首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
Summary Louis-Bar (L-B) syndrome, also called ataxia-telangiectasia, is cytogenetically characterized by an increased frequency of spontaneous and induced chromosomal aberrations (CA) in cultured lymphocytes and skin fibroblasts. However, it is not yet clear whether the chromosomal instability is also present in uncultured cells. The spontaneous and bleomycin-induced CA in peripheral lymphocytes of 8 L-B patients were evaluated. The micronucleus test was also performed, for the first time in lymphocytes by the cytokinesis-block method, and in uncultured cells of the oral cavity and hair root. The spontaneous frequency of CA and micronuclei in lymphocytes was about 3 times higher in L-B patients than in controls, these two cytogenetic parameters being highly correlated. Moreover, the induction by bleomycin of CA was higher in patients than in controls. The micronuclei in buccal and hair root cells of patients were normal. It remains to be determined whether the different responses obtained with cultured and uncultured cells are the result of the different L-B gene expression of chromosomal instability or whether they arise because of a particular cell sensitivity to culture conditions. The spontaneous and induced CA in lymphocytes of heterozygotes cultured in the presence of L-B serum were studied to evaluate a possible increased sensitivity of heterozygotes to a possible diffusible clastogenic factor present in the plasma of L-B patients. We could not demonstrate the presence of any factor that enhances CA in normal subjects or in heterozygote carriers.  相似文献   

2.
A three-color chromosome painting technique was used to examine the spontaneous and radiation-induced chromosomal damage in peripheral lymphocytes and lymphoblastoid cells from 11 patients with ataxia telangiectasia (AT) and from 14 individuals heterozygous for an AT allele. In addition, cells from two homozygous and six obligate heterozygous carriers of mutations in the Nijmegen breakage syndrome gene (NBS) were investigated. The data were compared to those for chromosome damage in 10 unaffected control individuals and 48 cancer patients who had not yet received therapeutic treatment. Based on the well-documented radiation sensitivity of AT and NBS patients, it was of particular interest to determine whether the FISH painting technique used in these studies allowed the reliable detection of an increased sensitivity to in vitro irradiation of cells from heterozygous carriers. Peripheral blood lymphocytes and lymphoblastoid cells from both the homozygous AT and NBS patients showed the highest cytogenetic response, whereas the cells from control individuals had a low number of chromosomal aberrations. The response of cells from heterozygous carriers was intermediate and could be clearly differentiated from those of the other groups in double-coded studies. AT and NBS heterozygosity could be distinguished from other genotypes by the total number of breakpoints per cell and also by the number of the long-lived stable aberrations in both AT and NBS. Only AT heterozygosity could be distinguished by the fraction of unstable chromosome changes. The slightly but not significantly increased radiosensitivity that was found in cancer patients was apparently due to a higher trend toward rearrangements compared to the controls. Thus the three-color painting technique presented here proved to be well suited as a supplement to conventional cytogenetic techniques for the detection of heterozygous carriers of these diseases, and may be superior method.  相似文献   

3.
Summary Chromosomal analyses were performed on lymphocytes, fibroblasts and lymphoblastoid cell lines derived from a Saudi family with ataxia telangiectasia (AT). The three siblings of a consanguineous marriage were all affected. The lymphocytes of the AT homozygotes (probands) showed an increase of 2- to 6-fold and 4- to 8-fold respectively, in the frequency of spontaneous and X-ray-induced chromosomal aberrations compared with controls, while the parents (obligate heterozygotes) of the patients showed no notable difference. The unirradiated lymphocytes from the oldest AT sibling, an 11-year-old boy (AT1), showed specific rearrangements involving chromosomes 7 and 14 [t(7;14)(q35;q12)] and 12 and 14 [t(12;14)(q23;q12)] in two different clones. The most severely affected sibling was a 9-year-old girl (AT2) who presented with a clone showing a novel rearrangement involving chromosomes 14 and 17, namely: del(14) (q31q32) and dup(17)(q21–q24). The lymphocytes from the third sibling, a 2-year-old boy (AT3), showed a t(2;14)(p24;q12). In addition, an inv(14)(q12q32) was observed in all three AT patients, while inv(7)(p14q35) was found only in patients 2 and 3. The lymphocytes from the AT parents and controls showed normal karyotypes. The breakpoints involving chromosomes 2,12 and 17, observed in our studies, have rarely been reported in other series of AT patients. No non-random chromosomal rearrangements were observed either in the skin fibroblasts or in the lymphoblastoid cell lines derived from the AT patients, although all cell lines showed an increase in both spontaneous and radiation-induced chromosomal breaks per cell. The present study constitutes the first report on a cytogenetic analysis of a Saudi family with three AT siblings.  相似文献   

