首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Eight trials were carried out in 2011 and 2012 in Northern Italy to evaluate the efficacy of grafting, compost and biofumigation with Brassica carinata against Colletotrichum coccodes on tomato. Four trials were carried out in commercial farms, and four trials were carried out in plastic tunnels at an experimental centre. The rootstocks ‘Armstrong’, ‘Arnold’, ‘Beaufort’, ‘Big Power’, ‘Brigeor’, ‘Emperador’, ‘King Kong’, ‘Spirit’ and ‘Superpro V295’ were tested. Host plants included several tomato F1 hybrids: ‘Amantino’, ‘Arawak’, ‘CLX 37438’, ‘Cauralina’, ‘CU 8301’, ‘CU 8506’, ‘DRK 7021’, ‘E 34431’, ‘E 50070’, ‘EXP’, ‘Gotico’, ‘Ingrid’, ‘ISI 61401’, ‘ISI 61402’, ‘Profitto’, ‘Punente’, ‘Rugantino’ and ‘Tomahawk’. Tomato roots from the control plots were 34 to 87% diseased in both naturally and artificially infested soil. Among the nineteen commercial tomato hybrids tested, in the presence of a very high disease pressure in a naturally infested soil, ‘Rugantino’ was the least affected by C. coccodes, showing 32% infected roots. ‘Tomahawk’ grafted onto ‘Arnold’, ‘Armstrong’ and ‘Superpro V295’ was significantly less affected by C. coccodes, while ‘Arawak’ grafted onto ‘Armstrong’, ‘Arnold’, ‘Emperador’ and ‘Beaufort’ provided very good control of root rot in the different trials. Compost addition and biofumigation with Brassica pellets were also tested with and without grafting. Soil amendment with compost, in the case of the ‘Arawak’ and ‘Tomahawk’, resulted in a slightly improved disease control only on non‐grafted plants. When grafting and biofumigation were combined in a soil naturally infested with C. coccodes and Meloidogyne arenaria, biofumigation did not improve C. coccodes control in comparison with grafting alone. In a naturally infested soil, compost alone and combined with biofumigation improved disease control only on non‐grafted ‘Tomahawk’ plants. In general, grafting by itself provided very good results in terms of disease control, which were not significantly improved by combination with compost and/or biofumigation.  相似文献   

2.
Smith  Kenneth R.  Waring  Bonnie G. 《Ecosystems》2019,22(4):742-753
Ecosystems - Dryland (semiarid and arid) ecosystems are responsible for most of the interannual variation in atmospheric CO2 concentrations and contain a considerable fraction of the globe’s...  相似文献   

3.
嫁接辣椒根系特征及根际土壤酶活性与青枯病抗性的关系   总被引:1,自引:0,他引:1  
以‘卫士’辣椒为砧木,‘新丰2号’为接穂嫁接,通过人工接种青枯病菌研究嫁接和自根辣椒根系特征、根际土壤微生物及酶活性的变化,探讨嫁接辣椒的抗病机理.结果显示:接种青枯病菌前,嫁接辣椒的根系重量、总长度、总体积、表面积、根尖数和分叉数均显著高于自根苗,根系活力、根际土壤放线菌数量和比例,以及根际土壤酶(多酚氧化酶、过氧化物酶和脱氢酶)活性也明显高于自根苗.接种青枯病菌后,嫁接辣椒的根系受伤程度较自根苗轻,根系重量、总长度、总体积、表面积、根尖数和分叉数的降低幅度均显著小于自根苗,根系活力、根际土壤微生物数量、放线菌比例及土壤酶活性明显大于自根苗.研究表明,嫁接辣椒根系发达,根系活力增强,根际土壤放线菌比例增加及酶活性提高是其青枯病抗性增强的重要原因.  相似文献   

