首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.  相似文献   

2.
3.
The cardiac Na+/Ca2+ exchanger (NCX) is the major Ca2+ efflux pathway on the sarcolemma, counterbalancing Ca2+ influx via L-type Ca2+ current during excitation-contraction coupling. Altered NCX activity modulates the sarcoplastic reticulum Ca2+ load and can contribute to abnormal Ca2+ handling and arrhythmias. NADH/NAD+ is the main redox couple controlling mitochondrial energy production, glycolysis, and other redox reactions. Here, we tested whether cytosolic NADH/NAD+ redox potential regulates NCX activity in adult cardiomyocytes. NCX current (INCX), measured with whole cell patch clamp, was inhibited in response to cytosolic NADH loaded directly via pipette or increased by extracellular lactate perfusion, whereas an increase of mitochondrial NADH had no effect. Reactive oxygen species (ROS) accumulation was enhanced by increasing cytosolic NADH, and NADH-induced INCX inhibition was abolished by the H2O2 scavenger catalase. NADH-induced ROS accumulation was independent of mitochondrial respiration (rotenone-insensitive) but was inhibited by the flavoenzyme blocker diphenylene iodonium. NADPH oxidase was ruled out as the effector because INCX was insensitive to cytosolic NADPH, and NADH-induced ROS and INCX inhibition were not abrogated by the specific NADPH oxidase inhibitor gp91ds-tat. This study reveals a novel mechanism of NCX regulation by cytosolic NADH/NAD+ redox potential through a ROS-generating NADH-driven flavoprotein oxidase. The mechanism is likely to play a key role in Ca2+ homeostasis and the response to alterations in the cytosolic pyridine nucleotide redox state during ischemia-reperfusion or other cardiovascular diseases.  相似文献   

4.
In pancreatic β-cells, uptake of Ca2+ into mitochondria facilitates metabolism-secretion coupling by activation of various matrix enzymes, thus facilitating ATP generation by oxidative phosphorylation and, in turn, augmenting insulin release. We employed an siRNA-based approach to evaluate the individual contribution of four proteins that were recently described to be engaged in mitochondrial Ca2+ sequestration in clonal INS-1 832/13 pancreatic β-cells: the mitochondrial Ca2+ uptake 1 (MICU1), mitochondrial Ca2+ uniporter (MCU), uncoupling protein 2 (UCP2), and leucine zipper EF-hand-containing transmembrane protein 1 (LETM1). Using a FRET-based genetically encoded Ca2+ sensor targeted to mitochondria, we show that a transient knockdown of MICU1 or MCU diminished mitochondrial Ca2+ uptake upon both intracellular Ca2+ release and Ca2+ entry via L-type channels. In contrast, knockdown of UCP2 and LETM1 exclusively reduced mitochondrial Ca2+ uptake in response to either intracellular Ca2+ release or Ca2+ entry, respectively. Therefore, we further investigated the role of MICU1 and MCU in metabolism-secretion coupling. Diminution of MICU1 or MCU reduced mitochondrial Ca2+ uptake in response to d-glucose, whereas d-glucose-triggered cytosolic Ca2+ oscillations remained unaffected. Moreover, d-glucose-evoked increases in cytosolic ATP and d-glucose-stimulated insulin secretion were diminished in MICU1- or MCU-silenced cells. Our data highlight the crucial role of MICU1 and MCU in mitochondrial Ca2+ uptake in pancreatic β-cells and their involvement in the positive feedback required for sustained insulin secretion.  相似文献   

5.
The recently identified Mitochondrial Calcium Uniporter (MCU) is the protein of the inner mitochondrial membrane responsible for Ca2+ uptake into the matrix, which plays a role in the control of cellular signaling, aerobic metabolism and apoptosis. At least two properties of mitochondrial calcium signaling are well defined: (i) mitochondrial Ca2+ uptake varies greatly among different cells and tissues, and (ii) channel opening is strongly affected by extramitochondrial Ca2+ concentration, with low activity at resting and high capacity after cellular stimulation. It is now becoming clear that these features of the mitochondrial Ca2+ uptake machinery are not embedded in the MCU protein itself, but are rather due to the contribution of several MCU interactors. The list of the components of the MCU complex is indeed rapidly growing, thus revealing an unexpected complexity that highlights the pleiotropic role of mitochondrial calcium signaling.  相似文献   