4.
Summary Lymphoblastoid cell lines (LCLs) derived from two patients identified as ataxia telangiectasia (AT), two obligate AT heterozygotes and two controls (healthy subjects with no known genetic disease or relationship to AT patients) were compared with respect to the induction of chromosomal breaks by acute and chronic -irradiation. Although there was a considerable increase in the frequency of chromosomal breaks per cell in the LCLs of AT patients resulting from acute irradiation, the small increase occurring in the LCLs of the AT heterozygotes made it difficult to distinguish them from the controls. Following chronic -irradiation, however, the frequency of chromosomal breaks per cell in the LCLs of the AT heterozygotes occupied a significantly distinct position from that of the controls. These observations suggested that the use of chronic irradiation may be a better choice in the cytogenetic characterization of AT heterozygotes.  相似文献   

5.
Summary The exfoliated cell micronucleus test was used to monitor in vivo chromosomal instability in a population comprised of five ataxia-telangiectasia (A-T) homozygotes and seven obligate heterozygotes (parents of A-T patients). This assay was previously validated as a procedure for quantifying non-invasively carcinogen-induced chromosomal aberrations occurring in vivo in epithelial tissues of both the oral cavity and the urinary bladder. The procedure involved taking airdried smears of three sites in the oral cavity of each examined individual. Desquamated urinary bladder cells were collected by centrifugation of freshly voided urine samples. Frequencies of exfoliated cells in these preparations were determined and compared with control values (individuals with no genetic chromosomal instability and no known carcinogene exposure) for these sites. Exforliated cell micronucleus (MEC) frequencies were elevated 5- to 14-fold in samples from the A-T homozygotes. This elevation in MEC frequency occurred for both the oral cavity and urinary bladder. Five out of the seven obligate A-T heterozygotes had an elevated MEC frequency in samples from the oral cavity. In addition, all examined urine samples from A-T heterozygotes contained an elevated percentage of micronucleated cells. These data suggest that this assay is suitable for in vivo monitoring of groups of individuals in which genetically produced chromosomal damage occurs. The possibility of A-T heterozygote detection with this simple procedure is of particular significance, since such individuals are believed to comprise up to 1% of the general population, and have been identified as being at elevated risk for cancer.  相似文献   

6.
The Nijmegen Breakage Syndrome (NBS) is a new chromosomal instability disorder different from ataxia telangiectasia (AT) and other chromosome-breakage syndromes. Cells from an NBS patient appeared hypersensitive to X-irradiation. X-rays induced significantly more chromosomal damage in NBS lymphocytes and fibroblasts than in normal cells. The difference was most pronounced after irradiation in G2. Further, NBS fibroblasts were more readily killed by X-rays than normal fibroblasts. In addition, the DNA synthesis in NBS cells was more resistant to X-rays and bleomycin than that in normal cells. The reaction of NBS cells to X-rays and bleomycin was similar to that of cells from patients with ataxia telangiectasia. Our results indicate that NBS and AT, which also have similar chromosomal characteristics, must be closely related.  相似文献   