4.
Flooded, saturated, or poorly drained soils are commonly anaerobic, leading to microbially induced magnetite/maghemite dissolution and decreased soil magnetic susceptibility (MS). Thus, MS is considerably higher in well‐drained soils (MS typically 40–80 × 10?5 standard international [SI]) compared to poorly drained soils (MS typically 10–25 × 10?5 SI) in Illinois, other soil‐forming factors being equal. Following calibration to standard soil probings, MS values can be used to rapidly and precisely delineate hydric from nonhydric soils in areas with relatively uniform parent material. Furthermore, soil MS has a moderate to strong association with individual tree species’ distribution across soil moisture regimes, correlating inversely with independently reported rankings of a tree species’ flood tolerance. Soil MS mapping can thus provide a simple, rapid, and quantitative means for precisely guiding reforestation with respect to plant species’ adaptations to soil drainage classes. For instance, in native woodlands of east‐central Illinois, Quercus alba, Prunus serotina, and Liriodendron tulipifera predominantly occur in moderately well‐drained soils (MS 40–60 × 10?5 SI), whereas Acer saccharinum, Carya laciniosa, and Fraxinus pennsylvanica predominantly occur in poorly drained soils (MS <20 × 10?5 SI). Using a similar method, an MS contour map was used to guide restoration of mesic, wet mesic, and wet prairie species to pre‐settlement distributions at Meadowbrook Park (Urbana, IL, U.S.A.). Through use of soil MS maps calibrated to soil drainage class and native vegetation occurrence, restoration efforts can be conducted more successfully and species distributions more accurately reconstructed at the microecosystem level.  相似文献   

5.
《Translational oncology》2020,13(4):100753
The molecular mechanisms underlying the ‘seed and soil’ theory are unknown. S100A8/A9 (a heterodimer complex of S100A8 and S100A9 proteins that exhibits a ‘soil signal’) is a ligand for Toll-like receptor 4, causing distant melanoma cells to approach the lung as a ‘seeding’ site. Unknown soil sensors for S100A8/A9 may exist, e.g., extracellular matrix metalloproteinase inducer, neuroplastin, activated leukocyte cell adhesion molecule, and melanoma cell adhesion molecule. We call these receptor proteins ‘novel S100 soil sensor receptors (novel SSSRs).’ Here we review and summarize a crucial role of the S100A8/A9-novel SSSRs' axis in cancer metastasis. The binding of S100A8/A9 to individual SSSRs is important in cancer metastasis via upregulations of the epithelial-mesenchymal transition, cellular motility, and cancer cell invasiveness, plus the formation of an inflammatory immune suppressive environment in metastatic organ(s). These metastatic cellular events are caused by the SSSR-featured signal transductions we identified that provide cancer cells a driving force for metastasis. To deprive cancer cells of these metastatic forces, we developed novel biologics that prevent the interaction of S100A8/A9 with SSSRs, followed by the efficient suppression of S100A8/A9-mediated lung-tropic metastasis in vivo.  相似文献   

6.
The results show great seasonal variation in number and composition of the fungi isolated from the upper soil layer, especially owing to an increased isolation of primary saprophytic fungi during the late growing season. Before fungicide treatment no statistically significant difference was measured between the number of isolated fungi from the examined soils. During the treatment period significantly fewer fungi were isolated from plots treated with ‘captafol’ or ‘propiconazol’ than from the untreated plots. The differences between untreated and treated plots were not statistically significant 30 days after the last treatment. The ecotoxicological effect on the total isolated fungal flora thus seems negligible. However the fungi responded differen, tly to treatment with ‘captafol’ and ‘propiconazol’. None of the fungi were significantly affected for more than a month when treated with ‘propiconazol’. The number of primary saprophytic fungi (Cladosporium spp., Alternaria spp., Epicoccum purpurascens, and Stemphylium sp.) and Sphaeropsidales, however, was significantly reduced for more than a month when treated with ‘captafol’.  相似文献   

7.
Nanomaterials such as single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) may repeatedly enter the soil environment with unknown adverse consequences. To provide the information on the effects of repeated exposure of CNTs, we determined the response of soil enzyme activity and soil basal respiration (SBR) through a two-week incubation of farmland soil repeatedly treated with different concentrations of CNTs (100, 200, 500 mg kg?1 for SWCNTs and 100, 500, 1000 mg Kg?1 for MWCNTs). The activities of catalase, alkaline phosphatase, and invertase and SBR were measured after one- and two-time treatments. The repeated contamination of SWCNTs and MWCNTs repressed the activity of alkaline phosphatase and invertase in the 14-day incubation. Alkaline phosphatase and invertase were more sensitive indicators of CNTs’ contamination than catalase and soil basal respiration. High concentration of the SWCNTs stimulated SBR while the lower concentration suppressed SBR. The recurred exposure of SWCNTs and MWCNTs repressed the activity of catalase and invertase. The obtained results indicated that the soil microorganisms were suppressed under repeated pollution, as suggested by the same suppressed response of SBR between SWCNTs and MWCNTs treatment, except for the concentration of 500 mg kg?1.  相似文献   

