首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Lassa virus (LASV) is endemic in several West African countries and is the etiological agent of Lassa fever. Despite the high annual incidence and significant morbidity and mortality rates, currently there are no approved vaccines to prevent infection or disease in humans. Genetically, LASV demonstrates a high degree of diversity that correlates with geographic distribution. The genetic heterogeneity observed between geographically distinct viruses raises concerns over the potential efficacy of a “universal” LASV vaccine. To date, several experimental LASV vaccines have been developed; however, few have been evaluated against challenge with various genetically unique Lassa virus isolates in relevant animal models.

Methodologies/principle findings

Here we demonstrate that a single, prophylactic immunization with a recombinant vesicular stomatitis virus (VSV) expressing the glycoproteins of LASV strain Josiah from Sierra Leone protects strain 13 guinea pigs from infection / disease following challenge with LASV isolates originating from Liberia, Mali and Nigeria. Similarly, the VSV-based LASV vaccine yields complete protection against a lethal challenge with the Liberian LASV isolate in the gold-standard macaque model of Lassa fever.

Conclusions/significance

Our results demonstrate the VSV-based LASV vaccine is capable of preventing morbidity and mortality associated with non-homologous LASV challenge in two animal models of Lassa fever. Additionally, this work highlights the need for the further development of disease models for geographical distinct LASV strains, particularly those from Nigeria, in order to comprehensively evaluate potential vaccines and therapies against this prominent agent of viral hemorrhagic fever.  相似文献   

2.
The Natal multimammate mouse (Mastomys natalensis) is the reservoir host of Lassa arenavirus, the etiological agent of Lassa fever in humans. Because there exists no vaccine for human use, rodent control and adjusting human behavior are currently considered to be the only options for Lassa fever control. In order to develop efficient rodent control programs, more information about the host’s ecology is needed. In this study, we investigated the spatial behavior of M. natalensis and other small rodents in two capture-mark-recapture and four dyed bait (Rhodamine B) experiments in Lassa fever-endemic villages in Upper Guinea. During the capture-mark-recapture studies, 23% of the recaptured M. natalensis moved between the houses and proximate fields. While M. natalensis was found over the entire study grid (2 ha), other rodent species (Praomys daltoni, Praomys rostratus, Lemniscomys striatus, Mus spp.) were mostly trapped in the surrounding fields. Distances between recapture occasions never exceeded 100 m for all rodent species. During the dyed bait experiments, 11% of M. natalensis and 41% of P. daltoni moved from the fields to houses. We conclude that commensal M. natalensis easily moves between houses and proximate fields in Guinea. We therefore consider occasional domestic rodent elimination to be an unsustainable approach to reduce Lassa virus transmission risk to humans, as M. natalensis is likely to reinvade houses quickly from fields in which rodents are not controlled. A combination of permanent rodent elimination with other control strategies (e.g., make houses rodent proof or attract predators) could be more effective for Lassa fever control, but must be further investigated.  相似文献   

3.

Background

Tick-borne relapsing fever spirochetes are maintained in endemic foci that involve a diversity of small mammals and argasid ticks in the genus Ornithodoros. Most epidemiological studies of tick-borne relapsing fever in West Africa caused by Borrelia crocidurae have been conducted in Senegal. The risk for humans to acquire relapsing fever in Mali is uncertain, as only a few human cases have been identified. Given the high incidence of malaria in Mali, and the potential to confuse the clinical diagnosis of these two diseases, we initiated studies to determine if there were endemic foci of relapsing fever spirochetes that could pose a risk for human infection.

