首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emission rates of CH4 were measured in microcosms of submerged soil which were planted with rice. Drainage of the rice microcosms for 48 h resulted in drastically decreased CH4 emission rates which only slowly recovered to the rates of the undrained controls. Drainage also resulted in drastically increased sulphate concentrations which only slowly decreased to nearly zero background values after the microcosms were submerged again. The mechanisms responsible for the decrease of CH4 production by aeration were investigated in slurries of a loamy and a sandy Italian rice soil. Incubation of the soil slurries under anoxic conditions resulted first in the reduction of nitrate, sulphate and ferric iron before CH4 production started. Incubation of the soil slurries for 48 h under air resulted in immediate and complete inhibition of CH4 production. Although the soil slurries were then again incubated under anoxic conditions (N2 atmosphere), the inhibition of CH4 production persisted for more than 30 days. The redox potential of the soil increased after the aeration but returned within 15 days to the low values typical for CH4 production. However, the concentrations of sulphate and of ferric iron increased dramatically after the aeration and stayed at elevated levels for the period during which CH4 production was inhibited. These observations show that even brief exposure of the soil to O2 allowed the production of sulphate and ferric iron from their reduced precursors. Elevated sulphate and ferric iron concentrations allowed sulphate-reducing and ferric iron-reducing bacteria to outcompete methanogenic bacteria on H2 as common substrate. Indeed, concentrations of H2 were decreased as long as sulphate and ferric iron were high so that the Gibbs free energy of CH4 production from H2/CO2 was also increased (less exergonic). On the other hand, concentrations of acetate, the more important precursor for CH4, were not much affected by the short aeration of the soil slurries, and the Gibbs free energy of CH4 production from acetate was highly exergonic suggesting that acetotrophic methanogens were not outcompeted but were otherwise inhibited. Aeration also resulted in increased rates of CO2 production and in a short-term increase of N2O production. However, these increases were < 10% of the decreased production of CH4 and did not represent a trade-off in terms of CO2 equivalents. Hence, short-term drainage and aeration of submerged paddy fields may be a useful mitigation option for decreasing the emission of greenhouse gases.  相似文献   

2.
Jia  Zhongjun  Cai  Zucong  Xu  Hua  Li  Xiaoping 《Plant and Soil》2001,230(2):211-221
To understand the integrated effects of rice plants (variety Wuyugeng 2) on CH4 emission during the typical rice growth stage, the production, oxidation and emission of methane related to rice plants were investigated simultaneously through laboratory and greenhouse experiments. CH4 emission was significantly higher from the rice planted treatment than from the unplanted treatment. In the rice planted treatment, CH4 emission was higher at tillering stage than at panicle initiation stage. An average of 36.3% and 54.7% of CH4 produced was oxidized in the rhizosphere at rice tillering stage and panicle initiation stage, respectively, measured by using methyl fluoride (MF) technique. In the meantime, CH4 production in the planted treatments incubated under O2-free N2 condition was reduced by 44.9 and 22.3%, respectively, compared to unplanted treatment. On the contrary, the presence of rice plants strongly stimulated CH4 production by approximately 72.3% at rice ripening stage. CH4 emission through rice plants averaged 95% at the tillering stage and 89% at the panicle initiation stage. Based on these results, conclusions are drawn that higher CH4 emission from the planted treatment than from unplanted treatment could be attributed to the function of rice plants for transporting CH4 from belowground to the atmosphere at tillering and panicle initiation stage, and that a higher CH4 emission at tillering stage than at panicle initiation stage is due to the lower rhizospheric CH4 oxidation and more effective transport mediated by rice plants.  相似文献   