6.
It is generally accepted that mitochondrial Ca2+ controls the pace of mitochondrial bioenergetics and thus ATP production. Szibor et al. challenge this paradigm, proposing that the balance between ATP consumption and production depends on mitochondrial pyruvate supply via the malate-aspartate shuttle (MAS) and is controlled by cytosolic Ca2+.  相似文献   

7.

Background

Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca2+ release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood.

Results

In the present study we investigated insulin-dependent mitochondrial Ca2+ signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca2+-fluorescent probes we showed that insulin increases mitochondrial Ca2+ levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca2+ uniporter, as well as by siRNA-dependent mitochondrial Ca2+ uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca2+ uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca2+ uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling.

Conclusions

Mitochondrial Ca2+ uptake is a key event in insulin signaling and metabolism in cardiomyocytes.
  相似文献   

8.
Calcium signaling is essential for regulating many biological processes. Endoplasmic reticulum inositol trisphosphate receptors (IP3Rs) and the mitochondrial Ca2+ uniporter (MCU) are key proteins that regulate intracellular Ca2+ concentration. Mitochondrial Ca2+ accumulation activates Ca2+-sensitive dehydrogenases of the tricarboxylic acid (TCA) cycle that maintain the biosynthetic and bioenergetic needs of both normal and cancer cells. However, the interplay between calcium signaling and metabolism is not well understood. In this study, we used human cancer cell lines (HEK293 and HeLa) with stable KOs of all three IP3R isoforms (triple KO [TKO]) or MCU to examine metabolic and bioenergetic responses to the chronic loss of cytosolic and/or mitochondrial Ca2+ signaling. Our results show that TKO cells (exhibiting total loss of Ca2+ signaling) are viable, displaying a lower proliferation and oxygen consumption rate, with no significant changes in ATP levels, even when made to rely solely on the TCA cycle for energy production. MCU KO cells also maintained normal ATP levels but showed increased proliferation, oxygen consumption, and metabolism of both glucose and glutamine. However, MCU KO cells were unable to maintain ATP levels and died when relying solely on the TCA cycle for energy. We conclude that constitutive Ca2+ signaling is dispensable for the bioenergetic needs of both IP3R TKO and MCU KO human cancer cells, likely because of adequate basal glycolytic and TCA cycle flux. However, in MCU KO cells, the higher energy expenditure associated with increased proliferation and oxygen consumption makes these cells more prone to bioenergetic failure under conditions of metabolic stress.  相似文献   

