首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Dai J  Ye M  Guo H  Zhu W  Zhang D  Hu Q  Zheng J  Guo D 《Bioorganic chemistry》2003,31(4):345-356
Three C-14 oxygenated taxanes isolated from callus cultures of Taxus spp., 2alpha,5alpha,10beta,14beta-tetra-acetoxy-4(20),11-taxadiene 3, 2alpha,5alpha,10beta-triacetoxy-14beta-propionyloxy-4(20),11-taxadiene 4, 2alpha,5alpha,10beta-triacetoxy-14beta-(2-methylbutyryl)-oxy-4(20),11-taxadiene 5, and three deacetylated derivatives of 3, 10beta-hydroxy-2alpha,5alpha,14beta-triacetoxy-4(20),11-taxadiene 6, 14beta-hydroxy-2alpha,5alpha,10beta-triacetoxy-4(20),11-taxadiene 7, 10beta,14beta-dihydroxy-2alpha,5alpha-diacetoxy-4(20),11-taxadiene 8, could all be regio- and stereo-selectively hydroxylated at the 9alpha-position by Ginkgo cell suspension cultures to yield a series of new 9alpha,14beta-dihydroxylated taxoids. The effects of functional groups, especially at C-14 of the substrates, on the biotransformation were also investigated. The results revealed that substrates with an acetoxyl group at C-14 could be more efficiently 9alpha-hydroxylated than those with a longer ester chain or a hydroxyl group at C-14. An acetoxyl or hydroxyl group at C-10 had no effect on the conversion rates of the substrates, but substrates with the hydroxyl group (compared with the acetoxyl analogues) could be converted into 9alpha-hydroxylated products more easily.  相似文献   

2.
We have developed efficient methods for the preparation of N(6),5'-bis-ureidoadenosine derivatives and their 5'-carbamoyl-N(6)-ureido congeners. Treatment of 5'-azido-5'-deoxy-N(6)-(N-alkyl or -arylurea)adenosine derivatives (6a-d) with H(2)/Pd-C or Ph(3)P/H(2)O, followed by N-methyl-p-nitrophenylcarbamate gave N(6),5'-bis-ureido products 7a-d in 49-78% yield. Analogous derivatives in the 5'-carbamoyl-N(6)-ureido series were prepared by treatment of 2',3'-bis-O-TBS-adenosine (11) with N-methyl-p-nitrophenylcarbamate followed by acylation with appropriate isocyanates which gave 13a-d in 45-69% yield. A more versatile route for obtaining potentially vast libraries of compounds from both series was achieved by treatment of 5'-N-methylureido- or 5'-N-methylcarbamoyladenosine derivatives with ethylchlorformate to give N(6)-ethoxycarbonyl derivatives (9 and 14) in 55-63% yields, respectively. Simple heating of 9 or 14 in the presence of primary alkyl- or arylamines gave the corresponding N(6),5'-bis-ureido- or 5'-carbamoyl-N(6)-ureidoadenosine derivatives in good yields (33-72% and 39-83%; 10a-e and 15a-e, respectively). Significant antiproliferative activities (IC(50)≈4-10 μg/mL) were observed for a majority of the N(6),5'-bis-ureido derivatives, whereas the 5'-carbamoyl-N(6)-ureido derivatives were generally less active (IC(50) >100 μg/mL). A 2',3'-O-desilylated derivative (5'-amino-5'-deoxy-5'-N-methylureido-N(6)-(N-phenylcarbamoyl)adenosine, 16) was shown to inhibit binding of 16 of 441 protein kinases to immobilized ATP-binding site ligands by 30-40% in a competitive binding assay at 10 μM. Compound 16 was also shown to bind to bone morphogenetic protein receptor 1b (BMPR1b) with a Kd=11.5 ± 0.7 μM.  相似文献   