7.
Rosin  Miriam P.  Ochs  H. D.  Gatti  R. A.  Boder  E. 《Human genetics》1989,83(2):133-138
Summary The objective of this study was to obtain an estimate of the frequency distribution of spontaneous chromosomal breakage occurring in vivo in oral epithelia of 20 ataxiatelangiectasia patients (A-T homozygotes) and 26 parents (A-T obligate heterozygotes). Samples of exfoliated cells were obtained from each individual by swabbing the oral cavity and preparing air-dried slides. The percentage of exfoliated cells with micronuclei (MEC frequency) was used as an in vivo indicator for the amount of chromosomal breakage occurring in the tissue. As a population group, MEC frequencies of the A-T patients differed significantly from controls (mean for A-T patients, 1.51; for controls, 0.29; P<0.01). However, the values observed in individual patients ranged from MEC frequencies 10- to 12-fold above control values, to frequencies overlapping the upper values observed in the controls. Similarily, MEC frequencies observed among the A-T heterozygotes differed significantly from controls (mean for A-T heterozygotes, 1.02, mean for controls, 0.29; P<0.01). However, only 16 of the 26 individuals sampled had MEC frequencies >0.5%, the 90th percentile for controls (compared with 16 of the 20 A-T patients examined). Of the A-T patients 11 had been previously assigned to complementation groups on the basis of sensitivity to x-irradiation. Seven of the patients belonged to group A and had MEC frequencies ranging from 0.3% to 1.9% with the remaining patients belonging to group C with MEC frequencies of 0.2% to 0.9%. The data presented in this paper suggest that although levels of spontaneous breakage in epithelial tissues of A-T patients and A-T obligate heterozygotes are often significantly elevated, this is not the case in all individuals.  相似文献   

8.
Several primary and transformed human cell lines derived from cancer prone patients are employed routinely for biochemical and DNA repair studies. Since transformation leads to some chromosomal instability a cytogenetic analysis of spontaneous chromosome aberrations in fibroblast cell lines derived from patients with Fanconi anaemia (FA), ataxia telangiectasia (AT), and in lymphoblastoid cell lines derived from patients with Bloom's syndrome (BS), was undertaken. Unstable aberrations were analysed in Giemsa stained preparations and the chromosome painting technique was used for evaluating the frequencies of stable aberrations (translocations). In addition, the frequency of sister-chromatid exchanges (SCEs) was determined in differentially stained metaphases. The SV40-transformed fibroblasts from these cell lines have higher frequencies of unstable aberrations than the primary fibroblasts. In the four lymphoblastoid cell lines derived from BS patients higher frequencies of spontaneously occurring chromosomal aberrations in comparison to normal TK6wt cells were also evident. The frequency of spontaneously occurring chromosome translocations was determined with fluorescence in situ hybridisation (FISH) and using DNA libraries specific for chromosomes 1, 2, 3, 4, 7, 8, 11, 14, 19, 20 and X. The translocation levels were found to be elevated for primary FA fibroblasts and lymphoblastoid cells derived from BS patients in comparison with control cell lines, hetero- and homozygote BS cell lines not differing in this respect. The SV40-transformed cell lines showed very high frequencies of translocations independent of their origin and almost every cell contained at least one translocation. In addition, clonal translocations were found in transformed control TK6wt and AT cell lines for chromosomes 20 and 14, respectively. The spontaneous frequencies of SCEs were similar in transformed fibroblasts derived from normal individuals and AT patients, whereas in SV40-transformed FA cells these were higher (4-fold). Among cell lines derived from BS patients, heterozygote lines behaved like control, whereas in homozygote cell lines very high frequencies of SCEs (about 12-fold) were evident.  相似文献   

9.
NBS1, a protein essential for DNA double-strand break repair, relocalizes into subnuclear structures upon induction of DNA damage by ionizing radiation, forming ionizing radiation-induced foci. We compared radiation-induced NBS1 foci in peripheral blood lymphocytes (PBLs) from 46 sporadic breast cancer patients and 30 healthy cancer-free volunteers. The number of persistent radiation-induced NBS1 foci per nucleus at 24 h after irradiation for patients with invasive cancer was significantly higher than for normal healthy volunteers. The frequency of spontaneous chromosome aberration increased as the number of persistent radiation-induced NBS1 foci increased, indicating that the number of persistent radiation-induced NBS1 foci might be associated with chromosome instability. There was also an inverse correlation between the number of radiation-induced NBS1 foci and the activity of DNA-dependent protein kinase (DNA-PK), which plays an important role in the nonhomologous end-joining (NHEJ) pathway, another mechanism of DNA DSB repair, indicating a close interrelationship between homologous recombination (HR) and NHEJ in DNA DSB repair. In conclusion, the number of persistent radiation-induced NBS1 foci is associated with chromosomal instability and risk of sporadic breast cancer and hence might be used to select individuals for whom a detailed examination is necessary because of their increased susceptibility to breast cancer, although refinement of the techniques for technical simplicity and accuracy will be required for clinical use.  相似文献   

