首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of an RF field on a steady-state beam-plasma discharge with a plane electrode placed parallel to a sheetlike electron beam is studied experimentally. The plasma parameters were measured by a single probe, and the electron distribution function was determined with the use of an electrostatic analyzer. The energy and current of the electron beam were E B=2.5 keV and J B=0.05–1.5 A, respectively. The working pressure was p=2×10?5–10?3 torr. The frequency of the external RF field was 13.56 MHz. Both the steady-state regimes in which the RF field had no effect on the plasma parameters and regimes with a pronounced effect of the RF field were observed. The experiments show that the regime of the discharge depends strongly on the plasma density and the magnetic field. The parametric instability is studied theoretically in the weak-turbulence approximation. It is shown that, due to the decay nature of the spectrum of plasma oscillations, the onset of instability is accompanied by the transfer of the energy of fluctuations over the spectrum, from the pump frequency toward its harmonics.  相似文献   

2.
The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ~0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.  相似文献   

3.
Results are presented from studies of a two-beam scheme of ion acceleration by a high-frequency field excited by an electron beam due to the instabilities associated with anomalous and normal Doppler effects. The dynamics of the excitation of eigenmodes in a periodic slow wave structure (SWS) by a relativistic electron beam via the anomalous Doppler effect is investigated theoretically. Mechanisms for the saturation of the instability are considered, analytical expressions for the maximum field amplitude and the efficiency with which the energy of beam electrons is converted into the energy of the excited wave are derived, and the results of numerical simulations of such excitation are presented. An experimental stand designed to test the principles and possibility of proton acceleration up to an energy of 8 MeV at a current up to 3 A is described. A double resonance (associated with anomalous and normal Doppler effects) occurring in the interaction of an electron beam with a helical SWS is studied experimentally. In this case, an increase in the efficiency with which the accelerating high-frequency field is excited is observed.  相似文献   

4.
The excitation of oscillations in a discharge with negative differential conductivity is studied experimentally. The possibility is demonstrated of amplifying oscillations in the cathode dark space at frequencies close to the electron plasma frequency of the positive-column plasma. The phase velocities of waves at these frequencies are determined. When the waves pass from the cathode dark space to the discharge positive column, their phase velocities decrease; the closer the frequency is to the electron plasma frequency, the more pronounced the decrease in the phase velocity. As the intensity of oscillations increases, the discharge becomes non-steady-state. This is confirmed by the time evolution of the current-voltage characteristic. The shape of the current-voltage characteristic, its splitting, and the rate at which it varies depend on the input RF power. The decrease in the cathode dark space indicates that the ionization processes in the discharge are strongly influenced by electron plasma oscillations excited due to the collective interaction of the electron beam formed at the cathode with the discharge plasma. It is these processes that determine the maximum values of both the frequency of the excited oscillations and the power that can be withdrawn from the discharge.  相似文献   

5.
The nonlinear dynamics of the instability of a straight high-density relativistic electron beam under the conditions of the stimulated Cherenkov effect in a plasma waveguide is studied both analytically and numerically. It is shown that, for a beam of sufficiently high density such that the stabilizing factors are nonlinear frequency shifts and for a plasma described in a linear approximation, the basic equations have soliton-like solutions and the electron beam after saturation of the instability relaxes to its initial, weakly perturbed state, provided that only one harmonic of the plasma and the beam density is taken into account. The analytical solutions obtained here for this case correlate well with the numerical ones. A more general model that accounts for the generation of higher harmonics of the plasma and the beam density does not yield soliton-like solutions for the time evolution of the amplitudes of the plasma and beam waves. In such a model, the instability will be collective again: it can be described analytically (at least, up to the time at which it saturates) by using equations with cubic nonlinearities and the method of expansion of the electron trajectories and momenta.  相似文献   

6.
A nonlinear theory is developed that describes the interaction between an annular electron beam and an electromagnetic surface wave propagating strictly transverse to a constant external axial magnetic field in a cylindrical metal waveguide partially filled with a cold plasma. It is shown theoretically that surface waves with positive azimuthal mode numbers can be efficiently excited by an electron beam moving in the gap between the plasma column and the metal waveguide wall. Numerical simulations prove that, by applying a constant external electric field oriented along the waveguide radius, it is possible to increase the amplitude at which the surface waves saturate during the beam instability. The full set of equations consisting of the waveenvelope equation, the equation for the wave phase, and the equations of motion for the beam electrons is solved numerically in order to construct the phase diagrams of the beam electrons in momentum space and to determine their positions in coordinate space (in the radial variable-azimuthal angle plane).  相似文献   

