首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cibacron Blue 3GA was immobilized on Sepharose CL-6B to obtain a highly substituted dye-ligand adsorbent which dye concentration was 17.4?μmol dye per gram wet gel. This adsorbent had a highly binding capacity for bovine serum albumin (BSA). The effects of ionic strength on the adsorption and desorption of BSA to the adsorbent were studied. Adsorption isotherms were expressed by the Langmuir model. The quantitative relationships between the model parameters and the ionic strength were obtained. The desorptions were performed by adding salt to the BSA solutions in which adsorption equilibria had been reached. Adding salt to the solution resulted in the desorption of the bound protein. It was found that the isotherm obtained from the desorption experiments agreed well to the isotherm obtained from the adsorption experiments at the same ionic strength. The result demonstrated that the adsorption of BSA to the highly substituted adsorbent was reversible.  相似文献   

2.
Macroporous poly(glycidyl methacrylate-triallyl isocyanurate-divinylbenzene) was prepared by a radical suspension copolymerization. Reaction of the copolymer with 2-hydroxyethyl amine was employed to obtain a hydrophilic matrix. An affinity dye, Cibacron blue 3GA, was then coupled covalently to prepare a novel macroporous affinity adsorbent. The surface and pore structure of the affinity adsorbent were examined by scanning electron micrography (SEM). SEM observations showed that the affinity adsorbent abounded in macropores. Bovine serum albumin (BSA) and lysozyme (Lys) were used as samples to examine the adsorption properties of the adsorbent. Under appropriate conditions, the affinity adsorbent had a capacity of 15.5 mg BSA/g and 22.3 mg Lys/g (wet adsorbent weight). The adsorbed proteins could be desorbed by increasing liquid phase ionic strength or by using a NaOH solution, and the adsorbent could be recycled for protein adsorption.  相似文献   

3.
Streamline Direct HST is a new kind of mixed-mode adsorbent with cation exchange ligand, especially developed for the expanded bed adsorption process, which can capture target protein directly from the moderate ionic strength feedstock without the need of dilution or other additives. In this study, the isotherm adsorption behaviors and the isocratic retention factors of bovine serum albumin (BSA) on Streamline Direct HST were measured, and the corresponding adsorption mechanisms were also described. The results indicated that Streamline Direct HST shows the typical property of salt-independent adsorption and the maximum binding capacity of BSA occurs near the isoelectric point of BSA. When there are some amounts of electrostatic repulsion protein-adsorbent interactions, the multilayer adsorption could be found, and high salt concentration does not favor the adsorption of protein. A patch-controlled adsorption process and an oriented adsorption model are proposed for describing the adsorption behaviors under electrostatic repulsion condition.  相似文献   

4.
Expanded bed adsorption is a technique for recovery of biomolecules directly from unclarified feedstocks. The work described here demonstrates that expanded bed adsorption is a scaleable technique. The methods used to test scaleability were “determination of degree of bed expansion”, “determination of axial dispersion” and “determination of protein breakthrough capacity”. The performance of a production scale expanded bed column with 600?mm diameter was tested using these methods and the results were found to be consistent with the results obtained from lab scale and pilot scale expanded bed columns. The scaleability and function of the expanded bed technique was also tested by performing a “process example”: a purification mimicking a real process using a yeast culture spiked with bovine serum albumin as feedstock. The results show that the 600?mm diameter production scale column was as efficient as a 25?mm diameter lab scale column in recovering bovine serum albumin from the unclarified yeast culture. The production scale runs were fully automated using a software controlled system containing an adaptor position sensor and an adsorbent sensor. A cleaning study was performed which showed that after use of a proper cleaning protocol, no surviving microorganisms could be detected in the column or in the adsorbent.  相似文献   