3.
Lamm AS  Reynolds WF  Reese PB 《Phytochemistry》2006,67(11):1088-1093
Stemodane and stemarane diterpenes isolated from the plant Stemodia maritima and their dimethylcarbamate derivatives were fed to growing cultures of the fungi Cunninghamella echinulata var. elegans ATCC 8688a and Phanerochaete chrysosporium ATCC 24725. C. echinulata transformed stemodin (1) to its 7alpha-hydroxy- (2), 7beta-hydroxy- (3) and 3beta-hydroxy- (4) analogues. 2alpha-(N,N-Dimethylcarbamoxy)-13-hydroxystemodane (6) gave 2alpha-(N,N-dimethylcarbamoxy)-6alpha,13-dihydroxystemodane (7) and 2alpha-(N,N-dimethylcarbamoxy)-7alpha,13-dihydroxystemodane (8). Stemodinone (9) yielded 14-hydroxy-(10) and 7beta-hydroxy- (11) congeners along with 1, 2 and 3. Stemarin (13) was converted to the hitherto unreported 6alpha,13-dihydroxystemaran-19-oic acid (18). 19-(N,N-Dimethylcarbamoxy)-13-hydroxystemarane (14) yielded 13-hydroxystemaran-19-oic acid (17) along with the two metabolites: 19-(N,N-dimethylcarbamoxy)-2beta,13-dihydroxystemarane (15) and 19-(N,N-dimethylcarbamoxy)-2beta,8,13-trihydroxystemarane (16). P. chrysosporium converted 1 into 3, 4 and 2alpha,11beta,13-trihydroxystemodane (5). The dimethylcarbamate (6) was not transformed by this microorganism. Stemodinone (9) was hydroxylated at C-19 to give 12. Both stemarin (13) and its dimethylcarbamate (14) were recovered unchanged after incubation with Phanerochaete.  相似文献   

4.
In a one step procedure, L-1-O-benzyl-2-O-methyl-chiro-inositol (1) was acetalized to the L-muco-inositol derivatives 2, 3 and D-2-O-benzyl-3-O-cyclohexylcarbamoyl-4-deoxy-4-(N,N'-dicyclohexylureido)-1-O-methyl-5,6-O-trichloroethylidene-chiro-inositol (4). Complete conversion of L-1-O-benzyl-6-O-cyclohexylcarbamoyl-3-O-formyl-2-O-methyl-4,5-O-trichloroethylidene-muco-inositol (3) into L-1-O-benzyl-6-O-cyclohexylcarbamoyl-2-O-methyl-4,5-O-trichloroethylidene-muco-inositol (2) is feasible by deformylation in boiling methanolic triethylamine. Furthermore, stepwise deprotection of 2 and 4 is described. Thus, compounds 5, 10, and 7 were obtained by decarbamoylation of 2, 4, and 6, respectively, with boiling methanolic sodium methoxide. The trichloroethylidene group of L-1-O-benzyl-2-O-methyl-4,5-O-trichloroethylidene-muco-inositol (5) was removed in a two step procedure (hydrodechlorination-deacetalization) via the ethylidene acetal 7 to give L-1-O-benzyl-2-O-methyl-muco-inositol (9). On refluxing D-chiro-inositol derivative 4 with 99% acetic acid, the ureido moiety was cleaved generating D-2-O-benzyl-4-cyclohexylamino-3-O-cyclohexylcarbamoyl-4-deoxy-1-O-methyl-5,6-O-trichloroethylidene-chiro-inositol (11). By contrast, cleavage of the ureido moiety of 10 was relatively difficult. The corresponding D-2-O-benzyl-4-cyclohexylamino-4-deoxy-1-O-methyl-5,6-O-trichloroethylidene-chiro-inositol (12) was only formed in small amounts. The structures of 1, 3 and 10 were confirmed by X-ray analysis.  相似文献   

5.
The selective oxidation of the primary alcoholic function of the reducing unit of lactose was achieved in good overall yield (67%) starting from 2',6'-di-O-benzyl-2,3:3',4'-di-O-isopropylidenelactose dimethyl acetal (1) through a simple multi-step procedure based on the selective acetylation of OH-5 of 1 (methoxyisopropylation, acetylation, de-methoxyisopropylation) followed by a two-step oxidation at C-6 (TPAP-NMO then TEMPO-NaOCl) and finally, complete removal of the protecting groups.  相似文献   

