首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
Genetic diversity was studied among 21 accessions of lentil using SSR markers and morphological traits in order to assess the diversification of Indian gene-pool of lentil through introgression of exotic genes and introduction of germplasm. Among these , 16 genotypes either had ‘Precoz’ gene, an Argentine line in their pedigree or genes from introduced lines from ICARDA. Sixty five SSR markers and eight phenotypic traits were used to analyse the level of genetic diversity in these genotypes. Forty three SSR markers (66 %) were polymorphic and generated a total of 177 alleles with an average of 4.1 alleles per SSR marker. Alleles per marker ranged from 2 to 6. The polymorphic information content ranged 0.33 to 0.80 with an average of 0.57, suggesting that SSR markers are highly polymorphic among the studied genotypes. Genetic dissimilarity based a dendrogram grouped these accessions into two main clusters (cluster I and cluster II) and it ranged 33 % to 71 %, suggesting high level of genetic diversity among the genotypes. First three components of PCA based morphological traits explained higher variance (95.6 %) compared to PCA components based on SSR markers (42.7 %) of total genetic variance. Thus, more diversity was observed for morphological traits and genotypes in each cluster and sub-cluster showed a range of variability for seed size, earliness, pods/plant and plant height. Molecular and phenotypic diversity analysis thus suggested that use of germplasm of exotic lines have diversified the genetic base of lentil germplasm in India. This diversified gene-pool will be very useful in the development of improved varieties of lentil in order to address the effect of climate change, to adapt in new cropping systems niches such as mixed cropping, relay cropping, etc. and to meet consumers’ preference.  相似文献   

2.
J Jakse  K Kindlhofer  B Javornik 《Génome》2001,44(5):773-782
Microsatellites have many desirable marker properties and have been increasingly used in crop plants in genetic diversity studies. Here we report on the characterisation of microsatellite markers and on their use for the determination of genetic identities and the assessment of genetic variability among accessions from a germplasm collection of hop. Thirty-two polymorphic alleles were found in the 55 diploid genotypes, with an average number of eight alleles (3.4 effective alleles) for four microsatellite loci. Calculated polymorphic information content values classified three loci as informative markers and two loci as suitable for mapping. The average observed heterozygosity was 0.7 and the common probability of identical genotypes was 3.271 x 10(-4). An additional locus, amplified by one primer pair, was confirmed by segregation analysis of two crosses. The locus discovered was heterozygous, with a null allele in the segregating population. The same range of alleles was detected in nine triploid and five tetraploid hop genotypes. Cultivar heterozygosity varied among all 69 accessions, with only one cultivar being homozygous at four loci. Microsatellite allele polymorphisms distinguished 81% of all genotypes; the same allelic profile was found mainly in clonally selected cultivars. Cultivar-specific alleles were found in some genotypes, as well as a specific distribution of alleles in geographically distinct hop germplasms. The genetic relationship among 41 hop accessions was compared on the basis of microsatellite and AFLP polymorphisms. Genetic similarity dendrograms showed low correlation between the two marker systems. The microsatellite dendrogram grouped genetically related accessions reasonably well, while the AFLP dendrogram showed good clustering of closely related accessions and, additionally, separated two geographically distinct hop germplasms. The results of microsatellite and AFLP analysis are discussed from the point of view of the applicability of the two marker systems for different aspects of germplasm evaluation.  相似文献   

3.
Morphological traits and molecular markers are two common methods for genetic variation studies. Molecular markers, morphological traits methods and relationship between the two were used to study genetic variation among 43 oat genotypes and varieties. For this purpose, an augmented design was conducted in three replicates at 2008–2009 cropping season in the experimental field of Campus of Agriculture and Natural Resources of Razi University, Kermanshah, Iran. Four wild oat accessions (Avena sterilis) were added to evaluated genotypes in molecular experiment. Results showed a significant variation among genotypes for all morphological traits and they were classified based on this variation in four groups by WARD cluster analysis. In molecular experiment, 28 inter simple sequence repeat (ISSR) primers amplified 206 polymorph bands. Based on Jaccard similarity matrix, similarity among genotypes was varied from 0.23 to 0.66 and cluster analysis classified genotypes in seven groups by complete linkage method. The correlation between ISSR marker and morphological traits classifications was not significant. ISSR showed to be a helpful marker for genotype identity and separation as it put wild accessions in a group.  相似文献   