3.
Rates of in situ sulfate reduction (SRR) in planted and unplanted rice fieldsoil were measured by the 35SO2– 4-radiotracermethod using soil microcosms. The concentration of 35SO2– 4 decreased exponentially with time.However, time course experiments indicated that incubation times of10–30 min were appropriate for measurements of SRRusing a single time point in routine assays. Unplanted microcosmsshowed high SRR of 177 nmol cm-3 d-1 inthe uppermost centimeter where average sulfate concentrations were<33 µM. Fine scaled measurements (1 mmresolution) localized highest SRR (<100 nmol cm-3d-1) at the oxic/anoxic interface at 2–5 mmdepth. In planted rice field soil, SRR of <310 nmolcm-3 d-1 were observed at 0–2cm depth. Sulfate reduction rates were determined at a millimeter-scalewith distance to a two dimensional root compartment. The SRR was highestat 0–1.5 mm distance to the root layer with rates up to500 nmol cm-3 d-1, indicating a highstimulation potential of the rice roots. SRR seemed to be mainlydependent on the in situ sulfate porewater concentrations. At thesoil surface of unplanted microcosms sulfate concentration decreasedfrom <150 µM to <10 µM within the first 8 mm of depth. In planted microcosmssulfate concentration varied from 87–99 µMsulfate at the 0–3 mm distance to the root layer to48–62 µM sulfate at a root distance>4 mm from the roots.The depth distribution of inorganic sulfur compounds was determinedfor planted and unplanted rice field soil. Sulfate, acid volatilesulfide (AVS) and chromium reducible sulfide (CRS) were up to 20 foldhigher in planted than in unplanted microcosms. CRS was the majorinsoluble sulfur fraction with concentrations >1.7µmol cm-3. Organic sulfur accounted for25–46% of the total sulfurpresent (269 µg/g dw) in an unplanted microcosm.The biogeochemical role of sulfate reduction forshort-term accumulation of inorganic sulfur compounds(FeS, FeS_2 and S°) in rice soil wasdetermined in a time course experiment with incubationperiods of 5, 10, 20, 30 and 60 min. The relativedistribution of CRS and AVS formation showedlittle depth dependence, whereas the formation of35S° seemed to be the highest in themore oxidized upper soil layers and near the root surface.AV35S was the first major product of sulfatereduction after 20–30 min, whereas CR35Swas formed, as AV35S and 35S°decreased, at longer incubation periods of >30 min.  相似文献   

4.
The world's growing human population causes an increasing demand for food, of which rice is one of the most important sources. In rice production nitrogen is often a limiting factor. As a consequence increasing amounts of fertiliser will have to be applied to maximise yields. There is an ongoing discussion on the possible effects of fertilisation on CH4 emissions. We therefore investigated the effects of N‐fertiliser (urea) on CH4 emission, production and oxidation in rice microcosms and field experiments. In the microcosms, a substantial but short‐lived reduction of CH4 emission was observed after N‐addition to 43‐d‐old rice plants. Methane oxidation increased by 45%, demonstrated with inhibitor measurements and model calculations based on stable carbon isotope data (δ13CH4). A second fertilisation applied to 92‐d‐old plants had no effect on CH4 emission rates. The positive effect of additional N on methanotrophic bacteria was also found in vitro for potential CH4 oxidation rates in soil and root samples from the microcosm and field experiments, indicated by elevated initial oxidation rates and reduced lag‐phases. Fertilisation did not affect methane production in the microcosms. In the field, the effects were diverse: methane production was inhibited in the topsoil, but stimulated instead in the bulk soil. Stimulation occurred probably in the anaerobic food chain at the level of hydrolytic or fermenting bacteria, because acetate, a methanogenic precursor, increased simultaneously. Combining field, microcosm and laboratory experiments we conclude that any agricultural treatment improving the N‐supply to the rice plants will also be favourable for the CH4 oxidising bacteria. However, N‐fertilisation had only a transient influence and was counter‐balanced in the field by an elevated CH4 production. A negative effect of the fertilisation was a transient increase of N2O emissions from the microcosms. However, integrating over the season the global warming potential (GWP) of N2O emitted after fertilisation was still negligible compared to the GWP of emitted CH4.  相似文献   

