首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
3.
4.
The cotton bollworm Helicoverpa armigera (Hübner) is the most destructive pest of cotton, tomato and chickpea in Iran. In this study, the lethal and sublethal effects of thiacloprid were evaluated against cotton bollworm under laboratory condition at 26?±?1?°C, 70?±?5% RH and a photoperiod of 16:8 (L:D). Bioassay experiments were conducted on first larval instars by mixing the insecticide dilutions with artificial diet. The LC50 value of thiacloprid was 329?mg a.i./l. Sublethal effects of LC30 concentration of thiacloprid was studied on biological parameters. In the study of sublethal effects, thiacloprid at LC30 concentration significantly increased larval and pupal developmental times and reduced adults longevity compared with control but showed no significant effects on fecundity of cotton bollworm. Sublethal effects of thiacloprid also significantly reduced pupal weight compared with control. In general, sublethal effects studies showed that thiacloprid had adverse effects on biological parameters of the pest. Thus, our data suggest that thiacloprid had moderate potential against cotton bollworm.  相似文献   

5.
Cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is a major pest of cotton and corn crops in northern China. A phenological differentiation between fourth generation cotton bollworms from cotton and those from corn fields was observed in northern China during 1999–2000. The proportion of pupation in late fall was marginally higher in cotton fields compared to that in corn fields; however, the proportions of fall emergence of moths from cotton fields were significantly higher than those from corn fields. The proportion of spring emergence of moths was also significantly higher for larvae collected from cotton (28.0%) than from corn (14.5%). The overwintering duration of females was significantly shorter than that of males in both crops. Moreover, the overwintering duration of bollworm populations from cotton was significantly longer than that from corn. The early spring population of H. armigera came from both cotton and corn fields, but the spring emergence of moths from larvae collected from cotton took about 5 days longer to reach 100% emergence compared to that from corn.  相似文献   

6.
Oral ingestion of plant-expressed double stranded RNA (dsRNA) triggers target gene suppression in insect. An important step of this process is the transmission of dsRNA from plant to midgut cells. Insect peritrophic matrix (PM) presents a barrier that prevents large molecules from entering midgut cells. Here, we show that uptake of plant cysteine proteases, such as GhCP1 from cotton (Gossypium hirsutum) and AtCP2 from Arabidopsis, by cotton bollworm (Helicoverpa armigera) larvae resulted in attenuating the PM. When GhCP1 or AtCP2 pre-fed larvae were transferred to gossypol-containing diet, the bollworm accumulated higher content of gossypol in midgut. Larvae previously ingested GhCP1 or AtCP2 were more susceptible to infection by Dendrolimus punctatus cytoplasmic polyhedrosis virus (DpCPV), a dsRNA virus. Furthermore, the pre-fed larvae exhibited enhanced RNAi effects after ingestion of the dsRNA-expressing plant. The bollworm P450 gene CYP6AE14 is involved in the larval tolerance to gossypol; cotton plants producing dsRNA of CYP6AE14 (dsCYP6AE14) were more resistant to bollworm feeding (Mao et al. in Transgenic Res 20:665–673, 2011). We found that cotton plants harboring both 35S:dsCYP6AE14 and 35S:GhCP1 were better protected from bollworm than either of the single-transgene lines. Our results demonstrate that plant cysteine proteases, which have the activity of increasing PM permeability, can be used to improve the plant-mediated RNAi against herbivorous insects.  相似文献   

7.
Wu J  Luo X  Wang Z  Tian Y  Liang A  Sun Y 《Biotechnology letters》2008,30(3):547-554
A synthetic scorpion Hector Insect Toxin (AaHIT) gene, under the control of a CaMV35S promoter, was cloned into cotton via Agrobacterium tumefaciens-mediated transformation. Southern blot analyses indicated that integration of the transgene varied from one to more than three estimated copies per genome; seven homozygous transgenic lines with one copy of the T-DNA insert were then selected by PCR and Southern blot analysis. AaHIT expression was from 0.02 to 0.43% of total soluble protein determined by western blot. These homozygous transgenic lines killed larvae of cotton bollworm (Heliothis armigera) by 44–98%. The AaHIT gene could used therefore an alternative to Bt toxin and proteinase inhibitor genes for producing transgenic cotton crops with effective control of bollworm.  相似文献   