5.
Alkyl amines and polyamines have been used as ligands for protein purification by mixed-mode chromatography. The adsorption of proteins onto these ligands seems to be governed by multiple effects such as electrostatic, hydrophobic, and affinity interactions. In this work we investigated the adsorption of proteins extracted from soybean onto the adsorbent agarose-Tris(2-aminoethyl)amine (TREN). The effects of flow rate, buffer system, and extract concentration on the capture of proteins extracted from soybean were evaluated. Experiments using Mes at pH 6.5 as adsorption buffer allowed the adsorption of almost the totality of native soybean protein with a dynamic adsorption capacity of 13.50 mg mL?1 adsorbent. Experiments with human IgG (pI in the range of 5.8–9.0) and human serum albumin (HSA, pI of 4.9) spiked into these extracts lead to the conclusion that electrostatic forces play a major role in the interaction between protein and agarose-TREN. Based on this work, negative chromatography with agarose-TREN should be considered as a method for purification of basic recombinant protein produced in transgenic soybean seeds.  相似文献   

6.
Centrifugal adsorption technology (CAT) is a new compact, countercurrent technology for efficient adsorption from large liquid streams by using adsorbent particles in the micrometer range. CAT seems particularly suited for the recovery of macromolecules at low concentrations, because the small particle dimensions lead to fast mass transfer rates. In this work, the potential of CAT for protein recovery is studied by model and experiment. A predictive model for the separation performance of CAT is presented, incorporating mass transfer resistance and axial dispersion transport in the liquid and the adsorbent phases. The model calculations were compared to experimental data for the adsorption of bovine serum albumin (BSA) on a standard commercial anion-exchange resin with particle diameter d(p) = 50 microm in a pilot-scale CAT apparatus. The model calculations accurately predicted the separation efficiency of CAT. The experimental set-up is shown to be mass transfer limited for the conducted experiments, which agrees with the model predictions. The model was also used to estimate the dimensions and performance of a CAT apparatus for the large-scale recovery of human serum albumin (HSA) from fermentation broth at the scale of 40 tons per year. The resulting equipment dimensions proved to be very small indeed, making CAT a potentially very attractive technology.  相似文献   

7.
A dense, pellicular UpFront adsorbent (ϱ=1.5 g/cm3, UpFront Chromatography, Cophenhagen, Denmark) was characterized in terms of hydrodynamic properties and protein adsorption performance in expanded bed chromatography. Cibacron Blue 3GA was immobilised into the adsorbent and protein adsorption of bovine serum albumin (BSA) was selected to test the setup. The Bodenstein number and axial dispersion coefficient estimated for this dense pellicular adsorbent was 54 and 1.63×10−5 m2/s, respectively, indicating a stable expanded bed. It could be shown that the BSA protein was captured by the adsorbent in the presence of 30% (w/v) of whole-yeast cells with an estimated dynamic binding capacity (C/C 0=0.01) of approximately 6.5 mg/mL adsorbent.  相似文献   

8.
Cibacron Blue F3GA was covalently attached onto monosize poly(glycidyl methacrylate) [poly(GMA)] beads for removal of human serum albumin (HSA) from human serum. Monosize poly(GMA) beads, 1.6 microm in diameter, were produced by dispersion polymerization. Cibacron Blue F3GA loading was 1.73 mol/g. HSA adsorption experiments were performed by stirred-batch adsorption. The non-specific adsorption of HSA was low (0.8 mg/g polymer). Dye attachment onto the monosize beads significantly increased the HSA adsorption (189.8 mg/g). The maximum HSA adsorption was observed at pH 5.0. With an increase of the aqueous phase concentration of sodium chloride, the adsorption capacity decreased drastically. The equilibrium adsorption of HSA significantly decreased with increasing temperature. The elution studies were performed by adding 0.1 M Tris/HCl buffer containing 0.5 M NaSCN to the HSA solutions in which adsorption equilibria had been reached. The elution results demonstrated that the adsorption of HSA to the adsorbent was reversible. The depletion efficiencies for HSA were above 87% for all studied concentrations. To test the efficiency of HSA removal from human serum, proteins in the serum and eluted portion were analyzed by two-dimensional gel electrophoresis. Eluted proteins include mainly albumin, and a small number of nonalbumin proteins such as apo-lipoprotein A1, sero-transferrin, haptoglobulin and alpha1-antitrypsin were bound by the dye-affinity beads. IgA was not identified in eluted fraction.  相似文献   