4.
The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought.  相似文献   

5.
Genetic diversity among 42 sorghum accessions representing landraces (19), advanced breeding lines (16), local cultivars (2) and release varieties (5) with 30 simple sequence repeat (SSR) markers revealed 7.6 mean number of alleles per locus showing 93.3% polymorphism and an average polymorphism information content of 0.78 which range from 0.22 (Xtxp12) and 0.91(Xtxp321). The average heterozygosity and effective number of alleles per locus were 0.8 and 6.65 respectively. Cluster analysis based on microsatellite allelic diversity clearly demarcated the accessions into ten clusters. A total of 24 unique alleles were obtained from seven SSR loci in 23 accessions in a size range of 110–380 bp; these unique alleles may serve as diagnostic tools for particular region of the genome of respective genotypes. Selected SSR markers from different linkage groups provided an accurate way of determining genetic diversity at the molecular level.  相似文献   

6.
The genetic characterization of Indian sesame cultivars and related wild species was analysed using 102 simple sequence repeat (SSR; microsatellite) markers. Of these, 62 were novel sesame-specific microsatellites isolated in the course of the present investigation by constructing genomic libraries. Characterization of the 68 sesame accessions and three related wild species using 72 polymorphic SSR primers resulted in the detection of 170 alleles. The number of alleles ranged from two to four with an average of 2.5 alleles per locus. Polymorphic information content of the markers ranged from 0.43 to 0.88 with an average of 0.66. UPGMA cluster analysis grouped all the accessions into two major clusters with a genetic similarity ranging from 0.40 to 0.91. A moderate to high level of genetic variability was observed. The three wild accessions used in the study formed separate clades and distant genetic relationships were observed between the cultivar lines and wild species. Differentiation of genotypes according to geographical region was not observed. Analysis of molecular variance (AMOVA) analysis revealed that a high percentage of variation was within populations (87.1 %). An overall F st of 0.11 among the populations indicated low population differentiation. The SSR markers developed will be useful for further genetic analysis, linkage mapping and selection of parents in future breeding programmes.  相似文献   

7.
Microsatellite analysis of Aegilops tauschii germplasm   总被引:8,自引:0,他引:8  
The highly polymorphic diploid grass Aegilops tauschii isthe D-genome donor to hexaploid wheat and represents a potential source for bread wheat improvement. In the present study microsatellite markers were used for germplasm analysis and estimation of the genetic relationship between 113 accessions of Ae. tauschii from the gene bank collection at IPK, Gatersleben. Eighteen microsatellite markers, developed from Triticum aestivum and Ae. tauschii sequences, were selected for the analysis. All microsatellite markers showed a high level of polymorphism. The number of alleles per microsatellite marker varied from 11 to 25 and a total of 338 alleles were detected. The number of alleles per locus in cultivated bread wheat germplasm had previously been found to be significantly lower. The highest levels of genetic diversity for microsatellite markers were found in accessions from the Caucasian countries (Georgia, Armenia and the Daghestan region of Russia) and the lowest in accessions from the Central Asian countries (Uzbekistan and Turkmenistan). Genetic dissimilarity values between accessions were used to produce a dendrogram of the relationships among the accessions. The result showed that all of the accessions could be distinguished and clustered into two large groups in accordance with their subspecies taxonomic classification. The pattern of clustering of the Ae. tauschii accessions is according to their geographic distribution. The data suggest that a relatively small number of microsatellites can be used to estimate genetic diversity in the germplasm of Ae. tauschii and confirm the good suitability of microsatellite markers for the analysis of germplasm collections. Received: 8 September 1999 / Accepted: 7 October 1999  相似文献   

