首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Successful species interactions require that both partners share a similar cue. For many species, spring warming acts as a shared signal to synchronize mutualist behaviors. Spring flowering plants and the ants that disperse their seeds respond to warming temperatures so that ants forage when plants drop seeds. However, where warm‐adapted ants replace cold‐adapted ants, changes in this timing might leave early seeds stranded without a disperser. We investigate plant seed dispersal south and north of a distinct boundary between warm‐ and cold‐adapted ants to determine if changes in the ant species influence local plant dispersal. The warm‐adapted ants forage much later than the cold‐adapted ants, and so we first assess natural populations of early and late blooming plants. We then transplant these plants south and north of the ant boundary to test whether distinct ant climate requirements disrupt the ant–plant mutualism. Whereas the early blooming plant's inability to synchronize with the warm‐adapted ant leaves its populations clumped and patchy and its seedlings clustered around the parents in natural populations, when transplanted into the range of the cold‐adapted ant, effective seed dispersal recovers. In contrast, the mutualism persists for the later blooming plant regardless of location because it sets seed later in spring when both warm‐ and cold‐adapted ant species forage, resulting in effective seed dispersal. These results indicate that the climate response of species interactions, not just the species themselves, is integral in understanding ecological responses to a changing climate. Data linking phenological synchrony and dispersal are rare, and these results suggest a viable mechanism by which a species' range is limited more by biotic than abiotic interactions – despite the general assumption that biotic influences are buried within larger climate drivers. These results show that biotic partner can be as fundamental a niche requirement as abiotic resources.  相似文献   

2.
Many biotic interactions influence community structure, yet most distribution models for plants have focused on plant competition or used only abiotic variables to predict plant abundance. Furthermore, biotic interactions are commonly context‐dependent across abiotic gradients. For example, plant–plant interactions can grade from competition to facilitation over temperature gradients. We used a hierarchical Bayesian framework to predict the abundances of 12 plant species across a mountain landscape and test hypotheses on the context‐dependency of biotic interactions over abiotic gradients. We combined field‐based estimates of six biotic interactions (foliar herbivory and pathogen damage, fungal root colonization, fossorial mammal disturbance, plant cover and plant diversity) with abiotic data on climate and soil depth, nutrients and moisture. All biotic interactions were significantly context‐dependent along temperature gradients. Results supported the stress gradient hypothesis: as abiotic stress increased, the strength or direction of the relationship between biotic variables and plant abundance generally switched from negative (suggesting suppressed plant abundance) to positive (suggesting facilitation/mutualism). For half of the species, plant cover was the best predictor of abundance, suggesting that the prior focus on plant–plant interactions is well‐justified. Explicitly incorporating the context‐dependency of biotic interactions generated novel hypotheses about drivers of plant abundance across abiotic gradients and may improve the accuracy of niche models.  相似文献   

3.
Background and Aims There is still debate regarding the direction and strength of plant interactions under intermediate to high levels of stress. Furthermore, little is known on how disturbance may interact with physical stress in unproductive environments, although recent theory and models have shown that this interplay may induce a collapse of plant interactions and diversity. The few studies assessing such questions have considered the intensity of biotic interactions but not their importance, although this latter concept has been shown to be very useful for understanding the role of interactions in plant communities. The objective of this study was to assess the interplay between stress and disturbance for plant interactions in dry calcareous grasslands. Methods A field experiment was set up in the Dordogne, southern France, where the importance and intensity of biotic interactions undergone by four species were measured along a water stress gradient, and with and without mowing disturbance. Key Results The importance and intensity of interactions varied in a very similar way along treatments. Under undisturbed conditions, plant interactions switched from competition to neutral with increasing water stress for three of the four species, whereas the fourth species was not subject to any significant biotic interaction along the gradient. Responses to disturbance were more species-specific; for two species, competition disappeared with mowing in the wettest conditions, whereas for the two other species, competition switched to facilitation with mowing. Finally, there were no significant interactions for any species in the disturbed and driest conditions. Conclusions At very high levels of stress, plant performances become too weak to allow either competition or facilitation and disturbance may accelerate the collapse of interactions in dry conditions. The results suggest that the importance and direction of interactions are more likely to be positively related in stressful environments.  相似文献   