10.
Nijmegen breakage syndrome (NBS) and ataxia telangiectasia (AT) are rare autosomal recessive hereditary disorders characterized by radiosensitivity, chromosomal instability, immunodeficiency and proneness to cancer. Although the clinical features of both syndromes are quite distinct, the cellular characteristics are very similar. Cells from both NBS and AT patients are hypersensitive to ionizing radiation (IR), show elevated levels of chromosomal aberrations and display radioresistant DNA synthesis (RDS). The proteins defective in NBS and AT, NBS1 and ATM, respectively, are involved in the same pathway, but their exact relationship is not yet fully understood. Stumm et al. (Am. J. Hum. Genet. 60 (1997) 1246) have reported that hybrids of AT and NBS lymphoblasts were not complemented for chromosomal aberrations. In contrast, we found that X-ray-induced cell killing as well as chromosomal aberrations were complemented in proliferating NBS-1LBI/AT5BIVA hybrids, comparable to that in NBS-1LBI cells after transfer of a single human chromosome 8 providing the NBS1 gene. RDS observed in AT5BIVA cells was reduced in these hybrids to the level of that seen in immortal NBS-1LBI cells. However, the level of DNA synthesis, following ionizing radiation, in SV40 transformed wild-type cell lines was the same as in NBS-1LBI cells. Only primary wild-type cells showed stronger inhibition of DNA synthesis. In summary, these results clearly indicate that RDS cannot be used as an endpoint in functional complementation studies with immortal NBS-1LBI cells, whereas the cytogenetic assay is suitable for complementation studies with immortal AT and NBS cells.  相似文献   

11.
The frequency of recessive lethal mutations and reciprocal translocations was investigated in spermatogonia of CBA male mice which were thrice gamma-irradiated at doses of 300 r with 28 days intervals. The rate of induced recessive lethals was estimated 1) by comparison of embryos survival between the irradiated and control groups in mating of the F1 males with their daughters, and 2) by estimation the frequency of males heterozygotes for recessive lethals in the first generation. In the first case the frequency of recessive lethals was 2,8 +/- 0,8-10(-4) per r per gamete (for the pre- and post-implantation death) and 1,6 +/- 0,1-10(-4) per r per gamete (for the pre- and post-implantation death) and 1,6 +/- 0,1-10(-4) per r per gamete in the second case. The frequency of heterozygotes for reciprocal translocations in the first generations of males was 3,1 +/- 0,9-10(-5) per r per gamete.  相似文献   

12.
The pattern of chromosomal aberrations (CA) was studied by fluorescence in situ hybridization (FISH) technique (whole chromosomes #1 and #4 painting) in workers occupationally exposed to any of the four following conditions: acrylonitrile (ACN), ethyl benzene (EB), carcinogenic polycyclic aromatic hydrocarbons (c-PAHs), and irradiation in nuclear power plants (NPP), respectively. Decrease in the relative frequency of translocations was observed in EB group, and an increase in reciprocal translocations in ACN and NPP-exposed groups. An increase in a relative number of insertions was registered under all four conditions (significant at ACN, EB, c-PAHs, quasisignificant at NPP-exposed groups). Significant differences in the percentage of lymphocytes with aberrations on chromosome #1 (58.8+/-32.7%, versus 73.8+/-33.6% in the controls, P < 0.05), and chromosome #4 (47.0+/-34.1%, versus 29.4+/-32.2%, P < 0.01) were found in workers exposed to ACN. Similarly, a decrease in the proportion of cells with aberration on chromosome #1 (61.0+/-24.0%, versus 73.8+/-33.6%, P < 0.05) and an increase on chromosome #4 (45.6+/-24.6%, versus 29.4+/-32.2%, P < 0.05) were observed in workers exposed to EB. Frequency of aberrant cells (%AB.C.) as well as genomic frequency of translocations (F(G)/100) increased with age (P < 0.001). Aging also increased the percentage of translocations and reciprocal translocations (P < 0.05), but decreased the relative number of acentric fragments (P < 0.01). Smoking led to significantly increased F(G)/100 (P < 0.05), but did not affect the pattern of chromosomal aberrations. Our results seem to indicate that different carcinogens may induce a different pattern of chromosomal aberrations.  相似文献   