8.
Bread wheat (Triticum aestivum L.) germplasm consisting of 45 genotypes were clustered phenotypically using ten morphological traits and Area Under Disease Progress Curve (AUDPC) as measure of stripe rust resistance. The clustering was ratified by using twenty three molecular markers (SSR, EST and STS) linked to stripe rust (Puccinia striiformis f. sp. tritici) resistant QTLs. The aim was to asses the extent of genetic variability among the genotypes in order to select the parents for crossing between the resistant and susceptible genotypes with respect to stripe rust. The Euclidian dissimilarity values resulted from phenotypic data regarding morphological traits and AUDPC were used to construct a dendrogram for clustering the accessions. Using un-weighted pair group method with arithmetic means, another dendrogram resulted from the similarity coefficient values was used to distinguish the genotypes with respect to stripe rust. Clustering based on phenotypic data produced two major groups and five clusters (with Euclidian dissimilarity ranging from 244 to 16.16) whereas genotypic data yielded two major groups and four clusters (with percent similarity coefficient values ranging from 0.1 to 46.0) to separate the gene pool into highly resistant, resistant, moderately resistant, moderately susceptible and susceptible genotypes. With few exceptions, the outcome of both type of clustering was almost similar and resistant as well as susceptible genotypes came in the same clusters of molecular genotyping as yielded by phenotypic clustering. As a result seven genotypes (Bakhtawar-92, Frontana, Saleem 2000, Tatara, Inqilab-91, Fakhre Sarhad and Karwan) of diverse genetic background were selected for pyramiding stripe rust resistant genes as well as some other agronomic traits after hybridization.  相似文献   

9.
Coffee is one of the main agrifood commodities traded worldwide. In 2009, coffee accounted for 6.1% of the value of Brazilian agricultural production, generating a revenue of US$6 billion. Despite the importance of coffee production in Brazil, it is supported by a narrow genetic base, with few accessions. Molecular differentiation and diversity of a coffee breeding program were assessed with gSSR and EST-SSR markers. The study comprised 24 coffee accessions according to their genetic origin: arabica accessions (six traditional genotypes of C. arabica), resistant arabica (six leaf rust-resistant C. arabica genotypes with introgression of Híbrido de Timor), robusta (five C. canephora genotypes), Híbrido de Timor (three C. arabica x C. canephora), triploids (three C. arabica x C. racemosa), and racemosa (one C. racemosa). Allele and polymorphism analysis, AMOVA, the Student t-test, Jaccard's dissimilarity coefficient, cluster analysis, correlation of genetic distances, and discriminant analysis, were performed. EST-SSR markers gave 25 exclusive alleles per genetic group, while gSSR showed 47, which will be useful for differentiating accessions and for fingerprinting varieties. The gSSR markers detected a higher percentage of polymorphism among (35% higher on average) and within (42.9% higher on average) the genetic groups, compared to EST-SSR markers. The highest percentage of polymorphism within the genetic groups was found with gSSR markers for robusta (89.2%) and for resistant arabica (39.5%). It was possible to differentiate all genotypes including the arabica-related accessions. Nevertheless, combined use of gSSR and EST-SSR markers is recommended for coffee molecular characterization, because EST-SSRs can provide complementary information.  相似文献   

10.
Genetic diversity among rice genotypes, including 15 indica basmati advance lines and 5 basmati improved varieties were investigated by 28 SSR markers including one indel marker. The SSRs covered all the 12 chromosomes that distributed across the rice genomes. The mean number of alleles per locus was 3.60, showing average number of polymorphism information content was 0.48. A total of 101 alleles were also identified from the microsatellite marker loci. A number of SSR markers were also identified that could be utilized to differentiate between rice genotypes. Pair wise Nei’s genetic distance between rice genotypes ranged from 0.07 to 0.95. The dendrogram based on cluster analysis by using SSR polymorphism that grouped the 20 genotypes of rice in to five clusters based on their genetic similarity. The result could be useful for the identification and selection of the diverse genotypes for the future cross breeding program and development of new rice varieties.  相似文献   

