首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current large-scale meta-analysis was performed to reach a reliable conclusion on the association between X-ray repair cross-complementing 1 (xrcc1) rs1799782 and the development of lung cancer. Studies that investigated the association between rs1799782 and lung cancer risk were identified by searching PubMed. We calculated odds ratio (OR) with corresponding 95 % confidence interval (CI) for Trp/Trp vs Arg/Arg, Trp/Trp + Arg/Trp vs Arg/Arg, and Trp/Trp vs Arg/Trp + Arg/Arg contrast models. Combining all 25 studies, we yielded three summary ORs: 1.07 (95 % CI 0.92–1.23) for Trp/Trp vs Arg/Arg, 0.93 (95 % CI 0.87–1.00) for Trp/Trp + Arg/Trp vs Arg/Arg, and 1.08 (95 % CI 0.94–1.25) for Trp/Trp vs Arg/Trp + Arg/Arg, suggesting rs1799782 was not associated with overall risk of lung cancer. Strikingly, a significantly deceased risk was found among Caucasian populations (Trp/Trp + Arg/Trp vs Arg/Arg, OR = 0.86, 95 % CI 0.76–0.97). This study confirms that xrcc1 rs1799782 may lower the risk of lung cancer among Caucasians.  相似文献   

2.
In the present study, the effects of 10- or 100-nm silica oxide (SiO2) NPs on human peripheral blood mononuclear cells (PBMC) were examined. Cytotoxic effects and oxidative stress effects, including glutathione (GSH) depletion, the formation of protein radical species, and pro-inflammatory cytokine responses, were measured. PBMC exposed to 10-nm NP concentrations from 50 to 4,000 ppm showed concentration-response increases in cell death; whereas, for 100-nm NPs, PBMC viability was not lost at <500 ppm. Interestingly, 10-nm NPs were more cytotoxic and induced more oxidative stress than 100-nm NPs. Immunoelectron micrographs show the cellular distribution of GSH and NPs. As expected based on the viability data, the 10-nm NPs disturbed cell morphology to a greater extent than did the 100-nm NPs. Antibody to the radical scavenger, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was used for Western blot analysis of proteins with radicals; more DMPO proteins were found after exposure to 10-nm NPs than 100-nm NPs. Examination of cytokines (TNF-α, IL-1ra, IL-6, IL-8, IL-1β, and IFN-γ) indicated that different ratios of cytokines were expressed and released after exposure to 10- and 100-nm NPs. IL-1β production was enhanced by 10- and 100-nm NPs;, the cytotoxicity of the NPs was associated with an increase in the IL-1β/IL-6 ratio and 100-nm NPs at concentrations that did not induce loss of cell viability enhanced IL-1β and IL-6 to an extent similar to phytohemagglutinin (PHA), a T cell mitogen. In conclusion, our results indicate that SiO2 NPs trigger a cytokine inflammatory response and induce oxidative stress in vitro, and NPs of the same chemistry, but of different sizes, demonstrate differences in their intracellular distribution and immunomodulatory properties, especially with regard to IL-1β and IL-6 expression.  相似文献   

3.
4.
5.
It has been described that A disintegrin and metalloproteinase (ADAM10) may involve in the physiopathology of prion diseases, but the direct molecular basis still remains unsolved. In this study, we confirmed that ADAM10 was able to cleave recombinant human prion protein in vitro. Using immunoprecipitation tests (IP) and immunofluorescent assays (IFA), reliable molecular interaction between the native cellular form of PrP (PrPC) and ADAM10 was observed not only in various cultured neuronal cell lines but also in brain homogenates of healthy hamsters and mice. Only mature ADAM10 (after removal of its prodomain) molecules showed the binding activity with the native PrPC. Remarkably more prion protein (PrP)-ADAM10 complexes were detected in the membrane fraction of cultured cells. In the scrapie-infected SMB cell model, the endogenous ADAM10 levels, especially the mature ADAM10, were significantly decreased in the fraction of cell membrane. IP and IFA tests of prion-infected SMB-S15 cells confirmed no detectable PrP-ADAM10 complex in the cellular lysates and PrP-ADAM10 co-localization on the cell surface. Furthermore, we demonstrated that the levels of ADAM10 in the brain homogenates of scrapie agent 263K-infected hamsters and agent ME7-infected mice were also almost diminished at the terminal stage, showing time-dependent decreases during the incubation period. Our data here provide the solid molecular basis for the endoproteolysis of ADAM10 on PrP molecules and interaction between ADAM10 and PrPC. Obvious loss of ADAM10 during prion infection in vitro and in vivo highlights that ADAM10 may play essential pathophysiological roles in prion replication and accumulation.  相似文献   

