首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.

Background and Aims

Sexually deceptive orchids achieve cross-pollination by mimicking the mating signals of female insects, generally hymenopterans. This pollination mechanism is often highly specific as it is based primarily on the mimicry of mating signals, especially the female sex pheromones of the targeted pollinator. Like many deceptive orchids, the Mediterranean species Ophrys arachnitiformis shows high levels of floral trait variation, especially in the colour of the perianth, which is either green or white/pinkinsh within populations. The adaptive significance of perianth colour polymorphism and its influence on pollinator visitation rates in sexually deceptive orchids remain obscure.

Methods

The relative importance of floral scent versus perianth colour in pollinator attraction in this orchid pollinator mimicry system was evaluated by performing floral scent analyses by gas chromatography-mass spectrometry (GC-MS) and behavioural bioassays with the pollinators under natural conditions were performed.

Key Results

The relative and absolute amounts of behaviourally active compounds are identical in the two colour morphs of O. arachnitiformis. Neither presence/absence nor the colour of the perianth (green versus white) influence attractiveness of the flowers to Colletes cunicularius males, the main pollinator of O. arachnitiformis.

Conclusion

Chemical signals alone can mediate the interactions in highly specialized mimicry systems. Floral colour polymorphism in O. arachnitiformis is not subjected to selection imposed by C. cunicularius males, and an interplay between different non-adaptive processes may be responsible for the maintenance of floral colour polymorphism both within and among populations.  相似文献   

2.

Background and Aims

Plants surrounded by individuals of other co-flowering species may suffer a reproductive cost from interspecific pollen transfer (IPT). However, differences in floral architecture may reduce or eliminate IPT.

Methods

A study was made of Pedicularis densispica (lousewort) and its common co-flowering species, Astragalus pastorius, to compare reproductive and pollination success of lousewort plants from pure and mixed patches. Floral architecture and pollinator behaviour on flowers of the two plants were compared along with the composition of stigmatic pollen load of the louseworts. The extent of pollen limitation of plants from pure and mixed patches was also explored through supplemental pollination with self- and outcross pollen (PLs and PLx).

Key Results

Mixed patches attracted many more nectar-searching individuals of Bombus richardsi. These bumble-bees moved frequently between flowers of the two species. However, they pollinated P. densispica with their dorsum and A. pastorius with their abdomen. This difference in handling almost completely eliminated IPT. Lousewort plants from mixed patches yielded more seeds, and seeds of higher mass and germinability, than those from pure patches. Moreover, louseworts from mixed patches had lower PLs and PLx compared with those from pure patches.

Conclusions

Differences in floral architecture induced differences in pollinator behaviour that minimized IPT, such that co-flowering plants significantly enhanced quantity and quality of pollinator visits for the lousewort plants in patchy habitat. These findings add to our understanding of the mechanisms of pollination facilitation.  相似文献   

3.

Background and Aims

‘Human-red’ flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown.

Methods

Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography–mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis).

Key Results

Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent.

Conclusions

The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic (‘bee-black’) protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or motivated by an increased morning floral heat reward in tunnels facing the rising sun.  相似文献   

4.

Background and Aims

Floral traits, such as floral volatiles, can contribute to pre-zygotic reproductive isolation by promoting species-specific pollinator foraging. When hybrid zones form, floral traits could also influence post-zygotic isolation. This study examined floral volatiles in parental species and natural hybrids in order to explore potential scent mediation of pre-zygotic and post-zygotic isolation.

Methods

Floral bouquets were analysed for the sister species Ipomopsis aggregata and I. tenuituba and their natural hybrids at two contact sites differing in both hybridization rate and temporal foraging pattern of hawkmoth pollinators. Floral volatiles were quantified in diurnal and nocturnal scent samples using gas chromatography–mass spectrometry.