6.
The previously reported analog of pregnenolone having a 3,4-dihydro-2H-pyran attached via a Cz.sbnd;C bond to the C-20 position (1), stereoselectively reacts with m-chloroperoxybenzoic acid in methanol at -5 degrees C. Acid-catalyzed hydrolysis of the isolated intermediates gives good yields of mostly a new 27-norcholesterol analog: (20R,23R)-3,20,23,26-tetrahydroxy-27-norcholest-5-en-22-one-3-acetate (2a, and a smaller amount of its 23S enantiomer 2b). Three different conditions of epoxidation and methanolysis followed by acid-catalyzed hydrolysis typically produce approximately 2:1 ratios of the 23R:23S diastereoisomers with a C-23 hydroxy group at the new asymmetric center. Bromine also reacts stereoselectively with (20R)-3,20-dihydroxy-(3',4'-dihydro-2'H-pyranyl)-5-pregnene (4) giving mostly (20R,23R)-23-bromo-3,20,26-trihydroxy-27-norcholest-5-en-22-one (7a). Thus both major steroidal products 2a and 7a have the same C-23R configuration. Assignment of molecular structures and the absolute configurations to 1 and 2a were based on elemental analysis, mass spectra, nuclear magnetic resonance, FTIR infrared spectroscopic analysis and X-ray crystallography. Mechanisms are discussed for stereochemical selectivity during epoxidation and bromination of the 3,4-dihydro-2H-pyranyl ring in 1 and 4.  相似文献   

7.
The syntheses of the novel C-5 substituted pyrimidine derivatives of l-ascorbic acid containing free hydroxy groups at C-2' (6-10) or C-2' and C-3' (11-15) positions of the lactone ring are described. Debenzylation of the 6-chloro- and 6-(N-pyrrolyl)purine derivatives of 2,3-O,O-dibenzyl-l-ascorbic acid (16 and 17) gave the new compounds containing hydroxy groups at C-2' (18) and C-2' and C-3' (19 and 20). Z- and E-configuration of the C4'C5' double bond and position of the lactone ring of the compounds 6-9 were deduced from their one- and two-dimensional (1)H and (13)C NMR spectra and connectivities in NOESY and HMBC spectra. Compounds 15 and 18 showed the best inhibitory activities of all evaluated compounds in the series. The compound 15 containing 5-(trifluoromethyl)uracil showed marked inhibitory activity against all human malignant cell lines (IC(50): 5.6-12.8 microM) except on human T-lymphocytes. Besides, this compound influenced the cell cycle by increasing the cell population in G2/M phase and induced apoptosis in SW 620 and MiaPaCa-2 cells. The compound 18 containing 6-chloropurine ring expressed the most pronounced inhibitory activities against HeLa (IC(50): 6.8 microM) and MiaPaCa-2 cells (IC(50): 6.5 microM). The compound 20 with 6-(N-pyrrolyl)purine moiety showed the best differential inhibitory effect against MCF-7 cells (IC(50): 35.9 microM).  相似文献   

8.
SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Treatment of 2-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)ethanal with malononitrile, cyanoacetamide and 2-cyano-N-(4-methoxyphenyl)acetamide, respectively, in the presence of aluminium oxide yielded 2-cyano-4-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)crotonic acid derivatives. Cyclization with sulfur and triethylamine was performed to synthesize the 2-amino-5-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)thiophene-3-carbonic acid derivatives, which were treated with triethyl orthoformate/ammonia and triethyl orthoformate, respectively, to furnish 6-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)thieno[2.3-d]pyrimidine derivatives. Deprotection in two steps afforded 2-amino-5-(1,6-anhydro-3-deoxy-beta-D-altropyranos-3-yl)thiophene-3-carbonitrile and 6-(1,6-anhydro-3-deoxy-beta-D-altropyranos-3-yl)thieno[2.3-d]pyrimidine derivatives, respectively.  相似文献   

10.
The multifunctional cytochrome P450 monooxygenases P450-1 and P450-2 from Fusarium fujikuroi catalyze the formation of GA14 and GA4, respectively, in the gibberellin (GA)-biosynthetic pathway. However, the activity of these enzymes is qualitatively and quantitatively different in mutants lacking the NADPH:cytochrome P450 oxidoreductase (CPR) compared to CPR-containing strains. 3beta-Hydroxylation, a major P450-1 activity in wild-type strains, was strongly decreased in the mutants relative to oxidation at C-6 and C-7, while synthesis of C19-GAs as a result of oxidative cleavage of C-20 by P450-2 was almost absent whereas the C-20 alcohol, aldehyde and carboxylic acid derivatives accumulated. Interaction of the monooxygenases with alternative electron transport proteins could account for these different product distributions. In the absence of CPR, P450-1 activities were NADH-dependent, and stimulated by cytochrome b5 or by added FAD. These properties as well as the decreased efficiency of P450-1 and P450-2 in the mutants are consistent with the participation of cytochrome b5:NADH cytochrome b5 reductase as redox partner of the gibberellin monooxygenases in the absence of CPR. We provide evidence, from either incubations of GA12 (C-20 methyl) with cultures of the mutant suspended in [18O]H2O or maintained under an atmosphere of [18O]O2:N2 (20:80), that GA15 (C-20 alcohol) and GA24 (C-20 aldehyde) are formed directly from dioxygen and not from hydrolysis of covalently enzyme-bound intermediates. Thus these partially oxidized GAs correspond to intermediates of the sequential oxidation of C-20 catalyzed by P450-2.  相似文献   