9.
The influence of whole yeast cells (0–15% w/v) on the protein adsorption performance in dye-ligand chromatography was explored. The adsorption of a model protein, bovine serum albumin (BSA), was selected to demonstrate this approach. The UpFront adsorbent (ρ=1.5 g/cm3) derivatised with Cibacron Blue 3GA and a commercially available expanded bed column (20 mm i.d.) from UpFront Chromatography, Denmark, were employed in the batch binding and expanded bed operation. The BSA binding capacity was demonstrated to not be adversely affected by the presence of yeast cells. The dynamic binding capacity of BSA at aC/C 0=0..1 biomass concentration of 5, 10, 15% w/v were 9, 8, and 7.5 mg/mL of settled adsorbent, respectively.  相似文献   

10.
The adsorptive behavior of bovine serum albumin (BSA) and beta-lactoglobulin (beta-lg) on hydrophobic adsorbent was studied at four temperatures and different salt concentrations. The Langmuir model was fitted by experimental equilibrium data showing that an increase in temperature and salt concentration results in an increase on the capacity factor of both proteins. A thermodynamic analysis coupled with isotherm measurements showed that salt concentration and temperature affected the enthalpic and entropic behavior of the adsorption process of both proteins, mainly to the beta-lg. The fast variation in the Z value for temperature over than 303.1K suggest a great conformational change occurring in the beta-lg structure, which almost duplicated the maximum adsorption capacity of this protein.  相似文献   

11.
The characteristics of albumin adsorption on histidyl-aminohexyl-Sepharose 4B were investigated. In particular, the adsorption capacity of the gel was studied as a function of conductivity and pH of the running buffer. The adsorption was maximum at low salt concentration around neutral pH, involving electrostatic and hydrophobic interactions. Kinetic aspects were also investigated. Dissociation constant (KD) and maximum capacity (Qx) were, respectively, estimated to be 4.5×10−5 M (medium affinity) and 93.3 mg (high capacity) of human serum albumin per ml of adsorbent. According to these preliminary results, separation of HSA and its non-enzymatically glycated isoforms (conventionally named advanced glycated end products: AGEs) was achieved. Chromatographic potential of this separation tool is discussed.  相似文献   

12.
亲和介质及溶液条件对蛋白质溶液中内毒素去除的影响   总被引:1,自引:0,他引:1  
生物制品中内毒素的去除是一项十分重要的工作。为了更好地去除各种生物制品中的内毒素,采用合成的多粘菌素B琼脂糖亲和介质,通过静态吸附的方法去除蛋白质溶液中的内毒素。重点考察了介质的间臂长度、配基密度以及各种溶液条件(pH值、盐种类和浓度、蛋白质种类和浓度、内毒素浓度、添加剂等)对内毒素去除率及蛋白质回收率的影响。分别采用动态浊度法和Lowry法检测内毒素含量和蛋白质浓度。结果表明该介质具有载量高、去除速度快、去除率高、可重复使用的特点。此外,配基密度、pH值、盐浓度和蛋白质特性(等电点和疏水性)对内毒素去除效果均有重要影响。在优化的条件下,血红蛋白、人血清白蛋白和溶菌酶的回收率分别达到87.2%、73.4%和97.3%,相应的内毒素去除率分别达到99.8%、97.9%和99.7%。阐明了各种因素对内毒素去除率和蛋白质回收率的影响规律,为生物制品中内毒素的高效去除提供了参考。  相似文献   