5.
The impact of oxygen (O2) input at the soil surface and in the rhizosphere of rice (Oryza sativa L.) on the spatial and temporal dynamics of arsenic (As) was investigated in a flooded paddy soil. A soil microcosm and root-mat technique were designed to mimic submerged conditions of paddy fields. Water-filled containers with (planted) or without (unplanted) 27-day-old rice seedlings were fitted for 20 days on top of microcosms containing an As-affected soil (Bangladesh). After the initial establishment of strongly reduced conditions (?230 mV) in both planted and unplanted soils, the redox potential gradually increased until the day 8 to reach?+?50 mV at 2 mm from the surface of unplanted soils only. This oxidation was associated with an accumulation of NH4-oxalate extractable As (25.7 mg kg?1) in the 0.5-mm top layer, i.e. at levels above the initial total content of As in the soil (14 mg kg?1) and a subsequent depletion of As in soil solution at 2 mm from soil surface. Root O2-leakage induced the formation of an iron (Fe) plaque in root apoplast, with no evidence of outer rhizosphere oxidation. Arsenic content reached 173 mg kg?1 in the Fe plaque. This accumulation induced a depletion of As in soil solution over several millimetres in the rhizosphere. Arsenic contents in root symplast and shoots (112 and 2.3 mg kg?1, respectively) were significantly lower than in Fe plaque. Despite a large As concentration in soil solution, Fe plaque appeared highly efficient to sequester As and to restrict As acquisition by rice. The oxidation-mediated accumulation of As in the Fe plaque and in the oxidised layer at the top of the soil mobilised 21 and 3% of the initial amount of As in the planted and unplanted soils, respectively. Soil solution As concentration steadily decreased during the last 16 days of the soil stage, likely indicating a decrease in the ability of the soil to re-supply As from the solid-phase to the solution. The driving force of As dynamic in soil was therefore attributed to the As diffusion from reduced to oxidised soil layers. These results suggest a large mobility of As in the soil during the flooded period, controlled by the setting of oxic/anoxic interfaces at the surface of soil in contact with flooding water and in the rhizosphere of rice.  相似文献   

6.
Microbial processes influencing methane emission from rice fields   总被引:7,自引:0,他引:7  
Irrigated rice fields are an important source of atmospheric methane. In order to improve our understanding of the controlling processes, we measured in situ CH4 emission and CH4 oxidation in an Italian rice field in 1998 and 1999, and studied CH4 production in soil and root samples. The CH4 emission rates were correlated with diurnal temperature variations and showed pronounced seasonal and interannual variations. The contribution of CH4 oxidation to total CH4 flux, determined by specific inhibition with difluoromethane, decreased from 40% at the beginning to zero at the end of the season. The stable carbon isotopic composition of the emitted CH4 also decreased. The CH4‐oxidizing bacteria probably became limited by nitrogen as indicated by the seasonal decrease of NH4+. Thus, CH4 oxidation had little effect on CH4 emission. Methane production on rice roots was relatively constant over the season. Methane production in soil slowly increased after flooding and was highest in the middle of the season. Pore water concentrations of CH4 showed a similar seasonal pattern. In 1999, CH4 production increased later in the season and reached lower rates than in 1998. An additional drainage in 1999 resulted in higher ferric iron concentrations, higher soil redox potentials and lower acetate concentrations. As a result, acetate‐utilizing methanogens were probably out‐competed by iron‐reducers so that a larger percentage of [2–14C]acetate was converted to 14CO2 instead of 14CH4. The residual CH4 production was relatively low and was mainly due to H2/CO2‐dependent methanogenesis. Experiments with radioactive bicarbonate and with methyl fluoride as specific inhibitor showed that the theoretical ratio of 7:3 of methanogenesis from acetate vs. H2/CO2 was only reached later in the season when total CH4 production was at the maximum. In conclusion, our results give a mechanistic explanation for the intraseasonal and interannual differences in CH4 emission.  相似文献   