11.
Partially protected derivatives of l-ribo- and d-lyxo-aldohexos-5-ulose have been prepared starting from triacetonlactose dimethyl acetal derivatives. Key steps of the synthetic sequences are (a) the synthesis of 4′-deoxy-4′-eno- and 6′-deoxy-5′-eno lactose derivatives, and (b) the epoxidation-methanolysis of the above-mentioned enol ethers to give 1,5-bis-glycopyranosides, masked form of the target 1,5-dicarbonyl hexoses.  相似文献   

12.
Hydrogenation of 2'-deoxy-2'-difluoromethylene-5'-O-dimethoxytrityluridine (1) and 3'-deoxy-3'-difluoromethylene-5'-O-dimethoxytrityluridine (7), gave the corresponding 2'- and 3'-difluoromethyluridine derivatives 2a and 8a. Detritylation of compounds 2a, 2b and 8a, 8b resulted in the formation of 1-(2-deoxy-2-C-difluoromethyl-beta-D-arabino-pentofuranosyl)uracil (3a) and 1-(3-deoxy-3-C-difluoromethyl-beta-D-xylo-pento furanosyl)- uracil (9a) as well as corresponding minor isomers 3b and 9b. Compounds 3a and 3b were also obtained from 2'-deoxy-2'-difluoromethylene-3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)uridine (4). Finally, phosphitylation of 2a and 8a provided the title 2'- and 3'-O-phosphoramidites 6 and 10.  相似文献   

13.
Reaction of purine nucleosides, such as 2',3'-isopropylideneinosine (1a) and 2',3'-isopropylideneadenosine (1c), with diisobutylaluminum hydride (DIBAL) in dry tetrahydrofurane resulted in the formation of the corresponding 9-(2',3'-isopropylideneribity)purines (2) in good yields. Oxidation of the ribityl derivatives (2) with NalO4 and subsequent reduction with NaBH4 gave the corresponding 9-(2',3',4'-trihydroxybutyl)-purine derivatives (4) in high yields. Deprotection of compounds 2 and 4 in 80% acetic acid gave the corresponding 9-(2',3',4'-trihydroxybutyl)purines (5) and 9-ribitylpurines (6), respectively.  相似文献   

14.
The tetrasaccharides O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D- mannopyranosyl-(1----6)]-O-(4-deoxy-beta-D-lyxo-hexopyranosyl)-(1- ---4)-2- acetamido-2-deoxy-alpha, beta-D-glycopyranose (22) and O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D-mannopyranosyl-(1----6)]-O- beta-D-talopyranosyl-(1----4)-2-acetamido-2-deoxy-alpha, beta-D- glucopyranose (37), closely related to the tetrasaccharide core structure of N-glycoproteins, were synthesized. Starting with 1,6-anhydro-2,3-di-O-isopropylidene-beta-D-mannopyranose, the glycosyl donors 3,6-di-O-acetyl-2-O-benzyl-2,4-dideoxy-alpha-D-lyxo- hexopyranosyl bromide (10) and 3,6-di-O-acetyl-2,4-di-O-benzyl-alpha-D-talopyranosyl bromide (30), were obtained in good yield. Coupling of 10 or 30 with 1,6-anhydro-2-azido-3-O-benzyl-beta-D-glucopyranose to give, respectively, the disaccharides 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2-O-benzyl-4 -deoxy- beta-D-lyxo-hexopyranosyl)-beta-D-glucopyranose and 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2,4-di-O-ben zyl- beta-D-talopyranosyl)-beta-D-glucopyranose was achieved with good selectivity by catalysis with silver silicate. Simultaneous glycosylation of OH-3' and OH-6' of the respective disaccharides with 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride yielded tetrasaccharide derivatives, which were deblocked into the desired tetrasaccharides 22 and 37.  相似文献   