4.
Qiang Yang  Bo Li  Evan Siemann 《Oikos》2015,124(2):216-224
Exotic plant species may exhibit abiotic niche expansions that enable them to persist in a greater variety of habitat types in their introduced ranges than in their native ranges. This may reflect variation in limitation by different abiotic niche dimensions (realized niche shift) or phenotypic effects of biotic interactions that vary among ranges (realized niche expansion). Novel abiotic and biotic environments in the introduced range may also lead to genetic changes in exotic plant traits that enhance their abiotic stress tolerance (fundamental niche expansion). Here, we investigated how biotic interactions (aboveground herbivory and soil organisms) affect plant salinity tolerance using the invasive species Triadica sebifera from China (native range) and US (introduced range) populations grown in common gardens in both ranges. Simulated herbivory significantly reduced survival in saline treatments with reductions especially large at low salinity. Soil sterilization had a negative effect on survival at low salinity in China but had a positive effect on survival at low salinity in the US. Triadica survival and biomass were higher for US populations than for China populations, particularly in China but salinity tolerance did not depend on population origin. On average, arbuscular mycorrhizal (AM) colonization was higher for US populations, US soils and low salinity. These factors had a significant, positive, non‐additive interaction so that clipped seedlings from US populations in low saline US soils had high levels of AM colonization. Overall, our results show that phenotypic biotic interactions shape Triadica's salinity tolerance. Positive and negative biotic interactions together affected plant performance at intermediate stress levels. However, only aboveground damage consistently affected salinity tolerance, suggesting an important role for enemy release in expanding stress tolerance.  相似文献   

5.
Linking competitive outcomes to environmental conditions is necessary for understanding species'' distributions and responses to environmental change. Despite this importance, generalizable approaches for predicting competitive outcomes across abiotic gradients are lacking, driven largely by the highly complex and context-dependent nature of biotic interactions. Here, we present and empirically test a novel niche model that uses functional traits to model the niche space of organisms and predict competitive outcomes of co-occurring populations across multiple resource gradients. The model makes no assumptions about the underlying mode of competition and instead applies to those settings where relative competitive ability across environments correlates with a quantifiable performance metric. To test the model, a series of controlled microcosm experiments were conducted using genetically related strains of a widespread microbe. The model identified trait microevolution and performance differences among strains, with the predicted competitive ability of each organism mapped across a two-dimensional carbon and nitrogen resource space. Areas of coexistence and competitive dominance between strains were identified, and the predicted competitive outcomes were validated in approximately 95% of the pairings. By linking trait variation to competitive ability, our work demonstrates a generalizable approach for predicting and modelling competitive outcomes across changing environmental contexts.  相似文献   

6.
Joshi RK  Kar B  Nayak S 《Bioinformation》2011,7(4):180-183
Mitogen activated protein kinase (MAPK) cascades are universal signal transduction modules that play crucial role in plant growth and development as well as biotic and abiotic stress responses. 20 and 17 MAPKs have been characterized in Arabidopsis and rice respectively, which are used for identification of the putative MAPKs in other higher plants. However, no MAPK gene sequences have yet been characterized for asexually reproducing plants. We describe the analysis of MAPK EST sequences from Curcuma longa (an asexually reproducible plant of great medicinal and economic significance). The four Curcuma MAPKs contains all 11 MAPK conserved domains and phosphorylation-activation motif, TEY. Phylogenetic analysis grouped them in the subgroup A and C as identified earlier for Arabidopsis. The Curcuma MAPKs identified showed high sequence homology to rice OsMPK3, OsMPK4 and OsMPK5 suggesting the presence of similar key element in signaling biotic and abiotic stress responses. Although further in vivo and in vitro analysis are required to establish the physiological role of Curcuma MAPKs, this study provides the base for future research on diverse signaling pathways mediated by MAPKs in Curcuma longa as well as other asexually reproducing plants.  相似文献   

7.
Understanding the mechanisms that promote the invasion of natural protected areas by exotic plants is a central concern for ecology. We demonstrated that nests of the leaf-cutting ant, Acromyrmex lobicornis, near roadsides promote the abundance, growth and reproduction of two exotic plant species, Carduus nutans and Onopordum acanthium, in a national park in northern Patagonia, Argentina and determine the mechanisms that produce these effects. Refuse dumps (RDs) from ant nests have a higher nutrient content than nearby non-nest soils (NNSs); foliar nutrient content and their 15N isotopic signature strongly suggest that plants reach and use these nutrients. Both species of exotic plants in RDs were 50-600% more abundant; seedlings had 100-1000% more foliar area and root and leaf biomass; and adult plants produced 100-300% more seeds than nearby NNS plants. Plants can thus gain access to and benefit from the nutrient content of ant RD, supporting the hypotheses that enhanced resource availability promotes exotic plant performance that could increase the likelihood of biological invasions. The two exotics produce an estimated of 8385000 more seeds ha(-1) in areas with ant nests compared with areas without; this exceptional increase in seed production represents a potential threat to nearby non-invaded communities. We propose several management strategies to mitigate this threat. Removal efforts of exotics should be focused on ant RDs, where plants are denser and represent a higher source of propagules.  相似文献   