7.
Methanotrophic and nitrifying bacteria are both able to oxidize CH4 as well as NH4+. To date it is not possible to estimate the relative contribution of methanotrophs to nitrification and that of nitrifiers to CH4 oxidation and thus to assess their roles in N and C cycling in soils and sediments. This study presents new options for discrimination between the activities of methanotrophs and nitrifiers, based on the competitive inhibitor CH3F and on recovery after inhibition with C2H2. By using rice plant soil as a model system, it was possible to selectively inactivate methanotrophs in soil slurries at a CH4/CH3F/NH4+ molar ratio of 0.1:1:18. This ratio of CH3F to NH4+ did not affect ammonia oxidation, but methane oxidation was inhibited completely. By using the same model system, it could be shown that after 24 h of exposure to C2H2 (1,000 parts per million volume), methanotrophs recovered within 24 h while nitrifiers stayed inactive for at least 3 days. This gave an “assay window” of 48 h when only methanotrophs were active. Applying both assays to model microcosms planted with rice plants demonstrated a major contribution of methanotrophs to nitrification in the rhizosphere, while the contribution of nitrifiers to CH4 oxidation was insignificant.  相似文献   

8.
Flooded rice fields are an important source of the greenhouse gas CH4. Possible carbon sources for CH4 and CO2 production in rice fields are soil organic matter (SOM), root organic carbon (ROC) and rice straw (RS), but partitioning of the flux between the different carbon sources is difficult. We conducted greenhouse experiments using soil microcosms planted with rice. The soil was amended with and without 13C-labeled RS, using two 13C-labeled RS treatments with equal RS (5 g kg−1 soil) but different δ13C of RS. This procedure allowed to determine the carbon flux from each of the three sources (SOM, ROC, RS) by determining the δ13C of CH4 and CO2 in the different incubations and from the δ13C of RS. Partitioning of carbon flux indicated that the contribution of ROC to CH4 production was 41% at tillering stage, increased with rice growth and was about 60% from the booting stage onwards. The contribution of ROC to CO2 was 43% at tillering stage, increased to around 70% at booting stage and stayed relatively constant afterwards. The contribution of RS was determined to be in a range of 12–24% for CH4 production and 11–31% for CO2 production; while the contribution of SOM was calculated to be 23–35% for CH4 production and 13–26% for CO2 production. The results indicate that ROC was the major source of CH4 though RS application greatly enhanced production and emission of CH4 in rice field soil. Our results also suggest that data of CH4 dissolved in rice field could be used as a proxy for the produced CH4 after tillering stage.  相似文献   

9.
Processes involved in formation and emission of methane in rice paddies   总被引:40,自引:9,他引:31  
The seasonal change of the rates of production and emission of methane were determined under in-situ conditions in an Italian rice paddy in 1985 and 1986. The contribution to total emission of CH4 of plant-mediated transport, ebullition, and diffusion through the flooding water was quantified by cutting the plants and by trapping emerging gas bubbles with funnels. Both production and emission of CH4 increased during the season and reached a maximum in August. However, the numbers of methanogenic bacteria did not change. As the rice plants grew and the contribution of plant-mediated CH4 emission increased, the percentage of the produced CH4 which was reoxidized and thus, was not emitted, also increased. At its maximum, about 300 ml CH4 were produced per m2 per hour. However, only about 6% were emitted and this was by about 96% via plant-mediated transport. Radiotracer experiments showed that CH, was produced from H2/CO2. (30–50%) and from acetate. The pool concentration of acetate was in the range of 6–10 mM. The turnover time of acetate was 12–16 h. Part of the acetate pool appeared to be not available for production of CH4 or CO2  相似文献   

