were required at their higher levels (36 h, 3% (v/v) and 3% (v/v), respectively) while glucose and yeast extract were required at their minimal levels for maximum lipase production in shake flasks. The production conditions were validated in a 14 L bioreactor where the incubation time was reduced to 15 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号