Methodology/Principal Findings

We investigated 20 villages across southern Mali for the presence of relapsing fever spirochetes. Small mammals were captured, thin blood smears were examined microscopically for spirochetes, and serum samples were tested for antibodies to relapsing fever spirochetes. Ornithodoros sonrai ticks were collected and examined for spirochetal infection. In total, 11.0% of the 663 rodents and 14.3% of the 63 shrews tested were seropositive and 2.2% of the animals had active spirochete infections when captured. In the Bandiagara region, the prevalence of infection was higher with 35% of the animals seropositive and 10% infected. Here also Ornithodoros sonrai were abundant and 17.3% of 278 individual ticks tested were infected with Borrelia crocidurae. Fifteen isolates of B. crocidurae were established and characterized by multi-locus sequence typing.

Conclusions/Significance

The potential for human tick-borne relapsing fever exists in many areas of southern Mali.  相似文献   

4.

Background

Lassa fever is a viral hemorrhagic fever endemic in West Africa. The reservoir host of the virus is a multimammate rat, Mastomys natalensis. Prevalence estimates of Lassa virus antibodies in humans vary greatly between studies, and the main modes of transmission of the virus from rodents to humans remain unclear. We aimed to (i) estimate the prevalence of Lassa virus–specific IgG antibodies (LV IgG) in the human population of a rural area of Guinea, and (ii) identify risk factors for positive LV IgG.

Methods and Findings

A population-based cross-sectional study design was used. In April 2000, all individuals one year of age and older living in three prefectures located in the tropical secondary forest area of Guinea (Gueckedou, Lola and Yomou) were sampled using two-stage cluster sampling. For each individual identified by the sampling procedure and who agreed to participate, a standardized questionnaire was completed to collect data on personal exposure to potential risk factors for Lassa fever (mainly contact with rodents), and a blood sample was tested for LV IgG. A multiple logistic regression model was used to determine risk factors for positive LV IgG. A total of 1424 subjects were interviewed and 977 sera were tested. Prevalence of positive LV Ig was of 12.9% [10.8%–15.0%] and 10.0% [8.1%–11.9%] in rural and urban areas, respectively. Two risk factors of positive LV IgG were identified: to have, in the past twelve months, undergone an injection (odds ratio [OR] = 1.8 [1.1–3.1]), or lived with someone displaying a haemorrhage (OR = 1.7 [1.1–2.9]). No factors related to contacts with rats and/or mice remained statistically significant in the multivariate analysis.

Conclusions

Our study underlines the potential importance of person-to-person transmission of Lassa fever, via close contact in the same household or nosocomial exposure.  相似文献   

5.

Background

Lassa fever (LF), an often-fatal hemorrhagic disease caused by Lassa virus (LASV), is a major public health threat in West Africa. When the violent civil conflict in Sierra Leone (1991 to 2002) ended, an international consortium assisted in restoration of the LF program at Kenema Government Hospital (KGH) in an area with the world''s highest incidence of the disease.

Methodology/Principal Findings

Clinical and laboratory records of patients presenting to the KGH Lassa Ward in the post-conflict period were organized electronically. Recombinant antigen-based LF immunoassays were used to assess LASV antigenemia and LASV-specific antibodies in patients who met criteria for suspected LF. KGH has been reestablished as a center for LF treatment and research, with over 500 suspected cases now presenting yearly. Higher case fatality rates (CFRs) in LF patients were observed compared to studies conducted prior to the civil conflict. Different criteria for defining LF stages and differences in sensitivity of assays likely account for these differences. The highest incidence of LF in Sierra Leone was observed during the dry season. LF cases were observed in ten of Sierra Leone''s thirteen districts, with numerous cases from outside the traditional endemic zone. Deaths in patients presenting with LASV antigenemia were skewed towards individuals less than 29 years of age. Women self-reporting as pregnant were significantly overrepresented among LASV antigenemic patients. The CFR of ribavirin-treated patients presenting early in acute infection was lower than in untreated subjects.