15.
Condensation of 3'-deoxy-3-deazaadenosine, 3'-deoxy-7-deazaadenosine and 3'-deoxyadenosine with N,N'-bis-trifluoroacetyl-L-homocystine dimethyl ester and subsequent deprotection of the resulting N-trifluoroacetyl-S-3'-deoxyadenosyl-L-homocysteine analogues afforded S-3'-deoxy-3-deazaadenosyl-L-homocysteine, S-3'-deoxy-7-deazaadenosyl-L-homocysteine and S-3'-deoxyadenosyl-L-homocysteine respectively. 3'-Deoxy-3-deazaadenosine and 3'-deoxy-7-deazaadenosine were prepared by transformation of the corresponding ribonucleosides with 2-acetoxyisobutyryl bromide. 3'-Deoxy-7-deazaadenosine and 3'-deoxyadenosine were also converted into their 5'-chloro-3',5'-dideoxy derivatives which in turn were condensed with L-homocysteine sodium salt to give S-3'-deoxy-7-deazaadenosyl-L-homocysteine and S-3'-deoxyadenosyl-L-homocysteine which were identical with those synthesized by condensation of the protected L-homocystine with the 3'-deoxynucleosides.  相似文献   

16.
2'-deoxy-2'-methylideneuridine derivative 9 was converted into 2',3'-didehydro-2',3'-dideoxy-2'-phenyl-selenomethyl derivative 16, which was treated with NCS and tert-butyl carbamate to afford 3'-amino derivative 18 via a [2,3]-sigmatropic rearrangement. Treatment of 9 with DAST gave a mixture of 2',3'-didehydro-2', 3'-dideoxy-2'-fluoromethyl derivative 19 and 3'-"up"-fluoro-2'-methylidene derivative 20 in a ratio of 1.5 : 1. On the other hand, when 12 was treated with DAST, 19 and 3'-"down"-fluoro-2'-methylidene derivative 21 were obtained in a ratio of 1 : 1.6. These nucleosides were converted into the corresponding cytidine derivatives 4, 6, and 8, respectively. The reaction mechanisms as well as biological activity of these compounds will also be discussed.  相似文献   

17.
Either 3-O-benzoyl- (2a) or 3-O-benzyl-1,2-O-isopropylidene-beta-D-fructopyranose (2b) were regioselectively O-benzylated at C-4 to give 4a and 4b, respectively, which were transformed into 5-azido-3-O-benzoyl-4-O-benzyl- (6a) and 5-azido-3,4-di-O-benzyl-5-deoxy-1,2-O-isopropylidene-alpha-L-sorbopyranose (6b) by nucleophilic displacement of the corresponding 5-O-mesyl derivatives 5a and 5b by sodium azide in DMF, respectively. Compound 6b was also prepared from 4b in one step by the Mitsunobu methodology. Deacetonation of 6a and 6b gave the partially protected free azidouloses 8a and 8b, respectively, that were protected as their 1-O-TBDPS derivatives 9a and 9b. Hydrogenation of 9b over Raney nickel gave stereoselectively (2R,3R,4R,5S)-3,4-dibenzyloxy-2'-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (12) which was identified by transformation into the well known (2R,3R,4R,5S)-3,4-dihydroxy-2,5-bis(hydroxymethyl)pyrrolidine (1, DGDP).  相似文献   

18.
Biotransformation of betulinic and betulonic acids by fungi   总被引:1,自引:0,他引:1  
Betulinic acid (1), a triterpenoid found in many plant species, has attracted attention due to its important pharmacological properties, such as anti-cancer and anti-HIV activities. The closely related, betulonic acid (2) also has similar properties. In order to obtain derivatives potentially useful for detailed pharmacological studies, both compounds were submitted to incubations with selected microorganisms. In this work, both were individually metabolized by the fungi Arthrobotrys, Chaetophoma and Dematium, isolated from the bark of Platanus orientalis as well as with Colletotrichum, obtained from corn leaves; such fungal transformations are quite rare in the scientific literature. Biotransformations with Arthrobotrys converted betulonic acid (2) into 3-oxo-7beta-hydroxylup-20(29)-en-28-oic acid (3), 3-oxo-7beta,15alpha-dihydroxylup-20(29)-en-28-oic acid (4) and 3-oxo-7beta,30-dihydroxylup-20(29)-en-28-oic acid (5); Colletotrichum converted betulinic acid (1) into 3-oxo-15alpha-hydroxylup-20(29)-en-28-oic (6) acid whereas betulonic acid (2) was converted into the same product and 3-oxo-7beta,15alpha-dihydroxylup-20(29)-en-28-oic acid (4); Chaetophoma converted betulonic acid (2) into 3-oxo-25-hydroxylup-20(29)-en-28-oic acid (7) and both Chaetophoma and Dematium converted betulinic acid (1) into betulonic acid (2). Those fungi, therefore, are useful for mild, selective oxidations of lupane substrates at positions C-3, C-7, C-15, C-25 and C-30.  相似文献   