8.
Soil cadmium enrichment: Allocation and plant physiological manifestations   总被引:1,自引:0,他引:1  
Cadmium (Cd) in soil is enriched through several leaky management agricultural practices and natural resources. Cd enriched soil is inevitable cause of nutritional stress besides Cd induced toxicity symptoms and physiological malfunctions. Redox signals shift toward oxidative stress which accelerates cellular damage and elicits defense mechanism at the cost of growth. Plants get enriched with this toxic, abundant and undesirable element through ‘mineral uptake system’ non-specifically. Different components and pathways have been marked cooperating in cellular sequestration and systemic localization of Cd, escaped from avoidance and efflux. Cd induced metabolic alteration led to electron leakage as ROS, reduced photosynthesis and carbon fixation. Compromised primary metabolism negatively feedbacks the plant growth, result into loss of potential crop yield.  相似文献   

9.
柑橘对丛枝菌根(AM)真菌具有较高的依赖性,从柑橘园土壤中分离筛选的高效促生AM真菌菌株具有重要的应用价值。本研究从广东增城柑橘园(酸橘砧‘红江橙’)土壤中分离的4个AM真菌土著菌株对‘红江橙’幼苗的促生效应。结果表明,4个土著菌株分别是Scutellospora属和Glomus属菌株,根系侵染率为12.7%~29.3%;与不接种对照相比,4个土著菌株不同程度地促进‘红江橙’幼苗的株高、生物量和N、P、K养分含量,菌根依赖性达9.4%~37.1%;主成分分析表明,土著菌株ZCSP-D的促生效应达到常用优良菌株Rhizophagus irregularis的水平。  相似文献   

10.
冬小麦幼苗根系适应土壤干旱的生理学变化   总被引:3,自引:2,他引:3  
采用盆栽试验对冬小麦幼苗根系适应土壤干旱的生理学变化进行了初步研究。结果表明,随干旱胁迫的加剧,洛麦9133和济麦21幼苗根水势、根相对含水率和根系活力均降低,饱和亏、可溶性糖含量、脯氨酸含量、质膜透性以及SOD、POD活性均呈增加趋势。这说明,在干旱胁迫下,冬小麦幼苗根系通过降低水势、相对含水率和根系活力,增加渗透调节物质可溶性糖、脯氨酸含量和增强SOD、POD活性等生理上的变化以提高抗旱性,从而使冬小麦幼苗适应干旱逆境。  相似文献   

11.
Plant and Soil - The Cerrado of central Brazil—the world’s largest Neotropical savanna – is comprised of a mosaic of highly heterogeneous vegetation growing on an extremely...  相似文献   

12.
Bioenergy crops have a secondary benefit if they increase soil organic C (SOC) stocks through capture and allocation below-ground. The effects of four genotypes of short-rotation coppice willow (Salix spp., ‘Terra Nova’ and ‘Tora’) and Miscanthus (M.?×?giganteus (‘Giganteus’) and M. sinensis (‘Sinensis’)) on roots, SOC and total nitrogen (TN) were quantified to test whether below-ground biomass controls SOC and TN dynamics. Soil cores were collected under (‘plant’) and between plants (‘gap’) in a field experiment on a temperate agricultural silty clay loam after 4 and 6 years’ management. Root density was greater under Miscanthus for plant (up to 15.5 kg m?3) compared with gap (up to 2.7 kg m?3), whereas willow had lower densities (up to 3.7 kg m?3). Over 2 years, SOC increased below 0.2 m depth from 7.1 to 8.5 kg m?3 and was greatest under Sinensis at 0–0.1 m depth (24.8 kg m?3). Miscanthus-derived SOC, based on stable isotope analysis, was greater under plant (11.6 kg m?3) than gap (3.1 kg m?3) for Sinensis. Estimated SOC stock change rates over the 2-year period to 1-m depth were 6.4 for Terra Nova, 7.4 for Tora, 3.1 for Giganteus and 8.8 Mg ha?1 year?1 for Sinensis. Rates of change of TN were much less. That SOC matched root mass down the profile, particularly under Miscanthus, indicated that perennial root systems are an important contributor. Willow and Miscanthus offer both biomass production and C sequestration when planted in arable soil.  相似文献   