10.
张怡  吕世华  马静  徐华  袁江  董瑜皎 《生态学报》2016,36(4):1095-1103
采用静态箱-气相色谱法观测冬季水分管理和水稻覆膜栽培对川中丘陵地区冬水田全年的CH_4排放通量。试验设置持续淹水(CF)、冬季直接落干+稻季淹水(TF)与冬季覆膜落干+稻季覆膜(PM)3个处理。结果表明,冬季休闲期,CF、TF和PM处理CH_4排放分别为16.1、1.4 g/m~2和2.7 g/m~2;水稻生长期,CF、TF和PM处理CH_4排放分别为57.7、27.7 g/m~2和13.5 g/m~2。相较于CF处理,TF与PM处理分别减少其全年CH_4排放60.6%和78.0%。TF与PM处理水稻生长期CH_4排放峰值分别较CF处理低33.0%和56.1%。休闲期,TF、PM处理厢面与厢沟区域CH_4排放与土壤温度显著正相关(P0.05),与土壤氧化还原电位(土壤Eh)显著负相关(P0.05),而CF处理CH_4排放仅与土壤温度显著正相关(P0.05)。水稻生长期,CF处理CH_4排放与土壤温度显著正相关(P0.05),与土壤Eh显著负相关(P0.05),TF处理CH_4排放仅与土壤Eh显著负相关(P0.05),PM处理厢沟CH_4排放与土壤Eh显著正相关(P0.05)。各处理水稻生长期土壤可溶性有机碳含量(DOC)与微生物生物量碳含量(MBC)显著高于休闲期(P0.05)。研究结果为进一步研究冬水田全年CH_4排放规律及寻求有效的减排措施提供数据支撑和科学依据。  相似文献   

11.
Temperature is an important factor controlling CH4 production in anoxic rice soils. Soil slurries, prepared from Italian rice field soil, were incubated anaerobically in the dark at six temperatures of between 10 to 37°C or in a temperature gradient block covering the same temperature range at intervals of 1°C. Methane production reached quasi-steady state after 60 to 90 days. Steady-state CH4 production rates increased with temperature, with an apparent activation energy of 61 kJ mol−1. Steady-state partial pressures of the methanogenic precursor H2 also increased with increasing temperature from <0.5 to 3.5 Pa, so that the Gibbs free energy change of H2 plus CO2-dependent methanogenesis was kept at −20 to −25 kJ mol of CH4−1 over the whole temperature range. Steady-state concentrations of the methanogenic precursor acetate, on the other hand, increased with decreasing temperature from <5 to 50 μM. Simultaneously, the relative contribution of H2 as methanogenic precursor decreased, as determined by the conversion of radioactive bicarbonate to 14CH4, so that the carbon and electron flow to CH4 was increasingly dominated by acetate, indicating that psychrotolerant homoacetogenesis was important. The relative composition of the archaeal community was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes (16S rDNA). T-RFLP analysis differentiated the archaeal Methanobacteriaceae, Methanomicrobiaceae, Methanosaetaceae, Methanosarcinaceae, and Rice clusters I, III, IV, V, and VI, which were all present in the rice field soil incubated at different temperatures. The 16S rRNA genes of Rice cluster I and Methanosaetaceae were the most frequent methanogenic groups. The relative abundance of Rice cluster I decreased with temperature. The substrates used by this microbial cluster, and thus its function in the microbial community, are unknown. The relative abundance of acetoclastic methanogens, on the other hand, was consistent with their physiology and the acetate concentrations observed at the different temperatures, i.e., the high-acetate-requiring Methanosarcinaceae decreased and the more modest Methanosaetaceae increased with increasing temperature. Our results demonstrate that temperature not only affected the activity but also changed the structure and the function (carbon and electron flow) of a complex methanogenic system.  相似文献   