13.
Adsorption chromatography in expanded beds is a widely used technology for direct capture of target proteins from fermentation broths. However, in many cases this method cannot be applied as a result of the strong tendency of cells or cell debris to interact with the adsorbent beads. To prevent contamination of the expanded bed with the biomass, STREAMLINE DEAE, anion exchanger designed for expanded bed adsorption, was modified with a layer of poly(acrylic acid) (PAA). The shielding layer of polyelectrolyte was attached to the surface of the matrix beads via electrostatic interactions. PAA with a high degree of polymerization was chosen to prevent diffusion of large polymer molecules into the pores of adsorbent. Thus, the shielding layer of PAA was adsorbed only at the mouth of the pores of STREAMLINE DEAE beads and only marginally decreased the binding capacity of the ion exchanger for bovine serum albumin, the model protein in this study. PAA-coated STREAMLINE DEAE practically did not interact with yeast cells, which otherwise bound strongly to the native adsorbent at neutral conditions. Cell-resistant PAA-coated anion exchanger was successfully used for isolation of BSA from the model protein mixture containing BSA, lysozyme (positively charged at applied conditions), and yeast cells. The layer of PAA was stable under mild elution conditions, and the modified adsorbent could be used in the repeated purification cycles.  相似文献   

14.
Summary The effects of pH and ionic strength on adsorption of lysozyme and bovine serum albumin to Blue Sepharose have been studied. Isotherms for both proteins obey the Freundlich model. Lysozyme binding involves both hydrophobic and cation exchange interactions with the adsorbent, while binding of albumin is due primarily to cation exchange. Protein properties will be discussed in relation to the binding patterns.  相似文献   

15.
Equilibrium and kinetic aspects of the binding of several proteins to N-(3-carboxypropionyl)aminodecyl-Sepharose, an amphiphilic ampholytic adsorbent, were studied at 22 degrees C, pH 7.0, I 0.10--0.12. In the absence of detergents Scatchard plots are linear for human haemoglobin and soya-bean trypsin inhibitor, but non-linear for bovine serum albumin, which is also adsorbed more tightly than the other two proteins. The introducion of 3.5mM-sodium dodecyl sulphate causes dramatic increases in the amounts and affinities of serum albumin and haemoglobin adsorbed, but has relatively little effect on the trypsin inhibitor. At concentrations of sodium dodecyl sulphate greater than about 10mM there is a fall in the binding of all proteins, owing to competition from the detergent for binding sites on the adsorbent, and a tendency towards more uniform behaviour by different proteins. Kinetic experiments suggest that in the absence of the detergent haemoglobin and serum albumin are adsorbed initially by mainly ionic forces, but that subsequently hydrophobic forces become dominant. Addition of 3.5 mM-sodium dodecyl sulphate causes pronounced changes in the time course of adsorption of haemoglobin and serum albumin, the nature of the changes being different for each protein. The significance of these results is discussed.  相似文献   

16.
Septic shock syndrome is a potentially fatal medical condition that is associated with elevated blood levels of low molecular weight proteins known as cytokines. Adsorption was investigated as a potential method for removing cytokines from blood. Saline with 50 mg/mL human serum albumin (HAS) spiked with pathological concentrations (ng-pg/mL) of radiolabeled cytokine was used to study cytokine adsorption. Adsorption isotherms were linear in the pathological concentration range, with adsorption constants ranging from 33.0 mL/g to 173 mL/g for tumor necrosis factor (TNF-alpha), interleukin-8 (IL-8),interleukin-6 (IL-6), and C3a. Adsorption constants were also determined for interleukin-1alpha (IL-1alpha), IL-1beta, and interferon-gamma (IFN-gamma). The adsorption of cytokines by several different silica adsorbents was investigated. Increased concentrations of NaCl reduced cytokine adsorption, but did not completely eliminate adsorption even at high concentrations, suggesting that adsorption wads not entirely electrostatic in nature. Possible mechanisms of cytokine adsorption are discussed. Data for batch adsorption for TNF-alpha was used to estimate the minimum amount of silica required to treat septic shock. It was concluded that a silica adsorbent has a sufficiently high capacity to be used for hemoperfusion. Adsorption of myoglobin and cytochrome c was also investigated as possible marker proteins for future dynamic adsorption studies in hemoperfusion devices. (c) 1994 John Wiley & Sons, Inc.  相似文献   