8.
Plants have evolved complex signaling networks to respond to their fluctuating environment and adapt their growth and development. Calcium-dependent signaling pathways play key role in the onset of these adaptive responses. In plant cells, the intracellular calcium transients are triggered by numerous stimuli and it is supposed that the large repertory of calcium sensors present in higher plants could contribute to integrate these signals in physiological responses. Here, we present data on CML9, a calmodulin-like protein that appears to be involved in plant responses to both biotic and abiotic stress. Using a reverse genetic approach based on gain and loss of function mutants, we present here data indicating that this CML might also be involved in root growth control in response to the flagellin, a pathogen-associated molecular pattern (PAMP) also involved in plant immunity.  相似文献   

9.
Background and Aims Nitric oxide (NO) is involved in the signalling and regulation of plant growth and development and responses to biotic and abiotic stresses. The photoperiod-sensitive mutant 7B-1 in tomato (Solanum lycopersicum) showing abscisic acid (ABA) overproduction and blue light (BL)-specific tolerance to osmotic stress represents a valuable model to study the interaction between light, hormones and stress signalling. The role of NO as a regulator of seed germination and ABA-dependent responses to osmotic stress was explored in wild-type and 7B-1 tomato under white light (WL) and BL. Methods Germination data were obtained from the incubation of seeds on germinating media of different composition. Histochemical analysis of NO production in germinating seeds was performed by fluorescence microscopy using a cell-permeable NO probe, and endogenous ABA was analysed by mass spectrometry. Key Results The NO donor S-nitrosoglutathione stimulated seed germination, whereas the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) had an inhibitory effect. Under WL in both genotypes, PTIO strongly suppressed germination stimulated by fluridone, an ABA inhibitor. The stimulatory effect of the NO donor was also observed under osmotic stress for 7B-1 seeds under WL and BL. Seed germination inhibited by osmotic stress was restored by fluridone under WL, but less so under BL, in both genotypes. This effect of fluridone was further modulated by the NO donor and NO scavenger, but only to a minor extent. Fluorescence microscopy using the cell-permeable NO probe DAF-FM DA (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) revealed a higher level of NO in stressed 7B-1 compared with wild-type seeds. Conclusions As well as defective BL signalling, the differential NO-dependent responses of the 7B-1 mutant are probably associated with its high endogenous ABA concentration and related impact on hormonal cross-talk in germinating seeds. These data confirm that light-controlled seed germination and stress responses include NO-dependent signalling.  相似文献   

10.
Changes in species composition during succession are driven by biotic and abiotic factors leading to a multitude of niches occupied by distinct species. Gradient analyses of plant communities provide opportunities to approximate the niche position of species along a successional gradient. Several plant traits have been used to explain mechanisms governing successional sequences, but generalising changes in species traits during primary succession is still controversial. This study examined whether the seed mass and the optimum temperature for germination could explain the niche position of several glacier foreland species along a primary successional gradient in the Austrian Central Alps. We hypothesised that pioneer species should possess lighter seeds and a lower optimum temperature for germination than late successional species. We found significant differences in the seed mass between species, but the seed mass did not correspond with the assigned niche position on the successional gradient. Germination responses to temperature also differed significantly between species. Pioneer species performed better at lower temperatures than late successional species, suggesting that the optimum temperature for germination is a driver of niche separation. We discuss the interactions between seed traits and environmental conditions along the primary successional gradient emphasising the importance of temperature requirements for the germination. Differences in the regeneration characteristics are a major cue governing species turnover in glacier foreland succession.  相似文献   

11.
12.
Populations are often found on different habitats at different geographic locations. This habitat shift may be due to biased dispersal, physiological tolerances or biotic interactions. To explore how fitness of the native plant Chamaecrista fasciculata depends on habitat within, at and beyond its range edge, we planted seeds from five populations in two soil substrates at these geographic locations. We found that with reduced competition, lifetime fitness was always greater or equivalent in one habitat type, loam soils, though early-season survival was greater on sand soils. At the range edge, natural populations are typically found on sand soil habitats, which are also less competitive environments. Early-season survival and fitness differed among source populations, and when transplanted beyond the range edge, range edge populations had greater fitness than interior populations. Our results indicate that even when the optimal soil substrate for a species does not change with geographic range location, the realized niche of a species may be restricted to sub-optimal habitats at the range edge because of the combined effects of differences in abiotic and biotic effects (e.g. competitors) between substrates.  相似文献   