13.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder. Originally thought to be a variant of ataxia telangiectasia (AT), the cellular phenotype of NBS has been described as almost indistinguishable from that of AT. Since the gene involved in NBS has been cloned and its functions studied, we sought to further characterize its cellular phenotype by examining the response of density-inhibited, confluent cultures of human diploid fibroblasts to irradiation in the G(0)/G(1) phase of the cell cycle. Both NBS and AT cells were markedly sensitive to the cytotoxic effects of radiation. NBS cells, however, were proficient in recovery from potentially lethal damage and exhibited a pronounced radiation-induced G(1)-phase arrest. Irradiated AT cells showed no potentially lethal damage and no G(1)-phase arrest. Both cell types were hypersensitive to the induction of chromosomal aberrations, whereas the distribution of aberrations in irradiated NBS cells was similar to that of normal controls, AT cells showed a high frequency of chromatid-type aberrations. TP53 and CDKN1A (also known as p21(Waf1)) expression was attenuated in irradiated NBS cells, but maximal induction occurred 2 h postirradiation, as was observed in normal controls. The similarities and differences in cellular phenotype between irradiated NBS and AT cells are discussed in terms of the functional properties of the signaling pathways downstream of AT involving the NBS1 and TP53 proteins.  相似文献   

14.
In 27,225 prenatal cytogenetic studies of amniotic fluid reported to the New York State Chromosome Registry and the United States Interregional Chromosome Register System, there were 61 cases with a structural chromosomal abnormality not known inherited, a rate per 1,000 of 2.24. Of these 33, 1.21 per 1,000 were known de novo and nonmosaic; consequently, the rate of events resulting from germinal mutation is highly likely to be between these two limits. The rates per 1,000 of unbalanced abnormalities were 0.59-1.29; of balanced abnormalities, 0.62-0.96; of balanced Robertsonian translocations, 0.22-0.29; and of unbalanced Robertsonian translocations, 0.07-0.11. The rates of fetuses with supernumerary markers and fragments were unexpectedly high: 0.26-0.70 per 1,000. These abnormalities were associated with increased maternal age (38.0 +/- 5.4 to 38.4 +/- 3.6 compared to 35.6 +/- 4.3 in controls), but even after adjustment for the bias to preferential study of older women, the observed rates of these supernumerary abnormalities were greater than would be expected from live-birth studies or rates estimated in all recognized conceptuses. There were trends to elevated maternal age for the group of all balanced rearrangements, and to diminished maternal age for the nonsupernumerary, non-Robertsonian unbalanced rearrangements. In 136 women studied primarily because of exposure to a putative mutagen, a de novo deletion and an inversion not known inherited were detected. The rate of abnormality in these 136, 1.47%, was significantly greater than the rate of abnormality in the remainder: 0.14%-0.22%.  相似文献   

15.
Flow cytometry was used to identify heterozygotes for the autosomal recessive DNA-repair deficiency disease ataxia telangiectasia (AT). Confluent G0/G1 fibroblasts from 4 homozygotes (at/at), 5 obligate heterozygotes (at/+) and 7 presumed normal controls (+/+) were X-irradiated with 200 Rad and subcultured immediately in medium containing 5-bromodeoxyuridine (BrdU). Cells were harvested 72 h later and stained with fluoresceinated anti-BrdU antibody to identify cells that had entered S phase. They were counterstained with propidium iodide to measure total DNA content. On the basis of relative release from G0/G1, the at/+ strains as a group (33 +/- 3% release) were distinguished from both the presumed +/+ strains (60 +/- 3%) and at/at strains (85 +/- 3%), although the individual values for some strains did show overlap between genotypes. When 10 cell strains were coded and analyzed in 'blind' experiments, all 4 heterozygotes were correctly assigned, although one poorly growing presumed normal line was incorrectly assigned as a heterozygote. By a similar assay in which exponentially growing cultures were pulsed briefly with BrdU 8 h after irradiation with 400 Rad and then harvested immediately, presumed +/+ cells as a group could be distinguished from at/at cells but not from at/- cells. This combination of assays assists in the identification of all 3 AT genotypes. This should be of both basic and diagnostic use, particularly in families known to segregate AT.  相似文献   