Key Results

The bouquets of parental species and hybrids showed qualitative overlap. All flowers emitted similar sets of monoterpenoid, sesquiterpenoid, aliphatic and benzenoid compounds, but separated into groups defined by multivariate analysis of quantitative emissions. The parental species differed most strikingly in the nitrogenous compound indole, which was found almost exclusively in nocturnal bouquets of I. tenuituba. Natural hybrid bouquets were highly variable, and showed emission rates of several compounds that appeared transgressive. However, indole emission rates were intermediate in the hybrids compared with rates in the parents. Volatile bouquets at the contact site with lower hybridization did not show greater species specificity in overall scent emission, but I. tenuituba presented a stronger indole signal during peak hawkmoth activity at that site.

Conclusions

The two species of Ipomopsis differed in patterns of floral bouquets, with indole emitted in nocturnal I. tenuituba, but not in I. aggregata. Natural hybrid bouquets were not consistently intermediate between the parents, although hybrids were intermediate in indole emission. The indole signal could potentially serve as a hawkmoth attractant that mediates reproductive isolation both before and after hybrid formation.  相似文献   

5.

Background and Aims

Pollinator-mediated selection and evolution of floral traits have long fascinated evolutionary ecologists. No other plant family shows as wide a range of pollinator-linked floral forms as Orchidaceae. In spite of the large size of this model family and a long history of orchid pollination biology, the identity and specificity of most orchid pollinators remains inadequately studied, especially in the tropics where the family has undergone extensive diversification. Angraecum (Vandeae, Epidendroideae), a large genus of tropical Old World orchids renowned for their floral morphology specialized for hawkmoth pollination, has been a model system since the time of Darwin.

Methods

The pollination biology of A. cadetii, an endemic species of the islands of Mauritius and Reunion (Mascarene Islands, Indian Ocean) displaying atypical flowers for the genus (white and medium-size, but short-spurred) was investigated. Natural pollinators were observed by means of hard-disk camcorders. Pollinator-linked floral traits, namely spur length, nectar volume and concentration and scent production were also investigated. Pollinator efficiency (pollen removal and deposition) and reproductive success (fruit set) were quantified in natural field conditions weekly during the 2003, 2004 and 2005 flowering seasons (January to March).

Key Results

Angraecum cadetii is self-compatible but requires a pollinator to achieve fruit set. Only one pollinator species was observed, an undescribed species of raspy cricket (Gryllacrididae, Orthoptera). These crickets, which are nocturnal foragers, reached flowers by climbing up leaves of the orchid or jumping across from neighbouring plants and probed the most ‘fresh-looking’ flowers on each plant. Visits to flowers were relatively long (if compared with the behaviour of birds or hawkmoths), averaging 16·5 s with a maximum of 41·0 s. At the study site of La Plaine des Palmistes (Pandanus forest), 46·5 % of flowers had pollen removed and 27·5 % had pollinia deposited on stigmas. The proportion of flowers that set fruit ranged from 11·9 % to 43·4 %, depending of the sites sampled across the island.

Conclusions

Although orthopterans are well known for herbivory, this represents the first clearly supported case of orthopteran-mediated pollination in flowering plants.  相似文献   

6.

Background and Aims

Pollinator landscapes, as determined by pollinator morphology/behaviour, can vary inter- or intraspecifically, imposing divergent selective pressures and leading to geographically divergent floral ecotypes. Assemblages of plants pollinated by the same pollinator (pollinator guilds) should exhibit convergence of floral traits because they are exposed to similar selective pressures. Both convergence and the formation of pollination ecotypes should lead to matching of traits among plants and their pollinators.

Methods

We examined 17 floral guild members pollinated in all or part of their range by Prosoeca longipennis, a long-proboscid fly with geographic variation in tongue length. Attractive floral traits such as colour, and nectar properties were recorded in populations across the range of each species. The length of floral reproductive parts, a mechanical fit trait, was recorded in each population to assess possible correlation with the mouthparts of the local pollinator. A multiple regression analysis was used to determine whether pollinators or abiotic factors provided the best explanation for variation in floral traits, and pollinator shifts were recorded in extralimital guild member populations.