13.
Species’ ranges are primarily limited by the physiological (abiotic) tolerance of the species, described by their fundamental niche. Additionally, demographic processes, dispersal, and interspecific interactions with other species are shaping species distributions, resulting in the realised niche. Understanding the complex interplay between these drivers is vital for making robust biodiversity predictions to novel environments. Correlative species distribution models have been widely used to predict biodiversity response but also remain criticised, as they are not able to properly disentangle the abiotic and biotic drivers shaping species’ niches. Recent developments have thus focussed on 1) integrating demography and dispersal into species distribution models, and on 2) integrating interspecific interactions. Here, I review recent demographic and multi‐species modelling approaches and discuss critical aspects of these models that remain underexplored in general and in respect to birds, for example, the complex life histories of birds and other animals as well as the scale dependence of interspecific interactions. I conclude by formulating modelling guidelines for integrating the abiotic and biotic processes that limit species’ ranges, which will help to disentangle the complex roles of demography, dispersal and interspecific interactions in shaping species niches. Throughout, I pinpoint complexities of avian life cycles that are critical for consideration in the models and identify data requirements for operationalizing the different modelling steps.  相似文献   

14.
Abiotic and biotic stresses are the major factors that negatively impact plant growth. In response to abiotic environmental stresses such as drought, plants generate resistance responses through abscisic acid (ABA) signal transduction. In addition to the major role of ABA in abiotic stress signaling, ABA signaling was reported to downregulate biotic stress signaling. Conversely recent findings provide evidence that initial activation of plant immune signaling inhibits subsequent ABA signal transduction. Stimulation of effector-triggered disease response can interfere with ABA signal transduction via modulation of internal calcium-dependent signaling pathways. This review overviews the interactions of abiotic and biotic stress signal transduction and the mechanism through which stress surveillance system operates to generate the most efficient resistant traits against various stress condition.  相似文献   

15.
Aims Spatial patterns of fungal populations are affected by plant distribution, abiotic factors, fungal dispersal ability and inter-species interactions. While several studies have addressed spatial patterns of some mycorrhizal, saprotrophic and pathogenic fungi, the method based on fruit-body surveys is not efficient and unreliable to study the spatial pattern of root-associated fungal species because most fungi in plant roots do not have sporocarps and cannot be identified based only on morphological traits. Our aims are (i) to determine the spatial pattern of common root-associated fungi; (ii) to evaluate whether the abundance and spatial pattern of root-associated fungi and categories of fungi, reflect their biotic and abiotic niche constraints.  相似文献   

16.
A combination of abiotic and biotic factors probably restricts the range of many species. Recent evolutionary models and tests of those models have asked how a gradual change in environmental conditions can set the range limit, with a prominent idea being that gene flow disrupts local adaptation. We investigate how biotic factors, explicitly competition for limited resources, result in evolutionarily stable range limits even in the absence of the disruptive effect of gene flow. We model two competing species occupying different segments of the resource spectrum. If one segment of the resource spectrum declines across space, a species that specializes on that segment can be driven to extinction, even though in the absence of competition it would evolve to exploit other abundant resources and so be saved. The result is that a species range limit is set in both evolutionary and ecological time, as the resources associated with its niche decline. Factors promoting this outcome include: (i) inherent gaps in the resource distribution, (ii) relatively high fitness of the species when in its own niche, and low fitness in the alternative niche, even when resource abundances are similar in each niche, (iii) strong interspecific competition, and (iv) asymmetric interspecific competition. We suggest that these features are likely to be common in multispecies communities, thereby setting evolutionarily stable range limits.  相似文献   

17.
Species occurrence in a site can be limited by both the abiotic environment and biotic interactions. These two factors operate in concert, but their relative importance is often unclear. By experimentally introducing seeds or plants into competition‐free gaps or into the intact vegetation, we can disentangle the biotic and abiotic effects on plant establishment. We established a seed‐sowing/transplant experiment in three different meadows. Species were introduced, as seeds and pregrown transplants, into competition‐free gaps and the intact vegetation. They included 12 resident plants from the locality and 18 species typical for different habitats. Last two years, gaps were overgrown with vegetation from surrounding plants and we observed the competitive exclusion of our focal plants. We compared plant survival with the expected occurrence in target locality (Beals index). Many of the species with habitat preferences different from our localities were able to successfully establish from seeds and grow in the focal habitat if competition was removed. They included species typical for much drier conditions. These species were thus not limited by the abiotic conditions, but by competition. Pregrown transplants were less sensitive to competition, when compared to seedlings germinated from seeds. Beals index significantly predicted both species success in gaps and the ability to withstand competition. Survival in a community is dependent on the adaptation to both the abiotic environment and biotic interactions. Statistically significant correlation coefficients of the ratio of seedling survival in vegetation and gaps with Beals index suggest the importance of biotic interactions as a determinant of plant community composition. To disentangle the importance of abiotic and biotic effect on plant establishment, it is important to distinguish between species pool as a set of species typically found in given community type (determined by Beals index) and a set of species for which the abiotic conditions are suitable.  相似文献   