9.
Cultured cerebellar granule cells were co-loaded with Ca2+-sensitive dye fura-2FF and rhodamine-123 sensitive to changes in the mitochondrial potential (????m). A 60-min incubation of cells in glucose-free solution containing 2-deoxy-D-glucose (DG) induced a slow developing mitochondrial depolarization (sMD) without appreciable changes in basal [Ca2+]i. This sMD was insensitive to a removal of external Ca2+ or to the NMDA channels blocker memantine but could be readily suppressed by oligomycin due to inhibition of the inward proton current through the Fo channel of mitochondrial ATP synthase. In resting cells glucose deprivation caused a progressive decrease in mitochondrial NADH content ([NADH]), which strikingly enhanced the ability of glutamate to induce a delayed Ca2+ deregulation (DCD) associated with a profound mitochondrial depolarization. In glucose-containing medium this DCD appeared in young cells (usually 6?C8 days in vitro) after a prolonged latent period (lag phase). Substitution of glucose by DG led to a dramatic shortening of this lag phase, associated with a critical decrease in [NADH] in most neurons. Addition of pyruvate or lactate to DG-containing solution prevented the sMD and [NADH] decrease in resting cells and greatly diminished the number of cells exhibiting glutamate-induced DCD in glucose-free medium. Measurement of intracellular ATP level ([ATP]) in experiments on sister cells showed that glucose deprivation decreased [ATP] in resting cells and considerably deepened the fall of [ATP] caused by glutamate. This decrease in [ATP] was only slightly attenuated by pyruvate and lactate, despite their ability to prevent the shortening of lag phase preceding the DCD appearance under these conditions. Simultaneous monitoring of cytosolic ATP concentration ([ATP]c) and ????m changes in individual CGC expressing fluorescent ATP sensor (AT1.03) revealed that inhibition of either mitochondrial respiration or glycolysis caused a relatively small decrease in [ATP]c and ????m. Complete blockade of ATP synthesis in resting CGC with oligomycin in glucose-free DG-containing buffer caused fast ATP depletion and mitochondrial repolarization, indicating that mitochondrial respiratory chain still possess a reserve fuel to support ????m despite inhibition of glycolysis. The data obtained suggest that the extraordinary enhancement of glutamate-induced deterioration in Ca2+ homeostasis caused by glucose deprivation in brain neurons is mainly determined by NADH depletion.  相似文献   

10.
Ishihara H  Wollheim CB 《IUBMB life》2000,49(5):391-395
Pancreatic islet beta-cells are poised to generate metabolic messengers in the mitochondria that link glucose metabolism to insulin exocytosis. This is accomplished through the tight coupling of glycolysis to mitochondrial activation. The messenger molecules ATP and glutamate are produced after the metabolism of glycolysis-derived pyruvate in the mitochondria. The entry of monocarboxylates such as pyruvate into the beta cell is limited, explaining why overexpression of monocarboxylate transporters unravels pyruvate-stimulated insulin secretion. NADH generated by glycolysis is efficiently reoxidized by highly active mitochondrial shuttles rather than by lactate dehydrogenase. Overexpression of this enzyme does not alter glucose-stimulated insulin secretion, suggesting that NADH availability restricts the conversion of pyruvate to lactate in the beta cell. These metabolic features permit the fuel function of glucose to be extended to the generation of signaling molecules, which increases cytosolic Ca2+ and promotes insulin exocytosis.  相似文献   

11.
Mitochondrial Ca2+ flux is crucial for the regulation of cell metabolism. Ca2+ entry to the mitochondrial matrix is mediated by VDAC1 and MCU with its regulatory molecules. We investigated hepatocytes isolated from conplastic C57BL/6NTac-mtNODLtJ mice (mtNOD) that differ from C57BL/6NTac mice (controls) by a point mutation in mitochondrial-encoded subunit 3 of cytochrome c oxidase, resulting in functional and morphological mitochondrial adaptations. Mice of both strains up to 12 months old were compared using mitochondrial GEM-GECO1 and cytosolic CAR-GECO1 expression to gain knowledge of age-dependent alterations of Ca2+ concentrations. In controls we observed a significant increase in glucose-induced cytosolic Ca2+ concentration with ageing, but only a minor elevation in mitochondrial Ca2+ concentration. Conversely, glucose-induced mitochondrial Ca2+ concentration significantly declined with ageing in mtNOD mice, paralleled by a slight decrease in cytosolic Ca2+ concentration. This was consistent with a significant reduction of the MICU1 to MCU expression ratio and a decline in MCUR1. Our results can best be explained in terms of the adaptation of Ca2+ concentrations to the mitochondrial network structure. In the fragmented mitochondrial network of ageing controls there is a need for high cytosolic Ca2+ influx, because only some of the isolated mitochondria are in direct contact with the endoplasmic reticulum. This is not important in the hyper-fused elongated mitochondrial network found in ageing mtNOD mice which facilitates rapid Ca2+ distribution over a large mitochondrial area.  相似文献   