Key Results

Nine of the 17 species were visited by alternative pollinator species in other parts of their ranges, and these displayed differences in mechanical fit and attractive traits, suggesting putative pollination ecotypes. Plants pollinated by P. longipennis were similar in colour throughout the pollinator range. Tube length of floral guild members co-varied with the proboscis length of P. longipennis.

Conclusions

Pollinator shifts have resulted in geographically divergent pollinator ecotypes across the ranges of several guild members. However, within sites, unrelated plants pollinated by P. longipennis are similar in the length of their floral parts, most probably as a result of convergent evolution in response to pollinator morphology. Both of these lines of evidence suggest that pollinators play an important role in selecting for certain floral traits.  相似文献   

7.

Background and Aims

Interest in pollinator-mediated evolutionary divergence of flower phenotype and speciation in plants has been at the core of plant evolutionary studies since Darwin. Specialized pollination is predicted to lead to reproductive isolation and promote speciation among sympatric species by promoting partitioning of (1) the species of pollinators used, (2) when pollinators are used, or (3) the sites of pollen placement. Here this last mechanism is investigated by observing the pollination accuracy of sympatric Pedicularis species (Orobanchacae).

Methods

Pollinator behaviour was observed on three species of Pedicularis (P. densispica, P. tricolor and P. dichotoma) in the Hengduan Mountains, south-west China. Using fluorescent powder and dyed pollen, the accuracy was assessed of stigma contact with, and pollen deposition on, pollinating bumble-bees, respectively.

Key Results

All three species of Pedicularis were pollinated by bumble-bees. It was found that the adaptive accuracy of female function was much higher than that of male function in all three flower species. Although peak pollen deposition corresponded to the optimal location on the pollinator (i.e. the site of stigma contact) for each species, substantial amounts of pollen were scattered over much of the bees'' bodies.

Conclusions

The Pedicularis species studied in the eastern Himalayan region did not conform with Grant''s ‘Pedicularis Model’ of mechanical reproductive isolation. The specialized flowers of this diverse group of plants seem unlikely to have increased the potential for reproductive isolation or influenced rates of speciation. It is suggested instead that the extreme species richness of the Pedicularis clade was generated in other ways and that specialized flowers and substantial pollination accuracy evolved as a response to selection generated by the diversity of co-occurring congeners.  相似文献   

8.

Backgrounds and Aims

A current challenge in coevolutionary biology is to understand how suites of traits vary as coevolving lineages diverge. Floral scent is often a complex, variable trait that attracts a suite of generalized pollinators, but may be highly specific in plants specialized on attracting coevolved pollinating floral parasites. In this study, floral scent variation was investigated in four species of woodland stars (Lithophragma spp.) that share the same major pollinator (the moth Greya politella, a floral parasite). Three specific hypotheses were tested: (1) sharing the same specific major pollinator favours conservation of floral scent among close relatives; (2) selection favours ‘private channels’ of rare compounds particularly aimed at the specialist pollinator; or (3) selection from rare, less-specialized co-pollinators mitigates the conservation of floral scent and occurrence of private channels.

Methods

Dynamic headspace sampling and solid-phase microextraction were applied to greenhouse-grown plants from a common garden as well as to field samples from natural populations in a series of experiments aiming to disentangle the genetic and environmental basis of floral scent variation.

Key Results

Striking floral scent divergence was discovered among species. Only one of 69 compounds was shared among all four species. Scent variation was largely genetically based, because it was consistent across field and greenhouse treatments, and was not affected by visits from the pollinating floral parasite.

Conclusions

The strong divergence in floral scents among Lithophragma species contrasts with the pattern of conserved floral scent composition found in other plant genera involved in mutualisms with pollinating floral parasites. Unlike some of these other obligate pollination mutualisms, Lithophragma plants in some populations are occasionally visited by generalist pollinators from other insect taxa. This additional complexity may contribute to the diversification in floral scent found among the Lithophragma species pollinated by Greya moths.  相似文献   

9.