6.
Epidermal growth factor (EGF) receptor (EGFR) emerges as an essential molecule for the regulating of osteoblast cellular functions. In the current study, we explored the effect of epiregulin, a new EGFR ligand, on osteoblast functions in vitro, and studied the underlying mechanisms. We found that epiregulin-induced EGFR activation in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, epiregulin activated AKT-mammalian target of rapamycin (mTOR) and Erk-mitogen-activated protein kinase (MAPK) signalings in cultured osteoblasts, which were blocked by EGFR inhibitor AG1478 or monoclonal antibody against EGFR (anti-EGFR). Further, in primary and MC3T3-E1 osteoblasts, epiregulin promoted cell proliferation and increased alkaline phosphatase activity, while inhibiting dexamethasone (Dex)-induced cell death. Such effects by epiregulin were largely inhibited by AG1478 or anti-EGFR. Notably, AKT-mTOR inhibitors, but not Erk inhibitors, alleviated epiregulin-induced above pleiotropic functions in osteoblasts. Meanwhile, siRNA depletion of Sin1, a key component of mTOR complex 2 (mTORC2), also suppressed epiregulin-exerted effects in MC3T3-E1 cells. Together, these results suggest that epiregulin-induced pleiotropic functions in cultured osteoblasts are mediated through EGFR-AKT-mTOR signalings.  相似文献   

7.
Cell cycle re-entry is one of the key processes in neuronal apoptosis. Previous studies have shown that Ski-interacting protein (SKIP) played an important role in cell cycle re-entry. However, its expression and function in optic nerve injury are still with limited acquaintance. To investigate whether SKIP is involved in retinal ganglion cells (RGCs) death, we performed an optic nerve crush (ONC) model in adult rats. Western blot analysis revealed that up-regulation of SKIP was present in retina at 5 days after ONC. Immunofluorescent labeling indicated that up-regulated SKIP was found mainly in RGCs. We also investigated co-localization of SKIP with active-caspase-3 and TUNEL (apoptotic markers) -positive cells in the retina after ONC. In addition, the expression of SKIP was increased in parallel with P53 and P21 in retina after ONC. All these results suggested that up-regulation of SKIP in the retina was associated with RGCs death after ONC.  相似文献   

8.
9.
Neural stem cells (NSCs) have widely been used in the treatment of human neurological disorders as cell therapy via intracerebral or intraventricular infusion. However, the migration mechanism required for NSCs homing and recruitment remains to be elucidated. Recently, SDF-1/CXCR4 axis was shown to be responsible for in cell migration and differentiation during the neural development stage and involved in the pathophysiological process of neurological disorders. In this study, we investigated the effect of SDF-1 in migration of NSCs in vitro and in vivo. The expression of CXCR4 receptor was examined by immunocytochemistry and RT-PCR. The migratory ability of NSCs induced by SDF-1 was assessed by transwell chemotaxis assay. The traumatic brain injury rat model was well established, and the recruitment of NSCs and expression of SDF-1 were investigated in vivo. Our findings demonstrated that SDF-1, in vitro, significantly induced the migratory of NSCs in a dose-dependent manner. An overexpression of neural stem cell marker Nestin in the hippocampus was observed after TBI, and the expressions of SDF-1 surrounding the lesion areas were significantly increased. Our results suggested that the migration of NSCs was activated by chemotactic effect of SDF-1. It was also proved the relevance of SDF-1 in the migration of endogenous NSCs after brain injury. Taken together, these results demonstrated that SDF-1/CXCR4 axis may play crucial role in the migration of Nestin-positive cell after brain injury.  相似文献   

10.
Taurine activates and modulates GABA receptors in vivo as well as those expressed in heterologous systems. This study aimed to determine whether the structural analogs of taurine: homotaurine and hypotaurine, have the ability to activate GABA-A receptors that include GABAρ subunits. The expression of GABA-A receptors containing GABAρ has been reported in the STC-1 cells and astrocytes. In both cell types, taurine, homo-, and hypotaurine gated with low efficiency a picrotoxin-sensitive GABA-A receptor. The known bimodal modulatory effect of taurine on GABAρ receptors was not observed; however, differences between the activation and deactivation rates were detected when they were perfused together with GABA. In silico docking simulations suggested that taurine, hypo-, and homotaurine do not form a cation–π interaction such as that generated by GABA in the agonist-binding site of GABAρ. This observation complements the electrophysiological data suggesting that taurine and its analogs act as partial agonists of GABA-A receptors. All the observations above suggest that the structural analogs of taurine are partial agonists of GABA-A receptors that occupy the agonist-binding site, but their structures do not allow the proper interaction with the receptor to fully gate its Cl? channel.  相似文献   