13.
This study is focused on the development, implementation and evaluation of an environmental education programme for secondary education students. The programme was entitled ‘Τhe effects of fire on the soil system’ and it was implemented during the school period of 2008. Twenty-four (24) students (aged from 15 to 20) coming from Lidoriki Secondary School (Central Greece) participated in the programme, which was based on Project Method. The programme consisted of one theoretical part (achievement of cognitive and affective goals) and one experimental part (achievement of cognitive and psychomotor goals). Initial, formative and summative assessments were implemented during the course of the programme, by means of questionnaires, observation of students’ teamwork and examination of their work sheets. The questionnaire analysis highlighted students’ misconceptions regarding the subject, revealed positive changes in students’ attitudes as a result of their participation in the programme, as well as satisfactory results concerning the acquired knowledge and skills. The experimental results were of significant scientific and educational value.  相似文献   

14.
Soils contain biotic and abiotic legacies of previous conditions that may influence plant community biomass and associated aboveground biodiversity. However, little is known about the relative strengths and interactions of the various belowground legacies on aboveground plant–insect interactions. We used an outdoor mesocosm experiment to investigate the belowground legacy effects of range-expanding versus native plants, extreme drought and their interactions on plants, aphids and pollinators. We show that plant biomass was influenced more strongly by the previous plant community than by the previous summer drought. Plant communities consisted of four congeneric pairs of natives and range expanders, and their responses were not unanimous. Legacy effects affected the abundance of aphids more strongly than pollinators. We conclude that legacies can be contained as soil ‘memories’ that influence aboveground plant community interactions in the next growing season. These soil-borne ‘memories’ can be altered by climate warming-induced plant range shifts and extreme drought.  相似文献   

15.
Soil warming alters microbial substrate use in alpine soils   总被引:2,自引:0,他引:2  
Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C‐rich alpine soils? We studied soil microbial community composition, activity, and substrate use after 3 and 4 years of soil warming (+4 °C, 2007–2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO2 enrichment experiment using depleted 13CO213C = ?30‰, 2001–2009). We traced this depleted 13C label in phospholipid fatty acids (PLFA) of the organic layer (0–5 cm soil depth) and in C mineralized from root‐free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 (‘old’), from 2001 to 2009 (‘new’) or in 2010 (‘recent’). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root‐free soils, implying a shift in microbial substrate use toward a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem.  相似文献   

16.
Grafting melon (Cucumis melo L.) seedlings on to the Fusarium oxysporum f. sp. melonis (Fom) commercial resistant squash rootstocks ‘Mamouth’ and ‘Nun 9075 RT’ and soil sterilization with calcium cyanamide (CaCN2, Perlka) were tested in 2001 and 2002 as alternatives to methyl bromide (MB) soil fumigation. Ungrafted seedlings of the F1 melon hybrid ‘Galia’ were cultivated: (i) in soil sterilized by MB and then artificially infested with Fom (this served as a control), (ii) in soil artificially infested with Fom and then sterilized by MB, (iii) in soil artificially infested with Fom and then sterilized with CaCN2 (Perlka), grafted seedlings on the commercial rootstocks, (iv) ‘Mamouth’ and (v) ‘Nun 9075 RT’ were cultivated in soil sterilized with MB and then artificially infested with Fom. The grafted plants on ‘Mamouth’ and ‘Nun 9075 RT’ and plants in the Perlka treatment (2001) developed mild symptoms, as indicated by the significantly lower leaf symptom index (LSI; average values 1.06, 1.08 and 1.07) and disease index (DI; average values 1.60, 1.25 and 2.33), respectively, when compared with the controls (average values of LSI = 2.65 and DI = 5.06). Plants grafted on ‘Mamouth’ and ‘Nun 9075 RT’ and plants in the Perlka treatment (2001) were more vigorous than the controls as assessed on plant height, stem diameter and root biomass. When compared with the controls, this resulted in an increased (over years) early production (326.3, 265.8 and 489.1%) and late production (371.0, 357.0 and 404.2%). Fruit size was also larger in early production (29.2, 50.9 and 32.3) and late production (4.3, 15.2 and 26.0). The total soluble solids (oBrix) increased (over years) in early production (27.4, 39.6 and 47.9) and late production (7.59, 10.07 and 5.6) when compared with the controls. Thus, grafting on resistant squash rootstocks ‘Mamouth’ and ‘Nun 9075 RT’ and soil sterilization with Perlka had positive effects on growth, production and fusarium wilt control in melon.  相似文献   