Background and Aims

Unrelated plants pollinated by the same group or guild of animals typically evolve similar floral cues due to pollinator-mediated selection. Related plant species, however, may possess similar cues either as a result of pollinator-mediated selection or as a result of sharing a common ancestor that possessed the same cues or traits. In this study, visual and olfactory floral cues in Lysimachia species exhibiting different pollination strategies were analysed and compared, and the importance of pollinators and phylogeny on the evolution of these floral cues was determined. For comparison, cues of vegetative material were examined where pollinator selection would not be expected.

Methods

Floral and vegetative scents and colours in floral oil- and non-floral oil-secreting Lysimachia species were studied by chemical and spectrophotometric analyses, respectively, compared between oil- and non-oil-secreting species, and analysed by phylogenetically controlled methods.

Key Results

Vegetative and floral scent was species specific, and variability in floral but not vegetative scent was lower in oil compared with non-oil species. Overall, oil species did not differ in their floral or vegetative scent from non-oil species. However, a correlation was found between oil secretion and six floral scent constituents specific to oil species, whereas the presence of four other floral compounds can be explained by phylogeny. Four of the five analysed oil species had bee-green flowers and the pattern of occurrence of this colour correlated with oil secretion. Non-oil species had different floral colours. The colour of leaves was similar among all species studied.

Conclusions

Evidence was found for correlated evolution between secretion of floral oils and floral but not vegetative visual and olfactory cues. The cues correlating with oil secretion were probably selected by Macropis bees, the specialized pollinators of oil-secreting Lysimachia species, and may have evolved in order to attract these bees.  相似文献   

10.

Background and Aims

Plant populations experiencing divergent pollination environments may be under selection to modify floral traits in ways that increase both attractiveness to and efficiency of novel pollinators. These changes may come at the cost of reducing overall effectiveness of other pollinators. The goal of this study was to examine differences in attractiveness and efficiency between Clarkia concinna and C. breweri, sister species of annual plants with parapatric distributions.

Methods

An assessment was made as to whether observed differences in visitors between natural populations are driven by differences in floral traits or differences in the local pollination environment. Differences in floral attractiveness were quantified by setting out arrays of both species in the geographical range of each species and exposing both species to nocturnal hawkmoths (Hyles lineata) in flight cages. Differences in visitor efficiency were estimated by measuring stigma–visitor contact frequency and pollen loads for diurnal visitors, and pollen deposition on stigmas for hawkmoths.

Key Results

The composition of visitors to arrayed plants was similar between plant species at any particular site, but highly divergent among sites, and reflected differences in visitors to natural populations. Diurnal insects visited both species, but were more common at C. concinna populations. Hummingbirds and hawkmoths were only observed visiting within the range of C. breweri. Despite attracting similar species when artificially presented together, C. concinna and C. breweri showed large differences in pollinator efficiency. All visitors except hawkmoths pollinated C. concinna more efficiently.

Conclusions

Differences in the available pollinator community may play a larger role than differences in floral traits in determining visitors to natural populations of C. concinna and C. breweri. However, floral traits mediate differences in pollinator efficiency. Increased effectiveness of the novel hawkmoth pollinator on C. breweri comes at relatively little cost in attractiveness to other visitors, but at large cost in their efficiency as pollinators.  相似文献   

11.

Background and Aims

Flower morphology and inflorescence architecture affect pollinator foraging behaviour and thereby influence the process of pollination and the reproductive success of plants. This study explored possible ecological functions of the lever-like stamens and the floral design in Salvia cyclostegia.

Methods

Flower construction was experimentally manipulated by removing either the lower lever arms or the upper fertile thecae of the two stamens from a flower. The two types of manipulated individuals were intermixed with the control ones and randomly distributed in the population.