12.
《Cell calcium》2015,57(6):457-466
Mitochondrial Ca2+ plays a critical physiological role in cellular energy metabolism and signaling, and its overload contributes to various pathological conditions including neuronal apoptotic death in neurological diseases. Live cell mitochondrial Ca2+ imaging is an important approach to understand mitochondrial Ca2+ dynamics. Recently developed GCaMP genetically-encoded Ca2+ indicators provide unique opportunity for high sensitivity/resolution and cell type-specific mitochondrial Ca2+ imaging. In the current study, we implemented cell-specific mitochondrial targeting of GCaMP5G/6s (mito-GCaMP5G/6s) and used two-photon microscopy to image astrocytic and neuronal mitochondrial Ca2+ dynamics in culture, revealing Ca2+ uptake mechanism by these organelles in response to cell stimulation. Using these mitochondrial Ca2+ indicators, our results show that mitochondrial Ca2+ uptake in individual mitochondria in cultured astrocytes and neurons can be seen after stimulations by ATP and glutamate, respectively. We further studied the dependence of mitochondrial Ca2+ dynamics on cytosolic Ca2+ changes following ATP stimulation in cultured astrocytes by simultaneously imaging mitochondrial and cytosolic Ca2+ increase using mito-GCaMP5G and a synthetic organic Ca2+ indicator, x-Rhod-1, respectively. Combined with molecular intervention in Ca2+ signaling pathway, our results demonstrated that the mitochondrial Ca2+ uptake is tightly coupled with inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release from the endoplasmic reticulum and the activation of G protein-coupled receptors. The current study provides a novel approach to image mitochondrial Ca2+ dynamics as well as Ca2+ interplay between the endoplasmic reticulum and mitochondria, which is relevant for neuronal and astrocytic functions in health and disease.  相似文献   

13.
Mitochondrial calcium uptake is a critical event in various cellular activities. Two recently identified proteins, the mitochondrial Ca2+ uniporter (MCU), which is the pore‐forming subunit of a Ca2+ channel, and mitochondrial calcium uptake 1 (MICU1), which is the regulator of MCU, are essential in this event. However, the molecular mechanism by which MICU1 regulates MCU remains elusive. In this study, we report the crystal structures of Ca2+‐free and Ca2+‐bound human MICU1. Our studies reveal that Ca2+‐free MICU1 forms a hexamer that binds and inhibits MCU. Upon Ca2+ binding, MICU1 undergoes large conformational changes, resulting in the formation of multiple oligomers to activate MCU. Furthermore, we demonstrate that the affinity of MICU1 for Ca2+ is approximately 15–20 μM. Collectively, our results provide valuable details to decipher the molecular mechanism of MICU1 regulation of mitochondrial calcium uptake.  相似文献   

14.
In pancreatic β-cells, ATP acts as a signaling molecule initiating plasma membrane electrical activity linked to Ca2+ influx, which triggers insulin exocytosis. The mitochondrial Ca2+ uniporter (MCU) mediates Ca2+ uptake into the organelle, where energy metabolism is further stimulated for sustained second phase insulin secretion. Here, we have studied the contribution of the MCU to the regulation of oxidative phosphorylation and metabolism-secretion coupling in intact and permeabilized clonal β-cells as well as rat pancreatic islets. Knockdown of MCU with siRNA transfection blunted matrix Ca2+ rises, decreased nutrient-stimulated ATP production as well as insulin secretion. Furthermore, MCU knockdown lowered the expression of respiratory chain complexes, mitochondrial metabolic activity, and oxygen consumption. The pH gradient formed across the inner mitochondrial membrane following nutrient stimulation was markedly lowered in MCU-silenced cells. In contrast, nutrient-induced hyperpolarization of the electrical gradient was not altered. In permeabilized cells, knockdown of MCU ablated matrix acidification in response to extramitochondrial Ca2+. Suppression of the putative Ca2+/H+ antiporter leucine zipper-EF hand-containing transmembrane protein 1 (LETM1) also abolished Ca2+-induced matrix acidification. These results demonstrate that MCU-mediated Ca2+ uptake is essential to establish a nutrient-induced mitochondrial pH gradient which is critical for sustained ATP synthesis and metabolism-secretion coupling in insulin-releasing cells.  相似文献   