7.
A nonlinear theory of the instability of a straight relativistic dense electron beam in a plasma waveguide is derived for conditions of the stimulated collective Cherenkov effect. A study is made of a waveguide with a dense plasma such that the plasma wave excited by the beam during the instability can be escribed, with a good degree of accuracy, as a potential wave. General relativistic nonlinear equations are btained that describe the temporal dynamics of beam-plasma instabilities with allowance for plasma nonlinearity and the generation of harmonics of the initial perturbation. Under the assumption that the resonant interaction between the beam waves and the plasma waves is weak, the general equations are reduced to relativistic equations with cubic nonlinearities by using the method of expansion in small perturbations of the trajectories and momenta of the beam and plasma electrons. The reduced equations are solved analytically, the time scales on which the instability saturates are determined, and the nonlinear saturation amplitudes are obtained. A comparison between analytical solutions to the reduced equations and numerical solutions to the general nonlinear equations shows them to be in good agreement. Nonlinear processes caused by the relativistic nature of the beam are found to prevent stochastization of the system in the nonlinear stage of the well-developed instability. In contrast, a nonrelativistic electron beam is found to be subject to significant anomalous nonlinear stochastization.  相似文献   

8.
The problem of stimulated emission from a relativistic electron beam in an external electrostatic pump field is studied. A set of nonlinear time-dependent equations for the spatiotemporal dynamics of the undulator radiation amplitude and the amplitude of the beam space charge field is derived. The beam electrons are described by a modified version of the macroparticle method. The regimes of the single-particle and collective Cherenkov effects during convective and absolute instabilities are considered. The nonlinear dynamics of radiation pulses emitted during the instabilities of the beam in its interaction with the forward and backward electromagnetic waves is investigated.  相似文献   

9.
A general mathematical model is proposed that is based on the Vlasov kinetic equation with a self-consistent field and describes the nonlinear dynamics of the electromagnetic instabilities of a relativistic electron beam in a spatially bounded plasma. Two limiting cases are analyzed, namely, high-frequency (HF) and low-frequency (LF) instabilities of a relativistic electron beam, of which the LF instability is a qualitatively new phenomenon in comparison with the known Cherenkov resonance effects. For instabilities in the regime of the collective Cherenkov effect, the equations containing cubic nonlinearities and describing the nonlinear saturation of the instabilities of a relativistic beam in a plasma are derived by using the methods of expansion in small perturbations of the trajectories and momenta of the beam electrons. Analytic expressions for the amplitudes of the interacting beam and plasma waves are obtained. The analytical results are shown to agree well with the exact solutions obtained numerically from the basic general mathematical model of the instabilities in question. The general mathematical model is also used to discuss the effects associated with variation in the constant component of the electron current in a beam-plasma system.  相似文献   

10.
Results are presented from three-dimensional particle-in-cell simulations of relaxation of an electron beam in a plasma. When penetrating into the plasma, the electron beam generates the return current carried by the plasma electrons. In a collisionless plasma, the relaxation mechanism is related to the onset of an electromagnetic filamentation instability. The instability leads to the generation of a quasistatic magnetic field, which decays due to the magnetic field reconnection in the final stage of the system evolution.  相似文献   

11.
Results are presented from experimental studies of the interaction of a modulated relativistic electron beam with a plasma. The electron energy spectra at the exit from the interaction chamber are measured for electron beams with energies of about 50 and 20 MeV. The coherent interaction of an electron beam with a microwave-driven plasma is studied. It is shown that, in strong electric fields that can be generated in the coherent interaction, the beam current is very sensitive to the phase of the microwave field.  相似文献   

12.
Energy exchange between an electron beam and plasma during a beam-plasma discharge in a closed cavity excited by the electron beam is analyzed using computer simulations by the KARAT code. A method allowing one to analyze the beam-plasma interaction in the quasi-steady stage of the discharge is proposed. Qualitative characteristics of energy exchange (such as beam energy losses and the energy distributions of beam electrons and plasma particles leaving the discharge) both during spontaneous discharge excitation and in the presence of initial beam modulation by regular or noiselike signals are determined. The results obtained enable one to estimate the energy characteristics of a plasma processing reactor based on a beam-plasma discharge.  相似文献   

13.
A concept is proposed of a plasma pixel based on an open-discharge microstructure. The concept employs the capability of an open discharge to generate an electron beam at moderate (1–3 kV) discharge voltages with an efficiency close to 100%. To determine the possible application of this type of discharge, the parameters of the electron beams generated in open discharges operating in different working gases at various geometries of the discharge cell and various dimensions of the discharge channel were investigated. The electric potential distributions in the dielectric plate channel and in the cathode cavity were measured. The effect of additional illumination by radiation generated in the drift space on the current-voltage characteristic of the discharge is studied. Based on the results obtained, a noncontradictory model of a discharge capable of very efficiently generating an electron beam is proposed. According to this model, the main contribution to the electron beam comes from the photoelectron emission from the cathode under the action of radiation from the working-gas atoms excited by fast heavy particles in a highly nonuniform electric field in the cathode cavity. Such a field also scatters ions and fast atoms, thus reducing their fluxes toward the cathode. The results obtained indicate that highly efficient light sources and plasma panels can be created on the basis of open-discharge microstructures with a cathode cavity. Such microstructures allow very efficient conversion of electric energy into light.  相似文献   