11.
Two molecular marker technologies, random amplified microsatellite polymorphism (RAMP) and simple sequence repeats (SSR), were used to determine genetic diversity of 27 accessions of the wild barley Hordeum vulgare ssp. spontaneum. 19 primer combinations were used to generate RAMP fragments and 16 SSR loci were analysed. A high level of polymorphism was found with both kind of markers as revealed by the mean polymorphism information content (PIC) values obtained: 0.838 and 0.855 for RAMP and SSR, respectively. Genetic dissimilarities between genotypes were estimated from RAMP and SSR data. A lack of correlation was found between both sets of data. This was reflected in the two dendrograms obtained which presented accessions clustered differently. The results suggest that both sets of markers reveal genetic variation induced by different mechanisms. The dendrogram produced from the RAMP dissimilarity estimates showed most of the groups related to the geographic origin of the accessions.  相似文献   

12.
Six SSR loci, previously developed for grapevine, were analyzed to evaluate the genetic variability and cultivar relatedness in a collection of 25 autochthonous Vitis vinifera varieties from Perú and Argentina.

The number of alleles per locus ranged from 6 to 13, while the number of microsatellites genotypes varied between 9 and 16. The expected heterozygosity varied between 0.71 and 0.89 and the polymorphism information content ranged from 0.70 to 0.88 indicating that the SSRs were highly informative. It was possible to identify 76 different genotypes, with all accessions showing-at least one-specific combination of alleles. Triallelic loci were observed with some SSR. Sequence analysis revealed that variation in the number of repeats and insertion/deletions (InDels) accounted for the polymorphisms observed. Clustering analysis resulted in four separate groups of varieties sharing at least 75% of the markers. A few cases of synonymies were found within the Peruvian accessions. Varieties were clustered following a general pattern of shared morphological and enological traits, rather than geographical origin.  相似文献   


13.
Sixteen polymorphic microsatellite (SSR) markers, developed from an SSR-enriched genomic DNA library of sesame (Sesamum indicum L.), were used to assess genetic diversity, phylogenetic relationships, and population structure among 150 sesame accessions collected from 22 countries. A total of 121 alleles were detected among the sesame accessions. The number of detected alleles varied from 2 to 18, with an average of 7.6 alleles per locus. Polymorphism information content values ranged from 0.03 to 0.79, with an average of 0.42. These values indicated an excess of heterozygous individuals at 16 loci and an excess of homozygous individuals at three loci. Of these, 32 genotype-specific alleles were identified at 11 of 16 polymorphic SSR markers. Cluster analyses were performed by accession and population, revealing a complex accession distribution pattern with mean genetic similarity coefficient of 0.45 by accession and 0.52 by population. The wide variation in genetic similarity among the accessions revealed by SSRs reflected a high level of polymorphism at the DNA level. Model-based structure analysis revealed the presence of three groups that were basically consistent with the clustering results based on genetic distance. These findings may be used to augment the sesame germplasm and to increase the effectiveness of sesame breeding.  相似文献   

14.
Distinctness, uniformity and stability (DUS) testing of varieties is usually required to apply for Plant Breeders’ Rights. This exam is currently carried out using morphological traits, where the establishment of distinctness through a minimum distance is the key issue. In this study, the possibility of using microsatellite markers for establishing the minimum distance in a vegetatively propagated crop (grapevine) has been evaluated. A collection of 991 accessions have been studied with nine microsatellite markers and pair-wise compared, and the highest intra-variety distance and the lowest inter-variety distance determined. The collection included 489 different genotypes, and synonyms and sports. Average values for number of alleles per locus (19), Polymorphic Information Content (0.764) and heterozygosities observed (0.773) and expected (0.785) indicated the high level of polymorphism existing in grapevine. The maximum intra-variety variability found was one allele between two accessions of the same variety, of a total of 3,171 pair-wise comparisons. The minimum inter-variety variability found was two alleles between two pairs of varieties, of a total of 119,316 pair-wise comparisons. In base to these results, the minimum distance required to set distinctness in grapevine with the nine microsatellite markers used could be established in two alleles. General rules for the use of the system as a support for establishing distinctness in vegetatively propagated crops are discussed.  相似文献   