17.
The influences of various experimental parameters on the dynamic adsorption capacity (DAC) and the dynamic adsorption rate (DAR) of a biomimetic affinity silica-based adsorbent in fluidized and packed bed columns operated under plug flow conditions and at different temperatures have been investigated with different inlet concentrations of hen egg white lysozyme (HEWL) and human serum albumin (HSA). The DACs as well as the DARs of both the fluidized and packed beds were examined at 10% saturation (i.e., at the QB value) and the experimental data compared with the corresponding data obtained from batch equilibrium adsorption procedures. Parameters examined included the fluid superficial velocity and protein concentration and their effect on the binding capacity and column efficiency. Consistent with various results reported from this and other laboratories on the behavior of biospecific affinity adsorbents derived from porous silica and zirconia particles, adsorbents prepared from Fractosil 1000 were found to exhibit appropriate rheological characteristics in fluidized bed systems under the experimental conditions. Moreover, changes in temperature resulted in a more significant effect on the breakthrough profiles of HSA compared to HEWL with the immobilized Cibacron Blue F3G-A with Fractosil 1000 adsorbent. This result suggests that temperature effects can possibly be employed profitably in some processes as part of a strategy to enhance column performance with fluidized bed systems for selective recovery of target proteins. At relatively low superficial velocities of the feed, the DARs with HEWL and HSA were similar for both the fluidized and packed bed column systems, whereas, at high superficial velocities, the DARs for these proteins were larger with the packed bed columns.  相似文献   

18.
Cibacron Blue F3GA was covalently attached onto magnetic poly(vinyl alcohol) (mPVAL) beads (100-150 μm in diameter) for human serum albumin (HSA) adsorption from human plasma. Despite low nonspecific adsorption of HSA on mPVAL beads, Cibacron Blue F3GA attachment significantly increased the HSA adsorption. The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma. Desorption of HSA from mPVAL beads was achieved by medium containing 1.0 M KSCN at pH 8.0. To test the efficiency of albumin adsorption from human serum, before and after albumin adsorption was demonstrated with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyses. HSA molecules could be reversibly adsorbed and desorbed 10 times with the magnetic beads without noticeable loss in their HSA adsorption capacity.  相似文献   

19.
Blood plasma and serum are very useful samples for the detection, identification and quantitation of proteins associated with both health and disease. However, analysis of plasma and serum is a challenge because traces of interesting polypeptides and proteins can be dominated by the very high concentration of albumin present. Albumin may be depleted by adsorption to immunoaffinity columns or to columns containing dyes such as Cibacron Blue, or by ultrafiltration, but these methods are far from ideal. We describe a new peptide-based affinity medium which is effective for removing albumin and is very specific. The albumin-binding capacity is at least 14 mg per mL of gel. The material may be reused hundreds of times after a simple regeneration step involving NaOH, with full retention of specificity and capacity. The material was tested with human and monkey plasma and serum and rat serum, and has been used to deplete litre volumes of human plasma. The development of other peptide-based affinity media to deplete abundant proteins is briefly discussed.  相似文献   

20.
Hydrodynamics and performance in fluidized bed adsorption   总被引:4,自引:0,他引:4  
The performance of fluidized bed adsorption is strongly influenced by the hydrodynamics of the fluidization process. Especially axial mixing in the liquid and solid phase may lead to reduced capacity and resolution. In this article axial mixing in the liquid phase of a classified fluidized bed based on porous glass granules is presented. Axial mixing was analyzed by measurements of residence time distributions in a fluidized bed, showing a reduction of mixing at increased ratio of bed height to diameter as well as at increased linear velocity of the liquid stream. These results were transferred to two real adsorption systems on two different scales: In a bench scale (up to 15 mL of adsorbent) the purification of monoclonal antibodies from hybridoma supernatant was performed with a cation exchanger, in a larger scale (up to 750 mL of matrix) the adsorption of bovine serum albumin (BSA) on the same matrix was investigated. The results showed an increase of capacity at increased bed height-to-diameter ratio; with regard to linear velocity a broad range of only slightly changed capacity was found. A shift from dispersion controlled to diffusion controlled adsorption at intermediate linear velocity was proposed by isolating the effect of pore diffusion from the effect of dispersion. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号