8.
Cotton bollworm (Helicoverpa armigera) is one of the most serious insect pests of cotton. Transgenic cotton expressing Cry toxins derived from a soil bacterium, Bacillus thuringiensis (Bt), has been produced to target this pest. Bt cotton has been widely planted around the world, and this has resulted in efficient control of bollworm populations with reduced use of synthetic insecticides. However, evolution of resistance by this pest threatens the continued success of Bt cotton. To date, no field populations of bollworm have evolved significant levels of resistance; however, several laboratory-selected Cry-resistant strains of H. armigera have been obtained, which suggests that bollworm has the capacity to evolve resistance to Bt. The development of resistance to Bt is of great concern, and there is a vast body of research in this area aimed at ensuring the continued success of Bt cotton. Here, we review studies on the evolution of Bt resistance in H. armigera, focusing on the biochemical and molecular basis of Bt resistance. We also discuss resistance management strategies, and monitoring programs implemented in China, Australia, and India.  相似文献   

9.
10.
Transgenic cotton has been released for cultivation in several parts of the world to increase crop productivity. However, concerns have been raised regarding the possible undesirable effects of genetically modified crops on non-target organisms in the eco-system. Therefore, we studied the effects of transgenic cottons with cry1Ac gene from Bacillus thuringiensis Berliner (Bt) on the natural enemies of cotton bollworm/legume pod borer, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) under field and laboratory conditions. There was no apparent effect of transgenic cotton on the relative abundance of predatory spiders (Clubiona sp. and Neoscona sp.), coccinellid (Cheilomenes sexmaculatus Fab.), and the chrysopid (Chrysoperla carnea Stephens). However, the abundance of spiders, coccinellids, and chrysopids was quite low in insecticide protected plots towards end of the cropping season. There was a significant reduction in cocoon formation and adult emergence of the ichneumonid parasitoid, Campoletis chlorideae Uchnida reared on H. armigera larvae fed on the leaves of transgenic cottons before and after parasitization. However, no Bt toxins were detected in H. armigera larvae and the parasitoid cocoons with enzyme linked immunosorbent assay. Reduction in cocoon formation was because of early mortality of the H. armigera larvae due to Bt toxins in the leaves of transgenic cotton. There was a slight reduction in adult weight and fecundity, and prolongation of the larval period when the parasitoid was raised on H. armigera larvae fed on the leaves of transgenic cotton before and after parasitization. Survival and development of C. chlorideae was also poor when H. armigera larvae were fed on the leaves of cotton hybrid Mech 184. The adverse effects of transgenic cotton on survival and development of C. chlorideae were largely due to early mortality, and possibly poor nutritional quality of H. armigera larvae due to toxic effects of the transgene.  相似文献   

11.
Helicoverpa armigera (the cotton bollworm) is a significant agricultural pest endemic to Afro-Eurasia and Oceania. Gene suppression via RNA interference (RNAi) presents a potential avenue for management of the pest, which is highly resistant to traditional insecticide sprays. This article reviews current understanding on the fate of ingested double-stranded RNA in H. armigera. Existing in vivo studies on diet-delivered RNAi and their effects are summarized and followed by a discussion on the factors and hurdles affecting the efficacy of diet-delivered RNAi in H. armigera.  相似文献   

12.
P. A. Stam  H. Elmosa 《BioControl》1990,35(3):315-327
Studies on the relationship between insect pests and their predators and parasites were conducted in the Syrian cotton agro-ecosystem from 1980 up to 1983.Earias insulana (Boisduval) was found to be the most damaging pest, whileHeliothis armigera (Hübner) was not an annual returning problem. Among the entomophagous insects found, coccinellids were most numerous during the months June and July and the hemipterous predators were more abundant during August and September. When predator numbers were reduced with insecticide applications, a significant increase in the bollworm populations occurred, resulting in significant reductions in seed cotton yields. Parasites were relatively not important for the control of lepidopterous pests on cotton. Egg and larva populations ofE. insulana andH. armigera were parasitized byTrichogramma spp. andHabrobracon brevicornis Wesmael respectively. Populations ofBemisia tabaci (Gennadius) were heavily parasitized byEretmocerus mundus Mercet.   相似文献   