15.
Excessive “excitotoxic” accumulation of Ca2+ and Zn2+ within neurons contributes to neurodegeneration in pathological conditions including ischemia. Putative early targets of these ions, both of which are linked to increased reactive oxygen species (ROS) generation, are mitochondria and the cytosolic enzyme, NADPH oxidase (NOX). The present study uses primary cortical neuronal cultures to examine respective contributions of mitochondria and NOX to ROS generation in response to Ca2+ or Zn2+ loading. Induction of rapid cytosolic accumulation of either Ca2+ (via NMDA exposure) or Zn2+ (via Zn2+/Pyrithione exposure in 0 Ca2+) caused sharp cytosolic rises in these ions, as well as a strong and rapid increase in ROS generation. Inhibition of NOX activation significantly reduced the Ca2+-induced ROS production with little effect on the Zn2+- triggered ROS generation. Conversely, dissipation of the mitochondrial electrochemical gradient increased the cytosolic Ca2+ or Zn2+ rises caused by these exposures, consistent with inhibition of mitochondrial uptake of these ions. However, such disruption of mitochondrial function markedly suppressed the Zn2+-triggered ROS, while partially attenuating the Ca2+-triggered ROS. Furthermore, block of the mitochondrial Ca2+ uniporter (MCU), through which Zn2+ as well as Ca2+ can enter the mitochondrial matrix, substantially diminished Zn2+ triggered ROS production, suggesting that the ROS generation occurs specifically in response to Zn2+ entry into mitochondria. Finally, in the presence of the sulfhydryl-oxidizing agent 2,2''-dithiodipyridine, which impairs Zn2+ binding to cytosolic metalloproteins, far lower Zn2+ exposures were able to induce mitochondrial Zn2+ uptake and consequent ROS generation. Thus, whereas rapid acute accumulation of Zn2+ and Ca2+ each can trigger injurious ROS generation, Zn2+ entry into mitochondria via the MCU may do so with particular potency. This may be of particular relevance to conditions like ischemia in which cytosolic Zn2+ buffering is impaired due to acidosis and oxidative stress.  相似文献   

16.
Despite extensive research, the regulation of mitochondrial function is still not understood completely. Ample evidence shows that cytosolic Ca2+ has a strategic task in co-ordinating the cellular work load and the regeneration of ATP by mitochondria. Currently, the paradigmatic view is that Cacyt2+ taken up by the Ca2+ uniporter activates the matrix enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and isocitrate dehydrogenase. However, we have recently found that Ca2+ regulates the glutamate-dependent state 3 respiration by the supply of glutamate to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier. Since this activation is not affected by ruthenium red, glutamate transport into mitochondria is controlled exclusively by extramitochondrial Ca2+. Therefore, this discovery shows that besides intramitochondrial also extramitochondrial Ca2+ regulates oxidative phosphorylation. This new mechanism acts as a mitochondrial “gas pedal”, supplying the OXPHOS with substrate on demand. These results are in line with recent findings of Satrustegui and Palmieri showing that aralar as part of the malate–aspartate shuttle is involved in the Ca2+-dependent transport of reducing hydrogen equivalents (from NADH) into mitochondria. This review summarises results and evidence as well as hypothetical interpretations of data supporting the view that at the surface of mitochondria different regulatory Ca2+-binding sites exist and can contribute to cellular energy homeostasis. Moreover, on the basis of our own data, we propose that these surface Ca2+-binding sites may act as targets for neurotoxic proteins such as mutated huntingtin and others. The binding of these proteins to Ca2+-binding sites can impair the regulation by Ca2+, causing energetic depression and neurodegeneration.  相似文献   