12.
Paddy field, being a man-made wetland, is recognized as one of the major sources of global methane (CH4) emission. Since China has the second-largest area of rice cultivation in the world, it is important to develop valid and reliable strategies to reduce CH4 emission and sustain rice productivity in Chinese paddy fields. In this study, we applied steel slag fertilizer, a by-product of steel industry with a high concentration of active iron (Fe), at rates of 0, 2, 4, and 8 Mg ha?1 in subtropical rice (Oryza sativa L.) paddy fields in China to assess the effect of steel slag amendment on CH4 emissions as well as rice growth and yield characteristics. Results showed that the Fe concentrations in paddy soils significantly increased with the application levels of steel slag fertilizer. Steel slag amendment in paddy fields largely reduced the CH4 production rate, resulting in a decrease in the overall CH4 emission rate. In response to the applications of steel slag at a rate of 2, 4 and 8 Mg ha?1, total CH4 emission during rice cultivation decreased by 26.6, 43.3 and 49.3 %, respectively. Furthermore, steel slag amendment had a significant, positive effect on the rice grain yield and the percentage of ripened grain, most probably due to the increased availability of inorganic nutrients such as silicate and manganese. Our results suggest that steel slag can be an effective soil amendment for reducing CH4 emissions as well as increasing rice productivity in subtropical paddy fields in China.  相似文献   

13.
Rice variety is one of the key factors regulating methane (CH4) production and emission from the paddy fields. However, the relationships between rice varieties and populations of microorganisms involved in CH4 dynamics are poorly understood. Here we investigated CH4 dynamics and the composition and abundance of CH4‐producing archaea and CH4‐oxidizing bacteria in a Chinese rice field soil planted with three types of rice. Hybrid rice produced 50–60% more of shoot biomass than Indica and Japonica cultivars. However, the emission rate of CH4 was similar to Japonica and lower than Indica. Furthermore, the dissolved CH4 concentration in the rhizosphere of hybrid rice was markedly lower than Indica and Japonica cultivars. The rhizosphere soil of hybrid rice showed a similar CH4 production potential but a higher CH4 oxidation potential compared with the conventional varieties. Terminal restriction fragment length polymorphism analysis of the archaeal 16S rRNA genes showed that the hydrogenotrophic methanogens dominated in the rhizosphere whereas acetoclastic methanogens mainly inhabited the bulk soil. The abundance of total archaea as determined by quantitative (real‐time) PCR increased in the later stage of rice growth. However, rice variety did not significantly influence the structure and abundance of methanogenic archaea. The analysis of pmoA gene fragments (encoding the α‐subunit of particulate methane monooxygenase) revealed that rice variety also did not influence the structure of methanotrophic proteobacteria, though variable effects of soil layer and sampling time were observed. However, the total copy number of pmoA genes in the rhizosphere of hybrid rice was approximately one order of magnitude greater than the two conventional cultivars. The results suggest that hybrid rice stimulates the growth of methanotrophs in the rice rhizosphere, and hence enhances CH4 oxidation which attenuates CH4 emissions from the paddy soil. Hybrid rice is becoming more and more popular in Asian countries. The present study demonstrated that planting of hybrid rice will not enhance CH4 emissions albeit a higher grain production than the conventional varieties.  相似文献   

14.
Nitrous oxide emission from paddy fields in China   总被引:1,自引:0,他引:1       下载免费PDF全文
The main research results of nitrous oxide (N2O) emission from paddy fields in China were summarized. Paddy fields are an important source of N2O emission. Denitrification process exists not only in the upper flooded cultivated layer in paddy fields but also in the underground saturated soil layer. The cropping system with rice–wheat rotation and the water regime with mid-season aeration (MSA) in paddy fields of China are not only the controlling factors of N2O emission but also the main factors influencing methane (CH4) emission. There is a trade-off relationship between N2O and CH4 emissions from paddy fields. Straw amendment reduced N2O emission but promoted CH4 emission. Therefore, effects of both CH4 and N2O emissions from rice fields on the global warming potential (GWP) should be taken into consideration when any mitigation options are to be established.  相似文献   