13.
Cotton is one of the most economically important crops in China, while insect pest damage is the major restriction factor for cotton production. The strategy of integrated pest management (IPM), in which biological control plays an important role, has been widely applied. Nearly 500 species of natural enemies have been reported in cotton systems in China, but few species have been examined closely. Seventy-six species, belonging to 53 genera, of major arthropod predators and parasitoids of lepidoptera pests, and 46 species, belonging to 29 genera, of natural enemies of sucking pests have been described. In addition, microsporidia, fungi, bacteria and viruses are also important natural enemies of cotton pests. Trichogramma spp., Microplitis mediator, Amblyseius cucumeris, Bacillus thuringiensis and Helicoverpa armigera nuclear polyhedrosis virus (HaNPV) have been mass reared or commercially produced and used in China. IPM strategies for cotton pests comprising of cultural, biological, physical and chemical controls have been developed and implemented in the Yellow River Region (YRR), Changjiang River Region (CRR) and Northwestern Region (NR) of China over the past several decades. In recent years, Bt cotton has been widely planted for selectively combating cotton bollworm, H. armigera, pink bollworm, Pectinophora gossypiella, and other lepidopteran pest species. As a result of reduced insecticide sprays, increased abundance of natural enemies in Bt cotton fields efficiently prevents outbreaks of other pests such as cotton aphids. In contrast, populations of mirid plant bugs have increased dramatically due to a reduction in the number of foliar insecticide applications for control of the bollworms in Bt cotton, and now pose a key problem in cotton production. In response to this new pest issue in cotton production, control strategies including biological control measures are being developed in China.  相似文献   

14.
Wide planting of transgenic Bt cotton in China since 1997 to control cotton bollworm (Helicoverpa armigera) has increased yields and decreased insecticide use, but the evolution of resistance to Bt cotton by H. armigera remains a challenge. Toward developing a new generation of insect-resistant transgenic crops, a chimeric protein of Vip3Aa1 and Vip3Ac1, named Vip3AcAa, having a broader insecticidal spectrum, was specifically created previously in our laboratory. In this study, we investigated cross resistance and interactions between Vip3AcAa and Cry1Ac with three H. armigera strains, one that is susceptible and two that are Cry1Ac-resistant, to determine if Vip3AcAa is a good candidate for development the pyramid cotton with Cry1Ac toxin. Our results showed that evolution of insect resistance to Cry1Ac toxin did not influence the sensitivity of Cry1Ac-resistant strains to Vip3AcAa. For the strains examined, observed mortality was equivalent to the expected mortality for all the combinations of Vip3AcAa and Cry1Ac tested, reflecting independent activity between these two toxins. When this chimeric vip3AcAa gene and the cry1Ac gene were introduced into cotton, mortality rates of Cry1Ac resistant H. armigera larvae strains that fed on this new cotton increased significantly compared with larvae fed on non-Bt cotton and cotton producing only Cry1Ac. These results suggest that the Vip3AcAa protein is an excellent option for a “pyramid” strategy for pest resistance management in China.  相似文献   

15.
Abstract The effects of gossypol, an important allelochemical in cotton, on growth of the cotton bollworm Helicoverpa armigera (Hubner) and development of its endoparasitoid Campoletis chlorideae (Uchida) in Huanghe River Valley were studied. Growth of H. armigera larvae was accelerated by adding 0.1% gossypol in the artificial diet, causing 10.75% reduction of the vulnerable period to C. chlorideae while the suppression activity of 0. 5 % gossypol to H. armigera larvae prolonged the vulnerable period by 28.15%. Negative effects of gossypol on the development of the parasitoid were demonstrated by using the artificial diet and cotton varieties WD-151 (glandless) and HG-BR-8 (glanded). Gossypol at 0.1% concentration in artificial diet did not remarkably increase the body weight of adult wasp, but significantly extended the egg-larval time and shortened the pupal time; 0. 5% gossypol and HG-BR-8 remarkably reduced the body weight of adult wasp, also significantly prolonged the egg-larval period and decreased the pupal period. Finally, the coordinate application of high gossypol resistant cotton varieties and C. chlorideae in H. armigera control is discussed.  相似文献   