17.
Mitochondria are increasingly recognized as key mediators of acute cellular stress responses in asthma. However, the distinct roles of regulators of mitochondrial physiology on allergic asthma phenotypes are currently unknown. The mitochondrial Ca2+ uniporter (MCU) resides in the inner mitochondrial membrane and controls mitochondrial Ca2+ uptake into the mitochondrial matrix. To understand the function of MCU in models of allergic asthma, in vitro and in vivo studies were performed using models of functional deficiency or knockout of MCU. In primary human respiratory epithelial cells, MCU inhibition abrogated mitochondrial Ca2+ uptake and reactive oxygen species (ROS) production, preserved the mitochondrial membrane potential and protected from apoptosis in response to the pleiotropic Th2 cytokine IL-13. Consequently, epithelial barrier function was maintained with MCU inhibition. Similarly, the endothelial barrier was preserved in respiratory epithelium isolated from MCU-/- mice after exposure to IL-13. In the ovalbumin-model of allergic airway disease, MCU deficiency resulted in decreased apoptosis within the large airway epithelial cells. Concordantly, expression of the tight junction protein ZO-1 was preserved, indicative of maintenance of epithelial barrier function. These data implicate mitochondrial Ca2+ uptake through MCU as a key controller of epithelial cell viability in acute allergic asthma.  相似文献   

18.
Bcl-2 family proteins, known for their apoptosis functioning at the mitochondria, have been shown to localize to other cellular compartments to mediate calcium (Ca2+) signals. Since the proper supply of Ca2+ in cells serves as an important mechanism for cellular survival and bioenergetics, we propose an integrating role for Bcl-2 family proteins in modulating Ca2+ signaling. The endoplasmic reticulum (ER) is the main Ca2+ storage for the cell and Bcl-2 family proteins competitively regulate its Ca2+ concentration. Bcl-2 family proteins also regulate the flux of Ca2+ from the ER by physically interacting with inositol 1,4,5-trisphosphate receptors (IP3Rs) to mediate their opening. Type 1 IP3Rs reside at the bulk ER to coordinate cytosolic Ca2+ signals, while type 3 IP3Rs reside at mitochondria-associated ER membrane (MAM) to facilitate mitochondrial Ca2+ uptake. In healthy cells, mitochondrial Ca2+ drives pyruvate into the citric acid (TCA) cycle to facilitate ATP production, while a continuous accumulation of Ca2+ can trigger the release of cytochrome c, thus initiating apoptosis. Since multiple organelles and Bcl-2 family proteins are involved in Ca2+ signaling, we aim to clarify the role that Bcl-2 family proteins play in facilitating Ca2+ signaling and how mitochondrial Ca2+ is relevant in both bioenergetics and apoptosis. We also explore how these insights could be useful in controlling bioenergetics in apoptosis-resistant cell lines.  相似文献   

19.
Calcium (Ca2+) plays diverse roles in all living organisms ranging from bacteria to humans. It is a structural element for bones, an essential mediator of excitation-contraction coupling, and a universal second messenger in the regulation of ion channel, enzyme and gene expression activities. In mitochondria, Ca2+ is crucial for the control of energy production and cellular responses to metabolic stress. Ca2+ uptake by the mitochondria occurs by the uniporter mechanism. The Mitochondrial Ca2+ Uniporter (MCU) protein has recently been identified as a core component responsible for mitochondrial Ca2+ uptake. MCU knockout (MCU KO) studies have identified a number of important roles played by this high capacity uptake pathway. Interestingly, this work has also shown that MCU-mediated Ca2+ uptake is not essential for vital cell functions such as muscle contraction, energy metabolism and neurotransmission. Although mitochondrial Ca2+ uptake was markedly reduced, MCU KO mitochondria still contained low but detectable levels of Ca2+. In view of the fundamental importance of Ca2+ for basic cell signalling, this finding suggests the existence of other currently unrecognized pathways for Ca2+ entry. We review the experimental evidence for the existence of alternative Ca2+ influx mechanisms and propose how these mechanisms may play an integral role in mitochondrial Ca2+ signalling.  相似文献   

20.
Calcium uptake through the mitochondrial Ca2+ uniporter (MCU) is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and prostate cancers and suggest that not all carcinomas will be sensitive to therapies targeting mitochondrial Ca2+ uptake mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号