17.
Vantellingen  Juliana  Thomas  Sean C. 《Ecosystems》2021,24(6):1402-1421
Ecosystems - Temperate forest soils are an important sink for methane (CH4); however, disturbance through forest management and the creation of skid trails may significantly decrease soil’s...  相似文献   

18.
为评价景天属(Sedum)植物在矿山废弃地植被恢复中的应用潜力,以2种景天:德国景天(S. hybridum ‘Immergrunchen’)和胭脂红景天(S. spurium ‘Coccineum’)的扦插苗为试验材料,通过盆栽试验研究其在北京首云铁矿废弃土壤(包括采矿区土壤、排土场土壤、尾矿砂)2个生长季内的各项生长指标,以确定其在各废弃土壤上的适应性,并运用相关分析和典范对应分析,探讨影响2种景天生长的主要土壤理化性质。结果表明:①2种景天在采矿区土壤、排土场土壤和尾矿砂上的存活率分别为40%~66%、68%~90%、33%~46%;②不同废弃土壤对2种景天的地上部分和地下根系的各项生长指标均产生了显著的抑制作用,但德国景天在采矿区土壤的适应性较好,可作为采矿区修复的推荐品种,胭脂红景天在排土场土壤的生长表现较好,可作为排土场的修复品种;③影响景天属植物生长的土壤因子为通气孔隙度和土壤含水量,其中通气孔隙度的解释率为12.4%,土壤含水量的解释率为8.6%。  相似文献   

19.
In recent years, giant reed (Arundo donax L) has received considerable attention as a promising plant for energy production. Giant reed is able to grow in a range of environments, including wetlands and marginal soils, and has shown promise in phytoremediation efforts. A pot experiment was carried out to investigate the ability of giant reed to restore ecosystems of different soils, including bauxite-derived red mud-amended soil and pure red mud (red mud—a waste generated by the Bayer process in the aluminum industry—is strongly alkaline and has a high salt content and electrical conductivity (EC) dominated by sodium). Samples were exposed to high temperatures, which simulate the effects of bushfires. Selected soil properties that were measured included soil dehydrogenase, alkaline phosphatase, urease and catalase activities, soil organic carbon, soil pH, EC, available soil macronutrients NPK, and above- and below-ground plant biomass yield. The results showed that giant reed reduced EC in all autoclaved soils and red mud-contaminated soils by 24–82 %. Significantly, available N was increased, and a slight increase was recorded for available K. The presence of giant reed enhanced the soils’ enzyme activities to recover in all tested autoclaved soils and red mud-contaminated soils; specifically, dehydrogenase activity increased by 262 and 705 % in non-autoclaved and autoclaved soils, respectively, and urease and catalase activities increased by 591 and 385 % in autoclaved soils, respectively. Total bacterial and fungal counts were higher in autoclaved soils than non-autoclaved soils after cultivating giant reed for 12 weeks. Autoclaved soils enabled higher biomass production for giant reed than non-autoclaved soils. These results demonstrate that giant reed is not only able to survive on soil that has lost its microbial community as a result of heat, but can also yield significant amounts of biomass while assisting recovering soil ecosystems after bushfires.  相似文献   

20.
This study investigated the potential effect of poultry dung (biostimulation) and stubborn grass (Sporobolus pyramidalis) (phytoremediation) on microbial biodegradation of gasoline and nickel uptake in gasoline-nickel-impacted soil. In addition, the potential stimulatory effects of nickel on hydrocarbon utilization were investigated over a small range of nickel concentrations (2.5–12.5 mg/kg). The results showed that an increase in nickel concentration increased hydrocarbon degraders in soil by a range of 8.4–17.2% and resulted in a relative increase in gasoline biodegradation (57.5–62.4%). Also, under aerobic conditions, total petroleum hydrocarbons’ (TPH) removal was 62.4% in the natural gasoline-nickel microcosm (natural attenuation), and a maximum of 78.5%, 85.7%, and 95.8% TPH removal was obtained in phytoremediation, biostimulation, and a combination of biostimulation- and phytoremediation-treated microcosms, respectively. First-order kinetics described the biodegradation of gasoline and nickel uptake very well. Half-life times obtained were 28.88, 18.24, 14.44, and 8.56 days for gasoline degradation under natural attenuation, phytoremediation, biostimulation, and combined biostimulation and phytoremediation treatment methods, respectively. The results indicate that these remediation methods have promising potential for effective remediation of soils co-contaminated with petroleum hydrocarbons and heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号