15.
Effects of vegetation on the emission of methane from submerged paddy soil   总被引:19,自引:0,他引:19  
Summary Methane emission rates from rice-vegetated paddy fields followed a seasonal pattern different to that of weed-covered or unvegetated fields. Presence of rice plants stimulated the emission of CH4 both in the laboratory and in the field. In unvegetated paddy fields CH4 was emitted almost exclusively by ebullition. By contrast, in rice-vegetated fields more than 90% of the CH4 emission was due to plant-mediated transport. Rice plants stimulated methanogenesis in the submerged soil, but also enhanced the CH4 oxidation rates within the rhizosphere so that only 23% of the produced CH4 was emitted. Gas bubbles in vegetated paddy soils contained lower CH4 mixing ratios than in unvegetated fiels. Weed plants were also efficient in mediating gas exchnage between submerged soil and atmosphere, but did not stimulate methanogenesis. Weed plants caused a relatively high redox potential in the submerged soil so that 95% of the produced CH4 was oxidized and did not reach the atmosphere. The emission of CH4 was stimulated, however, when the cultures were incubated under gas atmospheres containing acetylene or consisting of O2-free nitrogen.  相似文献   

16.
In rice microcosms (Oryza sativa, var. Roma, type japonica),CH4 emission, CH4 production, CH4oxidation and CH4 accumulation were measured over an entirevegetation period. Diffusive CH4 emission was measured inclosed chambers, CH4 production was measured in soil samples,CH4 oxidation was determined from the difference between oxicand anoxic emissions, and CH4 accumulation was measured byanalysis of porewater and gas bubbles. The sum of diffusiveCH4 emission, CH4 oxidation, andCH4 accumulation was only 60% of the cumulativeCH4 production. The two values diverged during the first 50days (vegetative phase) and then again during the last 50 days (latereproductive phase and senescence) of the 150 day vegetation period. Duringthe period of day 50–100 (early reproductive phase/flowering), theprocesses were balanced. Most likely, gas bubbles and diffusion limitationare responsible for the divergence in the early and late phases. The effectof rice on CH4 production rates and CH4concentrations was studied by measuring these processes also in unplantedmicrocosms. Presence of rice plants lowered the CH4concentrations, but had no net effect on the CH4 productionrates.  相似文献   

17.
The emission of the greenhouse gas CH4 from ricepaddies is strongly influenced by management practicessuch as the input of ammonium-based fertilisers. Weassessed the impact of different levels (200 and 400kgN.ha–1) of urea and (NH4)2HPO4on the microbial processes involved in production andconsumption of CH4 in rice field soil. We usedcompartmented microcosms which received fertilisertwice weekly. Potential CH4 production rates weresubstantially higher in the rice rhizosphere than inunrooted soil, but were not affected by fertilisation.However, CH4 emission was reduced by the additionof fertiliser and was negatively correlated with porewater NH 4 plus concentration, probably as theconsequence of elevated CH4 oxidation due tofertilisation. CH4 oxidation as well as numbersof methanotrophs was distinctly stimulated by theaddition of fertiliser and by the presence of the riceplant. Without fertiliser addition,nitrogen-limitation of the methanotrophs will restrictthe consumption of CH4. This may have a majorimpact on the global CH4 budget, asnitrogen-limiting conditions will be the normalsituation in the rice rhizosphere. Elevated potentialnitrifying activities and numbers were only detectedin microcosms fertilised with urea. However, asubstantial part of the nitrification potential in therhizosphere of rice was attributed to the activity ofmethanotrophs, as was demonstrated using theinhibitors CH3F and C2H2.  相似文献   