Key Results

Removing the sterile lower lever arms significantly reduced handling time per flower of the main pollinator, Bombus personatus. Interestingly, this manipulation did not increase the number of flowers probed per plant visit, but instead reduced it, i.e. shortened the visit sequence of the bumble-bees. Both loss of staminal lever function by removing lower lever arms and exclusion of self pollen by removing upper fertile thecae significantly reduced seed set per flower and seed set per plant. Both the manipulations interacted significantly with inflorescence size for the effect on female reproductive output.

Conclusions

Though the intact flowers demand a long handling time for pollinators, the reversible staminal lever is of advantage by promoting dispersal of pollen and thus the male function. The particular floral design in S. cyclostegia contributes to the floral constancy of B. personatus bumble-bees, with the lower lever arms acting as an optical cue for foraging cognition.  相似文献   

12.

Background and Aims

The extreme complexity of asclepiad flowers (Asclepiadoideae–Apocynaceae) has generated particular interest in the pollination biology of this group of plants especially in the mechanisms involved in the pollination processes. This study compares two South American species, Morrenia odorata and Morrenia brachystephana, with respect to morphology and anatomy of flower structures, dynamic aspects of the pollination mechanism, diversity of visitors and effectiveness of pollinators.

Methods

Floral structure was studied with fresh and fixed flowers following classical techniques. The pollination mechanism was studied by visiting fresh flowers in the laboratory with artificial pollinator body parts created with an eyelash. Morphometric and nectar measurements were also taken. Pollen transfer efficiency in the flowers was calculated by recording the frequency of removed and inserted pollinia. Visitor activity was recorded in the field, and floral visitors were captured for subsequent analysis of pollen loads. Finally, pollinator effectiveness was calculated with an index.

Key Results

The detailed structure of the flowers revealed a complex system of guide rails and chambers precisely arranged in order to achieve effective pollinaria transport. Morrenia odorata is functionally specialized for wasp pollination, and M. brachystephana for wasp and bee pollination. Pollinators transport chains of pollinaria adhered to their mouthparts.

Conclusions

Morrenia odorata and M. brachystephana present differences in the morphology and size of their corona, gynostegium and pollinaria, which explain the differences in details of the functioning of the general pollination mechanism. Pollination is performed by different groups of highly effective pollinators. Morrenia species are specialized for pollination mainly by several species of wasps, a specialized pollination which has been poorly studied. In particular, pompilid wasps are reported as important pollinators in other regions outside South Africa. A putative new function of nectar in asclepiads is presented, as it would be contributing to the pollination mechanism.  相似文献   

13.

Background and Aims

The pollination biology of very few Chloraeinae orchids has been studied to date, and most of these studies have focused on breeding systems and fruiting success. Chloraea membranacea Lindl. is one of the few non-Andean species in this group, and the aim of the present contribution is to elucidate the pollination biology, functional floral morphology and breeding system in native populations of this species from Argentina (Buenos Aires) and Brazil (Rio Grande do Sul State).

Methods

Floral features were examined using light microscopy, and scanning and transmission electron microscopy. The breeding system was studied by means of controlled pollinations applied to plants, either bagged in the field or cultivated in a glasshouse. Pollination observations were made on natural populations, and pollinator behaviour was recorded by means of photography and video.

Key Results

Both Argentinean and Brazilian plants were very consistent regarding all studied features. Flowers are nectarless but scented and anatomical analysis indicates that the dark, clavate projections on the adaxial labellar surface are osmophores (scent-producing glands). The plants are self-compatible but pollinator-dependent. The fruit-set obtained through cross-pollination and manual self-pollination was almost identical. The main pollinators are male and female Halictidae bees that withdraw the pollinarium when leaving the flower. Remarkably, the bees tend to visit more than one flower per inflorescence, thus promoting self-pollination (geitonogamy). Fruiting success in Brazilian plants reached 60·78 % in 2010 and 46 % in 2011. Some pollinarium-laden female bees were observed transferring pollen from the carried pollinarium to their hind legs. The use of pollen by pollinators is a rare record for Orchidaceae in general.