Conclusions/Significance

Lassa fever remains a major public health threat in Sierra Leone. Outreach activities should expand because LF may be more widespread in Sierra Leone than previously recognized. Enhanced case finding to ensure rapid diagnosis and treatment is imperative to reduce mortality. Even with ribavirin treatment, there was a high rate of fatalities underscoring the need to develop more effective and/or supplemental treatments for LF.  相似文献   

6.
Nigeria has a rich small mammal community, with several species implicated as carriers of zoonotic microbes such as the Lassa virus (LASV). We sought to elucidate the diversity and distribution of these animals (including known LASV reservoirs) geographically, habitat-wise and seasonally. Our DNA-assisted survey detected at least 19 small mammal species amongst 790 specimens. Diversity indices were similar between ecological zones and also between endemic and non-endemic areas for Lassa fever. Mastomys natalensis, the most renowned LASV host, was present in eight out of nine localities sampled. We also described the spatial occurrence of other known LASV hosts such as M. erythroleucus and Hylomyscus pamfi, including carriers of LASV-like arenaviruses such as Mus (Nannomys) spp. The most numerous rodents (Mastomys natalensis, M. erythroleucus, and Praomys daltoni) were captured mainly inside human dwellings. Reproductive activity occurred throughout the year, but led to population peaks for M. natalensis in the dry season and for M. erythroleucus and P. daltoni in the rainy season. Extensive geographic distribution of LASV rodent reservoirs, with population peaks in different seasons, shows that the risk of rodent-to-human transmission of LASV is greater than currently realized.  相似文献   

7.

Background

Lassa fever is caused by a viral haemorrhagic arenavirus that affects two to three million people in West Africa, causing a mortality of between 5,000 and 10,000 each year. The natural reservoir of Lassa virus is the multi-mammate rat Mastomys natalensis, which lives in houses and surrounding fields. With the aim of gaining more information to control this disease, we here carry out a spatial analysis of Lassa fever data from human cases and infected rodent hosts covering the period 1965–2007. Information on contemporary environmental conditions (temperature, rainfall, vegetation) was derived from NASA Terra MODIS satellite sensor data and other sources and for elevation from the GTOPO30 surface for the region from Senegal to the Congo. All multi-temporal data were analysed using temporal Fourier techniques to generate images of means, amplitudes and phases which were used as the predictor variables in the models. In addition, meteorological rainfall data collected between 1951 and 1989 were used to generate a synoptic rainfall surface for the same region.

Methodology/Principal Findings

Three different analyses (models) are presented, one superimposing Lassa fever outbreaks on the mean rainfall surface (Model 1) and the other two using non-linear discriminant analytical techniques. Model 2 selected variables in a step-wise inclusive fashion, and Model 3 used an information-theoretic approach in which many different random combinations of 10 variables were fitted to the Lassa fever data. Three combinations of absence∶presence clusters were used in each of Models 2 and 3, the 2 absence∶1 presence cluster combination giving what appeared to be the best result. Model 1 showed that the recorded outbreaks of Lassa fever in human populations occurred in zones receiving between 1,500 and 3,000 mm rainfall annually. Rainfall, and to a much lesser extent temperature variables, were most strongly selected in both Models 2 and 3, and neither vegetation nor altitude seemed particularly important. Both Models 2 and 3 produced mean kappa values in excess of 0.91 (Model 2) or 0.86 (Model 3), making them ‘Excellent’.

Conclusion/Significance

The Lassa fever areas predicted by the models cover approximately 80% of each of Sierra Leone and Liberia, 50% of Guinea, 40% of Nigeria, 30% of each of Côte d''Ivoire, Togo and Benin, and 10% of Ghana.  相似文献   