18.
Rice is staple food of half of mankind and paddy soils account for the largest anthropogenic wetlands on earth. Ample of research is being done to find cultivation methods under which the integrative greenhouse effect caused by emitted CH4 and N2O would be mitigated. Whereas most of the research focuses on quantifying such emissions, there is a lack of studies on the biogeochemistry of paddy soils. In order to deepen our mechanistic understanding of N2O and CH4 fluxes in rice paddies, we also determined NO3 ? and N2O concentrations as well as N2O isotope abundances and presence of O2 along soil profiles of paddies which underwent three different water managements during the rice growing season(s) in (2010 and) 2011 in Korea. Largest amounts of N2O (2 mmol m?2) and CH4 (14.5 mol m?2) degassed from the continuously flooded paddy, while paddies with less flooding showed 30–60 % less CH4 emissions and very low to negative N2O balances. In accordance, the global warming potential (GWP) was lowest for the Intermittent Irrigation paddy and highest for the Traditional Irrigation paddy. The N2O emissions could the best be explained (*P < 0.05) with the δ15N values and N2O concentrations in 40–50 cm soil depth, implying that major N2O production/consumption occurs there. No significant effect of NO3 ? on N2O production has been found. Our study gives insight into the soil of a rice paddy and reveals areas along the soil profile where N2O is being produced. Thereby it contributes to our understanding of subsoil processes of paddy soils.  相似文献   

19.
Circadian methane oxidation in the root zone of rice plants   总被引:2,自引:0,他引:2  
R. Cho  M. H. Schroth  J. Zeyer 《Biogeochemistry》2012,111(1-3):317-330
In the root zone of rice plants aerobic methanotrophic bacteria catalyze the oxidation of CH4 to CO2, thereby reducing CH4 emissions from paddy soils to the atmosphere. However, methods for in situ quantification of microbial processes in paddy soils are scarce. Here we adapted the push–pull tracer-test (PPT) method to quantify CH4 oxidation in the root zone of potted rice plants. During a PPT, a test solution containing CH4 ± O2 as reactant(s), Cl? and Ar as nonreactive tracers, and BES as an inhibitor of CH4 production was injected into the root zone at different times throughout the circadian cycle (daytime, early nighttime, late nighttime). After a 2-h incubation phase, the test solution/pore-water mixture was extracted from the same location and rates of CH4 oxidation were calculated from the ratio of measured reactant and nonreactive tracer concentrations. In separate rice pots, O2 concentrations in the vicinity of rice roots were measured throughout the circadian cycle using a fiber-optic sensor. Results indicated highly variable CH4 oxidation rates following a circadian pattern. Mean rates at daytime and early nighttime varied from 62 up to 451 μmol l?1 h?1, whereas at late nighttime CH4 oxidation rates were low, ranging from 13 to 37 μmol l?1 h?1. Similarly, daytime O2 concentration in the vicinity of rice roots increased to up to 250% air saturation, while nighttime O2 concentration dropped to below detection (<0.15% air saturation). Our results suggest a functional link between root-zone CH4 oxidation and photosynthetic O2 supply.  相似文献   

20.
Emission of hydrogen from deep and shallow freshwater environments   总被引:1,自引:1,他引:0  
In-situ partial pressures of hydrogen in anoxic profundal lake sediments reached values of up to 5 Pa which were more than 5 orders of magnitude lower than the partial pressures of methane. Analysis of gas bubbles collected from anoxic submerged paddy soil showed H2 partial pressures in the range of 1.8 ± 1.3 Pa being ca. 4 orders of magnitude lower than the CH4 partial pressures. H2 emission rates, on the other hand, were less than 3 orders of magnitude lower than the CH4 emission rates indicating that H2 and CH4 were oxidized to a different extent in the rhizosphere of the soil before they reached the atmosphere, or that H2 was produced by the plants. More than 70% of the emitted H2 reached the atmosphere via plant-mediated flux. The rest was emitted via ebullition from the anoxic soil and, in addition, was produced in the paddy water. A significant amount of H2 was indeed found to be produced in the water under conditions where thallic algae and submerged parts of the rice plants produced oxygen by photosynthesis. Very little H2 was emitted via molecular diffusion through the paddy water; in addition, this amount was less than expected from the degree of supersaturation and the diffusional emission rate of CH4 indicating a relatively high rate of H2 consumption in the surface film of the paddy water. The total H2 source strength of rice paddies and other freshwater environments was estimated to be less than 1 Tg yr-1, being negligible in the atmospheric budget of H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号