Conclusions

Chloraea membrancea is pollinated by deceit. Together, self-compatibility, pollinarium texture, pollinator abundance and behaviour may account for the observed high fruiting success. It is suggested that a reappraisal and re-analysis of important flower features in Chloraeinae orchids is necessary.  相似文献   

14.

Background and Aims

Pollinator-limited seed-set in some terrestrial orchids is compensated for by the presence of long-lived flowers. This study tests the hypothesis that pollen from these insect-pollinated orchids should be desiccation tolerant and relatively long lived using four closely related UK terrestrial species; Anacamptis morio, Dactylorhiza fuchsii, D. maculata and Orchis mascula.

Methods

Pollen from the four species was harvested from inflorescences and germinated in vitro, both immediately and also after drying to simulate interflower transit. Their tolerance to desiccation and short-term survival was additionally assessed after 3 d equilibration at a range of relative humidities (RHs), and related to constructed sorption isotherms (RH vs. moisture content, MC). Ageing of D. fuchsii pollen was further tested over 2 months against temperature and RH, and the resultant survival curves were subjected to probit analysis, and the distribution of pollen death in time (σ) was determined. The viability and siring ability, following artificial pollinations, were determined in D. fuchsii pollen following storage for 6 years at –20 °C.

Key Results

The pollen from all four species exhibited systematic increases in germinability and desiccation tolerance as anthesis approached, and pollen from open flowers generally retained high germinability. Short-term storage revealed sensitivity to low RH, whilst optimum survival occurred at comparable RHs in all species. Similarly, estimated pollen life spans (σ) at differing temperatures were longest under the dry conditions. Despite a reduction in germination and seeds per capsule, long-term storage of D. fuchsii pollen did not impact on subsequent seed germination in vitro.

Conclusions

Substantial pollen desiccation tolerance and life span of the four entomophilous orchids reflects a resilient survival strategy in response to unpredictable pollinator visitation, and presents an alternative approach to germplasm conservation.  相似文献   

15.

Background and Aims

Reciprocal herkogamy, including enantiostyly and heterostyly, involves reciprocity in the relative positions of the sexual elements within the flower. Such systems result in morphologically and, since pollen is deposited on and captured from different parts of the pollinator, functionally distinct floral forms. Deviations from the basic pattern may modify the functionality of these mechanisms. For heterostylous species, such deviations are generally related to environmental disturbances, pollination services and/or reduced numbers of one floral morph. Deviations for enantiostylous species have not yet been reported. This study aims to investigate enantiostyly in Chamaecrista flexuosa, in particular the presence of deviations from the standard form, in an area of coastal vegetation in north-east Brazil.

Methods

Observations and investigations of floral biology, the reproductive system, pollinator behaviour, floral morphology and morphometry were performed.

Key Results

In C. flexuosa flowers, anthers of different size but similar function are grouped. The flowers were self-compatible and set fruits after every treatment, except in the spontaneous self-pollination experiment, thereby indicating their dependence on pollen vectors. The flowers were pollinated by bees, especially Xylocopa cearensis and X. grisencens. Pollen is deposited and captured from the ventral portion of the pollinator''s body. Variations in the spatial arrangement of floral elements allowed for the identification of floral morphs based on both morphological and functional criteria. Using morphological criteria, morphologically right (MR) and morphologically left (ML) floral morphs were identified. Three floral morphs were identified using functional criteria: functionally right (FR), functionally central (FC) and functionally left (FL). Combinations of morphologically and functionally defined morphs did not occur in equal proportions. There was a reduced frequency of the MR–FR combination.

Conclusions

The results indicate the occurrence of an atypical enantiostyly in C. flexuosa. This seems to improve reproductive success by increasing the efficiency of pollen deposition and capture.  相似文献   

16.