11.
12.
13.
Using fluorescein-labelled antibodies against γ, μ and α chains, Ig-containing cells* in palatine tonsils were studied in 120 patients. The aim of this study was to determine the most frequently repeated typical findings as regards the numbers and localisation of these cells in tonsils and to confront the data obtained with the concept that tonsils are a component of the local immunity system. The preponderance of IgG over IgA cells was confirmed, both cell types being preferentially localized in extrafollicular tissue whereas IgM was mostly found in germinal centres. Together with progressing tonsillar atrophia, the frequency of positive findings of IgM decreased, whereas the numbers of IgG and IgA cells were proportional to the amount of remaining lymphoid tissue. IgA cells were not preponderant in tonsils and their localization in the surface layer of epithelium was rather exceptional, SC antigen could not be demonstrated unequivocally and the morphological picture in germinal centres was characteristic for IgM production rather for IgA. Thus the palatine tonsils according to the content and distribution of immunocytes, correspond to the lymph node rather than to an organ involved significantly in the local antibody formation.  相似文献   

14.
To investigate the expression of TNF-α, IFN-γ, TGF-β, and IL-4 in the spinal tuberculous focus and its relationship with the lesions type, severity, and bone destruction. The pathological samples of patients with spinal tuberculosis (TB) were divided into hyperplasia group and necrosis group according to their intra-operative and post-operative pathological findings. Normal bone tissues were taken as the control group. Pathology and expression of TNF-α, IFN-γ, TGF-β, and IL-4 in different tissues were compared among these three groups using immunohistochemical staining, quantitative image analysis, and measurement of bone tissue. 286 granulomas observed in the 14 samples in the hyperplasia group, which included 84 necrotizing and 202 non-necrotizing granulomas. As for the 20 samples in the necrosis group, there were 356 necrotizing and 186 non-necrotizing granulomas among all the 542 granulomas. The proportion of necrotizing granulomas in the necrosis group was significantly higher than that of the hyperplasia group. By inter-group comparison, expression of TNF-α, IFN-γ of granulomas in the hyperplasia group was significantly higher than that of the necrosis group, while the expression of TGF-β, IL-4 of granulomas in the necrosis group was significantly higher than that of the hyperplasia group. Also, expression of IFN-γ of non-necrotizing granulomas was significantly higher than that of necrotizing granulomas in the hyperplasia group, and expression of TGF-β in necrotizing granulomas was significantly higher than that of non-necrotizing granulomas in the necrosis group. The lesions were mainly bone resorption in the hyperplasia group, whereas mostly necrotic bones accompanied by local fibrosis in the necrosis group. Expression levels of TNF-α, IFN-γ in the hyperplasia group have a positive correlation to bone loss, whereas expression levels of TGF-β, IL-4 in the necrosis group have a positive correlation to the bone formation. The high expressions of TNF-α, IFN-γ in the spinal tuberculous focus were associated with protective immune cells. TGF-β and IL-4 were related to allergic lesions, fibrosis and osteogenesis. Expression imbalance of TNF-α, IFN-γ, TGF-β, and IL-4 might aggravate the allergy of TB.  相似文献   

15.
Development of drug resistance is a challenging problem in cancer chemotherapy. It has been shown that basic fibroblast growth factor (bFGF) plays an important role in an epigenetic mechanism of drug resistance. We have isolated a bFGF binding peptide P7 with inhibitory activity against bFGF-induced proliferation of human gastric cancer cells by screening a phage display library. In this study, we found that P7 peptide also has efficacy of reversing bFGF-induced resistance to Adriamycin (ADM) in human gastric cancer cells. Further investigations with SGC-7901 cells revealed that inhibition of Akt activation triggered by bFGF, and reversal of bFGF-induced up-regulation of Bcl-2 and XIAP and down-regulation of Bax, contribute to P7 peptide counteracting the anti-apoptotic effect of bFGF, and further reversing bFGF-induced resistance to ADM. The results suggested that the bFGF-binding peptide may have therapeutic potential of drug resistance in gastric cancer.  相似文献   