15.
Bread wheat (Triticum aestivum L.) germplasm consisting of 45 genotypes were clustered phenotypically using ten morphological traits and Area Under Disease Progress Curve (AUDPC) as measure of stripe rust resistance. The clustering was ratified by using twenty three molecular markers (SSR, EST and STS) linked to stripe rust (Puccinia striiformis f. sp. tritici) resistant QTLs. The aim was to asses the extent of genetic variability among the genotypes in order to select the parents for crossing between the resistant and susceptible genotypes with respect to stripe rust. The Euclidian dissimilarity values resulted from phenotypic data regarding morphological traits and AUDPC were used to construct a dendrogram for clustering the accessions. Using un-weighted pair group method with arithmetic means, another dendrogram resulted from the similarity coefficient values was used to distinguish the genotypes with respect to stripe rust. Clustering based on phenotypic data produced two major groups and five clusters (with Euclidian dissimilarity ranging from 2.44 to 16.16) whereas genotypic data yielded two major groups and four clusters (with percent similarity coefficient values ranging from 0.1 to 46.0) to separate the gene pool into highly resistant, resistant, moderately resistant, moderately susceptible and susceptible genotypes. With few exceptions, the outcome of both type of clustering was almost similar and resistant as well as susceptible genotypes came in the same clusters of molecular genotyping as yielded by phenotypic clustering. As a result seven genotypes (Bakhtawar-92, Frontana, Saleem 2000, Tatara, Inqilab-91, Fakhre Sarhad and Karwan) of diverse genetic background were selected for pyramiding stripe rust lesistant genes as well as some other agronomic traits after hybridization.  相似文献   

16.
The process of vegetative propagation used to multiply grapevine varieties produces, in most cases, clones genetically identical to the parental plant. Nevertheless, spontaneous somatic mutations can occur in the regenerative cells that give rise to the clones, leading to consider varieties as populations of clones that conform to a panel of phenotypic traits. Using two sets of nuclear microsatellite markers, the present work aimed at evaluating and comparing the intravarietal genetic diversity within seven wine grape varieties: Cabernet franc, Cabernet Sauvignon, Chenin blanc, Grolleau, Pinot noir, Riesling, Savagnin, comprising a total number of 344 accessions of certified clones and introductions preserved in French repositories. Ten accessions resulted in being either self-progeny, possible offspring of the expected variety or misclassified varieties. Out of the 334 remaining accessions, 83 displayed genotypes different from the varietal reference, i.e., the microsatellite profile shared by the larger number of accessions. They showed a similarity value ranging from 0.923 to 0.992, and thus were considered as polymorphic monozygotic clones. The fraction of polymorphic clones ranged from 2 to 75% depending on the variety and the set of markers, the widest clonal diversity being observed within the Savagnin. Among the 83 polymorphic clones, 29 had unique genotype making them distinguishable; others were classified in 21 groups sharing the same genotype. All microsatellite markers were not equally efficient to show diversity within clone collections and a standard set of five microsatellite markers (VMC3a9, VMC5g7, VVS2, VVMD30, and VVMD 32) relevant to reveal clonal polymorphism is proposed.  相似文献   