16.
Wang Y  Heddle JA 《Mutation research》2004,554(1-2):131-137
Bloom Syndrome (BS) is characterized by both cancer and genomic instability, including chromosomal aberrations, sister chromosome exchanges, and mutations. Since BS heterozygotes are much more frequent than homozygotes, the issue of the sensitivity of heterozygotes to cancer is an important one. This and many other questions concerning the effects of BLM (the gene responsible for the BS) are more easily studied in mice than in humans. To gain insight into genomic instability associated with loss of function of BLM, which codes for a DNA helicase, we compared frequencies of micronuclei, somatic mutations, and loss of heterozygosity (LOH) in Blmtm3Brd homozygous, heterozygous, and wild-type mice carrying a cII transgenic reporter gene. It should be noted that the Blmtm3Brd is inserted into the endogenous locus with a partial duplication of the gene, so some function of the locus may be retained. The cII reporter gene was introduced from the Big Blue mouse by crossing them with Blmtm3Brd mice. All measurements were made on F2 mice from this cross. The reticulocytes of Blmtm3Brd homozygous mice had more micronuclei than heterozygous or wild-type mice (4.5, 2.7, and 2.5 per thousand, respectively; P < 0.01) but heterozygotes did not differ significantly from wild-type. Unlike spontaneous chromosome damage, spontaneous mutant frequencies did not differ significantly among homozygous, heterozygous, and wild-type mice (3.2 x 10(-5), 3.1 x 10(-5), and 3.1 x 10(-5), respectively; P > 0.05). Mutation measurements were also made on mice that had been treated with ethyl-nitrosourea (ENU) because Bloom Syndrome cells are sensitive to ethylating agents. The ENU-induced mutation frequency in Blmtm3Brd homozygous, heterozygous, and wild mice were 54 x 10(-5), 35 x 10(-5), and 25 x 10(-5) mutants/plaques, respectively. ENU induced more mutations in Blmtm3Brd homozygous mice than in wild-type mice (P < 0.01), but not significantly more in heterozygous mice (P = 0.06). Spontaneous LOH did not differ significantly among the genotypes, but ENU treatment induced much more LOH in Blmtm3Brd homozygous mice, as measured by means of the Dlb-1 test of Vomiero-Highton and Heddle. Hence, these Blmtm3Brd mice resemble Bloom Syndrome except that they have normal frequencies of spontaneous mutation. The fact that these mice have elevated rates of both cancer and chromosomal aberrations (as shown by more micronuclei and LOH) but normal rates of spontaneous mutation, shows the greater importance of chromosomal events than mutations in the origin of their cancers.  相似文献   

17.
Summary Chromosome studies were performed on peripheral lymphocytes from two patients with Werner syndrome and two healthy control individuals to detect spontaneous and/or mutagen-induced chromosomal instability of this disease. Diepoxybutane, isonicotinic acid hydrazide, 4-nitro-quinoline-1-oxide, and bleomycin were used as standard clastogens. While the spontaneous frequency of chromosomal breakage was much higher in lymphocytes from both patients than in the control cells, the basic rate of sister chromatid exchange (SCE) was found to be in the control range. The sensitivity to clastogens of the patients' cells, however, was not substantially increased as compared with the controls if the degree of multiplication of the spontaneous breakage rate or SCE frequency was taken as the basis for comparison. No indication of a greater inhibition of proliferation by the clastogens in the patients' cells than in normal cells was observed using BrdU-labelled lymphocytes. Thus, the lymphocytes from both patients of the present study lacked essential features of the classical chromosome instability syndromes.  相似文献   