16.
17.
18.
Insectivorous bats are efficient predators of pest arthropods in agroecosystems. This pest control service has been estimated to be worth billions of dollars to agriculture globally. However, few studies have explicitly investigated the composition and abundance of dietary prey items consumed or assessed the ratio of pest and beneficial arthropods, making it difficult to evaluate the quality of the pest control service provided. In this study, we used metabarcoding to identify the prey items eaten by insectivorous bats over the cotton‐growing season in an intensive cropping region in northern New South Wales, Australia. We found that seven species of insectivorous bat (n = 58) consumed 728 prey species, 13 of which represented around 50% of total prey abundance consumed. Importantly, the identified prey items included major arthropod pests, comprising 65% of prey relative abundance and 13% of prey species recorded. Significant cotton pests such as Helicoverpa punctigera (Australian bollworm) and Achyra affinitalis (cotton webspinner) were detected in at least 76% of bat fecal samples, with Teleogryllus oceanicus (field crickets), Helicoverpa armigera (cotton bollworm), and Crocidosema plebejana (cotton tipworm) detected in 55% of bat fecal samples. Our results indicate that insectivorous bats are selective predators that exploit a narrow selection of preferred pest taxa and potentially play an important role in controlling lepidopteran pests on cotton farms. Our study provides crucial information for farmers to determine the service or disservice provided by insectivorous bats in relation to crops, for on‐farm decision making.  相似文献   

19.
Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are extensively cultivated worldwide. To counter rapidly increasing pest resistance to crops that produce single Bt toxins, transgenic plant ‘pyramids’ producing two or more Bt toxins that kill the same pest have been widely adopted. However, cross‐resistance and antagonism between Bt toxins limit the sustainability of this approach. Here we describe development and testing of the first pyramids of cotton combining protection from a Bt toxin and RNA interference (RNAi). We developed two types of transgenic cotton plants producing double‐stranded RNA (dsRNA) from the global lepidopteran pest Helicoverpa armigera designed to interfere with its metabolism of juvenile hormone (JH). We focused on suppression of JH acid methyltransferase (JHAMT), which is crucial for JH synthesis, and JH‐binding protein (JHBP), which transports JH to organs. In 2015 and 2016, we tested larvae from a Bt‐resistant strain and a related susceptible strain of H. armigera on seven types of cotton: two controls, Bt cotton, two types of RNAi cotton (targeting JHAMT or JHBP) and two pyramids (Bt cotton plus each type of RNAi). Both types of RNAi cotton were effective against Bt‐resistant insects. Bt cotton and RNAi acted independently against the susceptible strain. In computer simulations of conditions in northern China, where millions of farmers grow Bt cotton as well as abundant non‐transgenic host plants of H. armigera, pyramided cotton combining a Bt toxin and RNAi substantially delayed resistance relative to using Bt cotton alone.  相似文献   

20.
The transgenic Bt cotton plant has been widely planted throughout the world for the control of cotton budworm Helicoverpa armigera (Hubner). However, a shift towards insect tolerance of Bt cotton is now apparent. In this study, the gene encoding neuropeptide F (NPF) was cloned from cotton budworm H. armigera, an important agricultural pest. The npf gene produces two splicing mRNA variants—npf1 and npf2 (with a 120‐bp segment inserted into the npf1 sequence). These are predicted to form the mature NPF1 and NPF2 peptides, and they were found to regulate feeding behaviour. Knock down of larval npf with dsNPF in vitro resulted in decreases of food consumption and body weight, and dsNPF also caused a decrease of glycogen and an increase of trehalose. Moreover, we produced transgenic tobacco plants transiently expressing dsNPF and transgenic cotton plants with stably expressed dsNPF. Results showed that H. armigera larvae fed on these transgenic plants or leaves had lower food consumption, body size and body weight compared to controls. These results indicate that NPF is important in the control of feeding of H. armigera and valuable for production of potential transgenic cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号