Background and Aims

Spatial variation in pollinator composition and abundance is a well-recognized phenomenon. However, a weakness of many studies claiming specificity of plant–pollinator interactions is that they are often restricted to a single locality. The aim of the present study was to investigate pollinator effectiveness of the different flower visitors to the terrestrial orchid Eulophia alta at three different localities and to analyse whether differences in pollinator abundance and composition effect this plant''s reproductive success.

Methods

Natural pollination was observed in vivo, and manipulative experiments were used to study the pollination biology and breeding system of E. alta at three sites near Manaus, Brazil. To gain a better understanding of the underlying mechanisms of pollinator attraction, nectar composition and secretion patterns were also studied, floral scent composition was analysed and a bioassay was conducted.

Key Results

Flower visitors, pollinator composition, pollinia transfer efficiency of particular pollinator species and natural fruit set differed among the investigated populations of E. alta. Flowers were self-compatible, partially autogamous and effectively pollinated by five bee species (four Centris species and Xylocopa muscaria). Visiting insects appeared to imbibe small amounts of hexose-rich nectar. Nectar sugar content was highest on the third day after flower opening. Floral fragrance analyses revealed 42 compounds, of which monoterpenes and benzenoids predominated. A bioassay using floral parts revealed that only floral tissue from the labellum chamber and labellum tip was attractive to flower visitors.

Conclusions

The data suggest that observed differences in reproductive success in the three populations cannot be explained by absolute abundance of pollinators alone. Due to behavioural patterns such as disturbance of effective pollinators on flowers by male Centris varia bees defending territory, pollinia transfer efficiencies of particular pollinator species also vary between study sites and result in differing reproductive success.  相似文献   

17.

Background and Aims

Plants use a diverse range of visual and olfactory cues to advertize to pollinators. Australian Chiloglottis orchids employ one to three related chemical variants, all 2,5-dialkylcyclohexane-1,3-diones or ‘chiloglottones’ to sexually attract their specific male pollinators. Here an investigation was made of the physiological aspects of chiloglottone synthesis and storage that have not previously been examined.

Methods

The location of chiloglottone production was determined and developmental and diurnal changes by GC-MS analysis of floral tissue extracts was monitored in two distantly related Chiloglottis species. Light treatment experiments were also performed using depleted flowers to evaluate if sunlight is required for chiloglottone production; which specific wavelengths of light are required was also determined.

Key Results

Chiloglottone production only occurs in specific floral tissues (the labellum calli and sepals) of open flowers. Upon flower opening chiloglottone production is rapid and levels remain more or less stable both day and night, and over the 2- to 3-week lifetime of the flower. Furthermore, it was determined that chiloglottone production requires continuous sunlight, and determined the optimal wavelengths of sunlight in the UV-B range (with peak of 300 nm).

Conclusions

UV-B light is required for the synthesis of chiloglottones – the semiochemicals used by Chiloglottis orchids to sexually lure their male pollinators. This discovery appears to be the first case to our knowledge where plant floral odour production depends on UV-B radiation at normal levels of sunlight. In the future, identification of the genes and enzymes involved, will allow us to understand better the role of UV-B light in the biosynthesis of chiloglottones.  相似文献   

18.
Fang Q  Chen YZ  Huang SQ 《Annals of botany》2012,109(2):379-384

Background and Aims

Winter-flowering plants outside the tropics may experience a shortage of pollinator service, given that insect activity is largely limited by low temperature. Birds can be alternative pollinators for these plants, but experimental evidence for the pollination role of birds in winter-flowering plants is scarce.

Methods

Pollinator visitation to the loquat, Eriobotrya japonica (Rosaceae), was observed across the flowering season from November to January for two years in central China. Self- and cross-hand pollination was conducted in the field to investigate self-compatibility and pollen limitation. In addition, inflorescences were covered by bird cages and nylon mesh nets to exclude birds and all animal pollinators, respectively, to investigate the pollination role of birds in seed production.