17.
Analysis of genetic diversity in germplasm collections is an important component of crop improvement programs. This study was conducted to analyze genetic variation and to classify tall fescue genotypes based on phenotypic evaluation and EST-SSR molecular markers. Twenty-five genotypes were assessed based on phenotypic and 42 EST-SSR molecular markers according to a completely randomized block design with three replications during eight years (2007–2014). Results indicated that the effect of year, genotype and their interaction were significant for all of the measured traits. Both morphological and molecular assessments showed considerable genetic variation among genotypes. The estimates of broad-sense heritability (h2b) were moderate to high (h2b = 42.1–78.4) for the traits studied. Based on EST-SRR analysis, a total number of 229 alleles were detected with an average of 4.58 alleles per marker. Average PIC value was 0.49 with a range of 0.014 for NFA140 to 0.95 for NFA047. Phenotypic evaluations and EST-SSR molecular marker classified genotypes into 3 and 7 clusters, respectively which mainly supported geographical origins. The general correspondence was observed between morphological and molecular classification. Therefore, combining the molecular markers with morphological responses could be more beneficial to describe genetic variation and distinguish superior genotypes for future breeding programs.  相似文献   

18.
Ashfaq M  Khan AS 《Genetika》2012,48(1):62-71
Genetic diversity among rice genotypes, including 15 indica basmati advance lines and 5 basmati improved varieties were investigated by 28 SSR markets including one indel marker. The SSRs covered all the 12 chromosomes that distributed across the rice genomes. The mean number of alleles per locus was 3.60, showing average number of polymorphism information content was 0.48. A total of 101 alleles were also identified from the microsatellite marker loci. A number of SSR markers were also identified that could be utilized to differentiate between rice genotypes. Pair wise Nei,s genetic distance between rice genotypes ranged from 0.07 to 0.95. The dendrogram based on cluster analysis by using SSR polymorphism that grouped the 20 genotypes of rice in to five clusters based on their genetic similarity. The result could be useful for the identification and selection of the diverse genotypes for the future cross breeding program and development of new rice varieties.  相似文献   

19.
Dry beans are considered to be a crop of great socio-economic importance, because they are an inexpensive source of nutrients and because their cultivation requires considerable manual labor. Studies of genetic diversity have been very important for genetic improvement programs, because they give parameters for the identification of genitors that can provide large heterosis effects and improved segregation in recombinants, increasing the probability of obtaining superior genotypes in the progeny. We evaluated the genetic diversity of 57 dry bean accessions, including 31 local accessions, propagated by small-scale farmers, 20 accessions supplied by the Brazilian Agricultural Research Agency, and six commercial accessions, using 16 microsatellite primers. Among these primers, 13 were found to be polymorphic, giving 29 polymorphic alleles. The largest number of alleles per locus was observed for primer BM141, which had four alleles. The polymorphic information content varied from 0.11 to 0.51, observed for loci BM212 and BM141, respectively. The lowest degree of dissimilarity (0.0) was found between the accession Iapar 81 and the accessions E03, E04, E09, and E13 and between the accession pairs E08 with E16 and Iapar 31 with E06. The highest degree of dissimilarity was found between the accessions Carioca and E22 (1.0). Grouping analysis revealed four groups, according to the place of origin. This tendency was also found in the principal coordinate analysis. The local genotypes were found to have relatively high genetic diversity, while the EMBRAPA and commercial cultivars had a relatively narrow genetic basis.  相似文献   

20.
The Kayabi Indians who inhabit the Xingu Indigenous Park, located in West Central Brazil, have grown and managed peanuts for a long time. A great number of landraces are being maintained by these tribes and some of this germplasm has morphological traits that exceed the variation described in the taxonomic literature. Here, we analyzed the genetic variability of these landraces using a set of microsatellite markers. The analysis showed that, in general, the indigenous samples grouped according to the villages where they were collected. The microsatellite markers used in the present study detected high levels of genetic variation. Similarity groups, genetically distant from each other, were formed, allowing a more efficient use of the existing genetic variability. The present study also showed that these materials can extend the genetic variability available for peanut-breeding programs. Additionally, the microsatellite markers revealed a large dissimilarity among germplasm accessions representing Arachis hypogaea varieties so far included in the same subspecies fastigiata (aequatoriana + peruviana vs fastigiata + vulgaris), a subject that deserves further investigation. Finally, the Xingu Indigenous Park proved to be an important center of diversity for peanut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号