16.
[14C]Glutamic acid and [3H]GABA were injected into the lateral ventricle of mouse and then [14C]GABA and [3H]GABA in synaptosomes isolated from the animals were analysed. The [14C]GABA was interpreted to be newly synthesized GABA from [14C]glutamic acid while the [3H]GABA to be newly taken up GABA. We have obtained the following results: (1) when the animals were pretreated with aminooxyacetic acid and thus the GABA content in synaptosomes increased to about 2 times of the control level, only the [3H]GABA was enhanced to 3 times of the control level without any change of [14C]GABA, (2) the release of [14C]GABA from synaptosomes by high K+ depolarization was 1.5 times greater than that of [3H]GABA, (3) the releases of both [14C]GABA and [3H]GABA were increased in the presence of cold GABA,l-2,4-diaminobutyric acid or γ-amino-β-hydroxybutyric acid, but only slightly increased in the presence of β-alanine. These results would suggest that newly synthesized GABA and newly taken up GABA localized individually in different pools, which might localize either in different nerve terminals or separately in the same nerve terminal.  相似文献   

17.
Human-like collagen (HLC) is a novel biomedical material with promising applications. Usually, insoluble HLC was formed due to over-expression. In order to improve the production of soluble HLC, the effective chaperone proteins and their mediation roles on HLC were clarified. Trigger factor (TF) pathway with low specificity and high binding affinity to nascent chains could increase soluble HLC expression; GroEL-GroES could increase the expression level of HLC by assisting the correct folding of HLC and increase mRNA level of the gene coding for HLC by enhancing mRNA stability. DnaK chaperone system did not work positively on soluble HLC due to the unbalanced ratio of DnaK:DnaJ:GrpE, especially too high GrpE significantly inhibited DnaK-mediated refolding. The production of soluble HLC with co-expression of exogenous TF and GroEL-GroES was increased by 35.3 % in comparison with the highest value 0.26 g/L reported previously.  相似文献   

18.
The aim of the present study was to investigate the possible correlation of selenoprotein W (SelW) with inflammatory injury induced by dietary selenium (Se) deficiency in chicken. One-day-old male chickens were fed either a commercial diet or a Se-deficient diet for 55 days. Then, the expression levels of SelW messenger RNA (mRNA) and inflammation-related genes (NF-κB, TNF-α, iNOS, COX-2, and PTGES) in chicken skeletal muscles (wing muscle, pectoral muscle, and thigh muscle) were determined at 15, 25, 35, 45, and 55 days old, respectively. In addition, the correlation between SelW mRNA expression and inflammation-related genes were assessed. The results showed that dietary Se deficiency reduced the mRNA expression of SelW in chicken wing, pectorals, and thigh muscles. In contrast, Se deficiency increased the mRNA expression levels of inflammation-related genes in chicken skeletal muscle tissues at different time points. The Pearson’s correlation coefficients showed that the mRNA expression levels of inflammation-related genes were significantly negative related to SelW (p?相似文献   

19.
Suppression of myostatin (MSTN) is associated with skeletal muscle atrophy and insulin resistance. However, the mechanisms by which MSTN regulates insulin resistance are not well known. We have explored the signaling pathways through which MSTN regulates insulin resistance in diet-induced obese rats using a polyclonal antibody for MSTN. The anti-MSTN polyclonal antibody significantly improved insulin resistance and whole-body insulin sensitivity, decreased MSTN protein expression in muscle samples by 39 % in diet-induced obese rats. Furthermore, the anti-MSTN polyclonal antibody significantly enhanced PI3K activity (140 %), Akt phosphorylation (86 %), GLUT4 protein expression (23 %), the phosphorylation of mTOR (21 %), and inhibited the phosphorylation of FoxO1 (57 %), but did not affect the phosphorylation of GSK-3β. Thus, suppression of MSTN by the anti-MSTN polyclonal antibody reverses insulin resistance of diet-induced obesity via MSTN/PI3K/Akt/mTOR and MSTN/PI3K/Akt/FoxO1 signaling pathways.  相似文献   

20.
The effects of spermidine, pH, ethylene diamine tetracetic acid (EDTA), and adenosine triphosphate (ATP) on deoxyribonuclease (DNase) activity associated with the chloroplasts of soybean (Glycine max (L.) Merr.) were investigated. Chloroplast DNase activity was found to be partially inhibited by either 10 mM spermidine, 20 mM EDTA, or 20 mM ATP. DNase activity was also partially inhibited at non-neutral pH's. Nearly complete inhibition was achieved with use of 30 mM EDTA, pH 10, or a combination of 10 mM spermidine and 10 mM EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号