18.
The ATPases associated with various cellular activities (AAA) proteins are widespread in living organisms. Some of the AAA-type ATPases possess metalloprotease activities. Other members constitute the 26S proteasome complexes. In recent years, a few AAA members have been implicated in vesicle-mediated secretion, membrane fusion, cellular organelle biogenesis, and hypersensitive responses (HR) in plants. However, the physiological roles and biochemical activities of plant AAA proteins have not yet been defined at the molecular level, and regulatory mechanisms underlying their functions are largely unknown. In this study, we showed that overexpression of an Arabidopsis gene encoding a mitochondrial AAA protein, ATPase-in-Seed-Development (ASD), induces morphological and anatomical defects in seed maturation. The ASD gene is expressed at a high level during the seed maturation process and in mature seeds but is repressed rapidly in germinating seeds. Transgenic plants overexpressing the ASD gene are morphologically normal. However, seed formation is severely disrupted in the transgenic plants. The ASD gene is induced by abiotic stresses, such as low temperatures and high salinity, in an abscisic acid (ABA)-dependent manner. The ASD protein possesses ATPase activity and is localized into the mitochondria. Our observations suggest that ASD may play a role in seed maturation by influencing mitochondrial function under abiotic stress.  相似文献   

19.
Kar B  Nayak S  Joshi RK 《Bioinformation》2012,8(3):142-146
Glycine-rich proteins (GRPs) are a group of proteins characterized by their high content of glycine residues often occurring in repetitive blocs. The diverse expression pattern and sub cellular localization of various GRPs suggest their implication in different physiological processes. Several GRPs has been isolated and characterized from different monocots and dicots. However, little or no information is available about the structure and function of GRPs in asexually reproducing plants. In this study, in-silico analysis of expressed sequence tag database resulted in the isolation of fifty-one GRPs from Curcuma longa L., an asexually reproducible plant of great medicinal and economic significance. Phylogenetic analysis grouped the GRPs into four distinct classes based on conserved motifs and nature of glycine-rich repeats. Majority of the isolated GRPs exhibited high homology with known GRPs from other plants that are expressed in response to various stresses. The presence of high structural diversity and signal peptide in some GRPs suggest their diverse physiological role and tissue specific localization. The isolated sequences can be used as a framework for cloning, characterization and expressional analysis of GRPs in response to various biotic and abiotic stresses in Curcuma longa as well as other asexually reproducing plants.  相似文献   

20.
Understanding the ecological processes that govern species'' range margins is a fundamental question in ecology with practical implications in conservation biology. The center‐periphery hypothesis predicts that organisms have higher abundance at the center of their geographic range. However, most tests of this hypothesis often used raster data, assuming that climatic conditions are consistent across one square km. This assumption is not always justified, particularly for mountainous species for which climatic conditions can vary widely across a small spatial scale. Previous studies rarely evenly sample occurrence data across the species'' distribution. In this study, we sampled an endemic perennial herb, Thunbergia atacorensis (Acanthanceae), throughout its range in West Africa using 54 plots and collected data on (a)biotic variables, the species density, leaf mass per area, and basal diameter. We built a structural equation model to test the direct and indirect effects of distance from geographic and climatic niche centers, and altitude on Thunbergia density as mediated by abiotic and biotic factors, population demographic structure, and individual size. Contrary to the prediction of the center‐periphery hypothesis, we found no significant effect of distance from geographic or climatic niche centers on plant density. This indicates that even the climatic center does not necessarily have optimal ecological conditions. In contrast, plant density varied with altitudinal gradient, but this was mediated by the effect of soil nitrogen and potassium which had positive effect on plant size. Surprisingly, we found no direct or mediating effect of interspecific competition on plant density. Altogether, our results highlight the role of geography, climatic, and ecological mismatch in predicting species distribution. Our study highlights that where altitudinal gradient is strong local‐scale heterogeneity in abiotic factors can play important role in shaping species range limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号