18.
Survival, cumulative labeling indices, chromosomal aberrations and cell-cycle distribution by flow microfluorometry (FMF) were studied in fibroblasts from normal and three ataxia telangiectasia (AT) families after X-irradiation during density-inhibition of growth and immediate release by subculture to low density. Homozygotic AT (proband) fibroblasts were very hypersensitive to cell killing by X-irradiation (D0 = 40-45 rad). Fibroblasts from AT heterozygotes (parents) were minimally hypersensitive, with D0's (100-110 rad) slightly lower than those for normal fibroblasts (D0 = 120-140 rad). There were three different response groups for a G1 phase block induced by 400 rad of X-rays: (1) minimal or no G1 block was observed in AT homozygote cell strains; (2) 10-20% of the cells were blocked in G1 in normal cell strains; and (3) 50% or more of the cells were blocked in AT heterozygote strains. FMF profiles and cumulative labeling indices showed that homozygotic AT cells irradiated in plateau phase moved into the S-phase following subculture with no additional delay over non-irradiated controls. Homozygotic AT cells showed not only a 4-5 times higher frequency of X-ray-induced chromosomal aberrations than normal strains, but approximately 30% of these were of the chromatid-type. There were no differences in the frequency or type of X-ray-induced chromosomal aberrations between normal and heterozygotic AT cells.  相似文献   

19.
Lou J  He J  Zheng W  Jin L  Chen Z  Chen S  Lin Y  Xu S 《Mutation research》2007,617(1-2):104-110
The aim of present investigation was to study the genetic instability in peripheral lymphocytes of lung cancer patients. The micronucleus (MN) assay and comet assay were simultaneously used to detect the spontaneous genetic change and ionizing irradiation (IR) induced genetic damage in peripheral lymphocytes from 36 lung cancer patients and 30 controls. In MN assay, the results of both two indicators, micronucleated cell frequency (MCF) and micronucleus frequency (MNF), indicated that the average values of MCF, MNF and IR-induced MCF, MNF of lung cancer patients were 9.25+/-0.58, 10.17+/-0.72, 66.14+/-2.07 and 75.64+/-2.34 per thousand, respectively, which were significantly higher than those (6.10+/-0.65, 6.60+/-0.74, 60.50+/-1.71 and 67.60+/-2.13 per thousand) of controls (P<0.05 or 0.01). In comet assay, the results of mean tail moment (MTM) and IR-MTM showed 0.84+/-0.07 and 1.09+/-0.11, respectively, which were significantly higher than those (0.60+/-0.05 and 0.70+/-0.10) of controls (P<0.05). However, the difference between lung cancer group and control group for the mean tail length (MTL) and IR-MTL was not significant (P>0.05). The results of present investigation indicated that the genetic instability in peripheral lymphocytes of 36 lung cancer patients was significantly higher than that of controls.  相似文献   

20.
Nijmegen breakage syndrome, caused by mutations in the NBS1 gene, is an autosomal recessive chromosomal instability disorder characterized by cancer predisposition. Cells isolated from Nijmegen breakage syndrome patients display increased levels of spontaneous chromosome aberrations and sensitivity to ionizing radiation. Here, we have investigated DNA double strand break repair pathways of homologous recombination, including single strand annealing, and non-homologous end-joining in Nijmegen breakage syndrome patient cells. We used recently developed GFP-YFP-based plasmid substrates to measure the efficiency of DNA double strand break repair. Both single strand annealing and non-homologous end-joining processes were markedly impaired in NBS1-deficient cells, and repair proficiency was restored upon re-introduction of full length NBS1 cDNA. Despite the observed defects in the repair efficiency, no apparent differences in homologous recombination or non-homologous end-joining effector proteins RAD51, KU70, KU86, or DNA-PK(CS) were observed. Furthermore, comparative analysis of junction sequences of plasmids recovered from NBS1-deficient and NBS1-complemented cells revealed increased dependence on microhomology-mediated end-joining DNA repair process in NBS1-complemented cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号