19.
Cytotoxic triterpenes from the aerial roots of Ficus microcarpa   总被引:7,自引:0,他引:7  
Six triterpenes, 3beta-acetoxy-12,19-dioxo-13(18)-oleanene (1), 3beta-acetoxy-19(29)-taraxasten-20alpha-ol (2), 3beta-acetoxy-21alpha,22alpha-epoxytaraxastan-20alpha-ol (3), 3,22-dioxo-20-taraxastene (4), 3beta-acetoxy-11alpha,12alpha-epoxy-16-oxo-14-taraxerene (5), 3beta-acetoxy-25-methoxylanosta-8,23-diene (6) along with nine known triterpenes, 3beta-acetoxy-11alpha,12alpha-epoxy-14-taraxerene (7), 3beta-acetoxy-25-hydroxylanosta-8,23-diene (8), oleanonic acid (9), acetylbetulinic acid (10), betulonic acid (11), acetylursolic acid (12), ursonic acid (13), ursolic acid (14), and 3-oxofriedelan-28-oic acid (15) were isolated from the aerial roots of Ficus microcarpa, and their structures elucidated by spectroscopic methods. The in vitro cytotoxic efficacy of these triterpenes was investigated using three human cancer cell lines, namely, HONE-1 nasopharyngeal carcinoma, KB oral epidermoid carcinoma, and HT29 colorectal carcinoma cells. Compound 8 and pentacyclic triterpenes 9-15 possessing a carboxylic acid functionality at C-28 showed significant cytotoxic activities against the aforementioned cell lines and gave IC50 values in the range 4.0-9.4 microM.  相似文献   

20.
The effect of 5-iodo-2'-deoxyuridine monophosphate (IdUMP), various 5-halogenated-5'-azido-2', 5' -dideoxyuridine derivatives, 2'-deoxy-6-azauridine (AzdUrd), and its halogenated analogs on the ultraviolet sensitization of Escherichia coli thymidylate kinase has been investigated. Only those compounds iodinated in position 5 enhance the rate of ultraviolet inactivation of this enzyme. However, 5'-azido nucleosides with iodo, bromo, chloro, or fluoro substituents in position 5 neither protect nor sensitize thymidylate kinase to ultraviolet inactivation. Thymidine 5'-monophosphate partially protects the enzyme against ultraviolet inactivation either in the presence or absence of ultraviolet-sensitizing iodinated analogs. Magnesium ion does not enhance the ultraviolet inactivation of thymidylate kinase by 5-iodinated nucleoside analogs. The kinatic data support an active site-directed enhancement of the enzyme to ultraviolet inactivation by 5-iodo-2'-deoxyuridine monophosphate, since the concentration of IdUMP required to attain 50% maximal enhancement is 0.24 mM which is in good agreement with its Ki of 0.18 mM. When either [125I]IdUMP or [2-14C]IdUMP was irradiated with the enzyme, both radioactivities were associated with the enzyme, however only with the 14C analog was the amount bound at half-saturation essentially equal to the amount required to inactivate the enzyme by 50%. These data support the hypothesis that the active entity in the enhancement by IdUMP of thymidylate kinase inactivation during ultraviolet irradiation is the uridylate free radical which is formed photochemically from IdUMP. Photochemical studies of 6-azauracil (AzUra), 2'-deoxy-6-azauridine, and 5-iodo-2'-deoxy-6-azauridine (IAzdUrd) were performed. Photolysis of IAzdUrd in the presence of a hydrogen donor yields AzdUrd which upon further photolysis yields the photohydrate. The photohydrate of AzdUrd when incubated in the dark at pH 5.2 is 90% converted back to AzdUrd, whereas the photohydrate of AzUra is only partially (20%) converted to AzUra. The rate of deiodination of IAzdUrd is 2.1-fold greater than that of IdUMP. Although the Ki of IdUMP and IAzdUrd is similar, the increased photosensitivity of the aza analog accounts for the much greater enhancement of ultraviolet inactivation of thymidylate kinase. The ability of a compound to enhance the ultraviolet inactivation of deoxythymidylate kinase is correlated with the potential of the compound to produce a free radical rather than a photohydrate when the enzyme-substrate analog complex is irradiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号