14.
The nonlinear dynamics of the instability developed upon the interaction between a relativistic electron beam and a dense plasma as a function of the beam density is numerically modeled. The appropriate solutions are obtained and analyzed.  相似文献   

15.
A one-dimensional hydrodynamic model of a dielectric-barrier discharge (DBD) in pure chlorine is developed, and the properties of the discharge are modeled. The discharge is excited in an 8-mm-long discharge gap between 2-mm-thick dielectric quartz layers covering metal electrodes. The DBD spatiotemporal characteristics at gas pressures of 15–100 Torr are modeled for the case in which a 100-kHz harmonic voltage with an amplitude of 8 kV is applied to the electrodes. The average power density deposited in the discharge over one voltage period is 2.5–5.8 W/cm3. It is shown that ions and electrons absorb about 95 and 5% of the discharge power, respectively. In this case, from 67 to 97% of the power absorbed by electrons is spent on the dissociation and ionization of Cl2 molecules. Two phases can be distinguished in the discharge dynamics: the active (multispike) phase, which follows the breakdown of the discharge gap, and the passive phase. The active phase is characterized by the presence of multiple current spikes, a relatively high current, small surface charge density on the dielectrics, and large voltage drop across the discharge gap. The passive phase (with no current spikes) is characterized by a low current, large surface charge density on the dielectrics, and small voltage drop across the discharge gap. The peak current density in the spikes at all pressures is about 4 mA/cm2. In the multispike phase, there are distinct space charge sheaths with thicknesses of 1.5–1.8 mm and a mean electron energy of 4.3–7 eV and the central region of quasineutral plasma with a weak electric field and a mean electron energy of 0.8–3 eV. The degree of ionization of chlorine molecules in the discharge is ~0.02% at a pressure of 15 Torr and ~0.01% at 100 Torr. The DBD plasma is electronegative due to the fast attachment of electrons to chlorine atoms: e + Cl2 → Cl + Cl. The most abundant charged particles are Cl 2 + and Cl? ions, and the degree of ionization during current spikes in the active phase is (4.1–5.5) × 10–7. The mechanism of discharge sustainment is analyzed. The appearance of a series of current spikes in the active phase of the discharge is explained.  相似文献   

16.
The critical current at which an unsteady oscillating virtual cathode forms in an electron beam is studied as a function of the external magnetic field guiding the beam electrons. It is shown that the critical beam current decreases with external magnetic field and that there is an optimum magnetic induction at which the critical current for the onset of an oscillating virtual cathode in the beam is minimum. For a strong guiding magnetic field, the critical beam current is described by relationships derived under the assumption that the motion of the beam electrons is one-dimensional. Such behavior is explained by the characteristic features of the dynamics of the beam electrons in longitudinal and radial directions in the interaction space at different inductions of the external magnetic field.  相似文献   

17.
The conditions and mechanisms of virtual cathode formation in relativistic and ultrarelativistic electron beams are analyzed with allowance for the magnetic self-field for different magnitudes of the external magnetic field. The typical behavior of the critical current at which an oscillating virtual cathode forms in a relativistic electron beam is investigated as a function of the electron energy and the magnitude of the uniform external magnetic field. It is shown that the conditions for virtual cathode formation in a low external magnetic field are determined by the influence of the magnetic self-field of the relativistic electron beam. In particular, azimuthal instability of the electron beam caused by the action of the beam magnetic self-field, which leads to a reduction in the critical current of the relativistic electron beam, is revealed.  相似文献   

18.
The nonlinear dynamics of the diocotron instability of an electron beam in a waveguide is investigated by numerical simulations. A study is made of how the structures arising in the beam depend on the geometric parameters of the problem. It is shown that the energy source for such azimuthal structures is the initial (stored in the formation of the beam) electrostatic energy of the unneutralized beam charge.  相似文献   

19.
A relativistic plasma microwave amplifier with a gain of about 30 dB and an output power of about 60–100 MW in the frequency range from 2.4 to 3.2 GHz is studied experimentally. The total duration of the output microwave pulse is equal to the duration of the current pulse of the driving relativistic electron beam (500 ns); however, the maximum output power is observed only within 200 ns. It is shown that variations in the output microwave power during the current pulse of the annular relativistic electron beam are caused by variations in the beam radius and thickness. Analysis of the experimental data and results of numerical simulations show that the thickness of the electron beam is determined by the density of the cathode emission current.  相似文献   

20.
The development and nonlinear saturation of two-stream instability of a warm nonrelativistic electron beam in a cold plasma are investigated numerically in the framework of a one-dimensional model. It is shown that, for a sufficiently large velocity spread of the electron beam, instability develops and saturates according to a universal law, the wave phase velocity remains the same in the saturation stage, and the maximum field is somewhat lower than that predicted by classical estimates and depends in a different way on the growth rate. The damping of plasma oscillations not only changes the instability growth rate, but also substantially decreases the maximum wave field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号