Results

Self-fertilization in the loquat yielded few seeds. In early winter insect visit frequency was relatively higher, while in late winter insect pollinators were absent and two passerine birds (Pycnonotus sinensis and Zosterops japonicus) became the major floral visitors. However, seed-set of open-pollinated flowers did not differ between early and late winter. Exclusion of bird visitation greatly reduced seed-set, indicating that passerine birds were important pollinators for the loquat in late winter. The whitish perigynous flowers reward passerines with relatively large volumes of dilute nectar. Our observation on the loquat and other Rosaceae species suggested that perigyny might be related to bird pollination but the association needs further study.

Conclusions

These findings suggest that floral traits and phenology would be favoured to attract bird pollinators in cold weather, in which insect activity is limited.  相似文献   

19.

Background and Aims

Studies of local floral adaptation in response to geographically divergent pollinators are essential for understanding floral evolution. This study investigated local pollinator adaptation and variation in floral traits in the rewarding orchid Gymnadenia odoratissima, which spans a large altitudinal gradient and thus may depend on different pollinator guilds along this gradient.

Methods

Pollinator communities were assessed and reciprocal transfer experiments were performed between lowland and mountain populations. Differences in floral traits were characterized by measuring floral morphology traits, scent composition, colour and nectar sugar content in lowland and mountain populations.

Key Results

The composition of pollinator communities differed considerably between lowland and mountain populations; flies were only found as pollinators in mountain populations. The reciprocal transfer experiments showed that when lowland plants were transferred to mountain habitats, their reproductive success did not change significantly. However, when mountain plants were moved to the lowlands, their reproductive success decreased significantly. Transfers between populations of the same altitude did not lead to significant changes in reproductive success, disproving the potential for population-specific adaptations. Flower size of lowland plants was greater than for mountain flowers. Lowland plants also had significantly higher relative amounts of aromatic floral volatiles, while the mountain plants had higher relative amounts of other floral volatiles. The floral colour of mountain flowers was significantly lighter compared with the lowland flowers.

Conclusions

Local pollinator adaptation through pollinator attraction was shown in the mountain populations, possibly due to adaptation to pollinating flies. The mountain plants were also observed to receive pollination from a greater diversity of pollinators than the lowland plants. The different floral phenotypes of the altitudinal regions are likely to be the consequence of adaptations to local pollinator guilds.  相似文献   

20.

Background and Aims

Silene dioica and S. latifolia experience only limited introgression despite overlapping flowering phenologies, geographical distributions, and some pollinator sharing. Conspecific pollen precedence and other reproductive barriers operating between pollination and seed germination may limit hybridization. This study investigates whether barriers at this stage contribute to reproductive isolation between these species and, if so, which mechanisms are responsible.

Methods

Pollen-tube lengths for pollen of both species in styles of both species were compared. Additionally, both species were pollinated with majority S. latifolia and majority S. dioica pollen mixes; then seed set, seed germination rates and hybridity of the resulting seedlings were determined using species-specific molecular markers.

Key Results

The longest pollen tubes were significantly longer for conspecific than heterospecific pollen in both species, indicating conspecific pollen precedence. Seed set but not seed germination was lower for flowers pollinated with pure heterospecific versus pure conspecific pollen. Mixed-species pollinations resulted in disproportionately high representation of nonhybrid offspring for pollinations of S. latifolia but not S. dioica flowers.

Conclusions

The finding of conspecific pollen precedence for pollen-tube growth but not seed siring in S. dioica flowers may be explained by variation in pollen-tube growth rates, either at different locations in the style or between leading and trailing pollen tubes. Additionally, this study finds a barrier to hybridization operating between pollination and seed germination against S. dioica but not S. latifolia pollen. The results are consistent with the underlying cause of this barrier being attrition of S. dioica pollen tubes or reduced success of heterospecifically fertilized ovules, rather than time-variant mechanisms. Post-pollination, pre-germination barriers to hybridization thus play a partial role in limiting introgression between these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号