8.
Lassa fever is a zoonotic hemorrhagic illness predominant in areas across Nigeria, Sierra Leone, Guinea, Liberia, and southern Mali. The reservoir of Lassa virus is the multimammate mouse (Mastomys natalensis), a highly commensal species in West Africa. Primary transmission to humans occurs through direct or indirect contact with rodent body fluids such as urine, feces, saliva, or blood. Our research draws together qualitative and quantitative methods to provide a fuller and more nuanced perspective on these varied points of human–animal contact. In this article, we focus on the hunting, preparation, and consumption of rodents as possible routes of exposure in Bo, Sierra Leone. We found that the consumption of rodents, including the reservoir species, is widespread and does not neatly tally against generational or gender lines. Further, we found that the reasons for rodent consumption are multifactorial, including taste preferences, food security, and opportunistic behavior. We argue that on certain topics, such as rodent consumption, establishing trust with communities, and using qualitative research methods, is key to investigate sensitive issues and situate them in their wider context. To conclude, we recommend ways to refine sensitization campaigns to account for these socio-cultural contexts.  相似文献   

9.
As a consequence of the Ebola outbreak, human–animal contact has gained importance for zoonotic transmission surveillance. In Faranah (Upper Guinea), daily life is intertwined with rodents, such as the Natal multimammate mouse, Mastomys natalensis; a reservoir for Lassa virus (LASV). However, this contact is rarely perceived as a health risk by residents, although Lassa fever (LF) is known to be endemic to this region. Conversely, these observations remain a great concern for global health agendas. Drawing on ethnographic research involving interviews, focus group discussions, participant observations, and informal discussions over four months, we first identified factors that motivated children to hunt and consume rodents in Faranah villages, and thereafter, explored the knowledge of LF infection in children and their parents. Furthermore, we studied two dimensions of human-rodent encounters: 1) space-time of interaction and 2) factors that allowed the interaction to occur and their materiality. This approach allowed us to contextualize child-rodent contacts beyond domestic limits in the fallow fields, swamps, and at other times for this practice. A close look at these encounters provided information on rodent trapping, killing, and manipulation of cooking techniques and the risk these activities posed for the primary transmission of LASV. This research facilitated the understanding of children’s exposure to M. natalensis during hunting sessions and the importance of rodent hunting, which is a part of their boyish identity in rural areas. Determination of when, where, why, and how children, rodents, and environments interacted allowed us to understand the exposures and risks important for human and animal surveillance programs in the Lassa-endemic region.  相似文献   

10.
11.

Background

Lassa fever is a viral hemorrhagic fever endemic in West Africa. However, none of the hospitals in the endemic areas of Nigeria has the capacity to perform Lassa virus diagnostics. Case identification and management solely relies on non-specific clinical criteria. The Irrua Specialist Teaching Hospital (ISTH) in the central senatorial district of Edo State struggled with this challenge for many years.

Methodology/Principal Findings

A laboratory for molecular diagnosis of Lassa fever, complying with basic standards of diagnostic PCR facilities, was established at ISTH in 2008. During 2009 through 2010, samples of 1,650 suspected cases were processed, of which 198 (12%) tested positive by Lassa virus RT-PCR. No remarkable demographic differences were observed between PCR-positive and negative patients. The case fatality rate for Lassa fever was 31%. Nearly two thirds of confirmed cases attended the emergency departments of ISTH. The time window for therapeutic intervention was extremely short, as 50% of the fatal cases died within 2 days of hospitalization—often before ribavirin treatment could be commenced. Fatal Lassa fever cases were older (p = 0.005), had lower body temperature (p<0.0001), and had higher creatinine (p<0.0001) and blood urea levels (p<0.0001) than survivors. Lassa fever incidence in the hospital followed a seasonal pattern with a peak between November and March. Lassa virus sequences obtained from the patients originating from Edo State formed—within lineage II—a separate clade that could be further subdivided into three clusters.

Conclusions/Significance

Lassa fever case management was improved at a tertiary health institution in Nigeria through establishment of a laboratory for routine diagnostics of Lassa virus. Data collected in two years of operation demonstrate that Lassa fever is a serious public health problem in Edo State and reveal new insights into the disease in hospitalized patients.  相似文献   

12.

Background

Lassa and Junín viruses are the most prominent members of the Arenaviridae family of viruses that cause viral hemorrhagic fever syndromes Lassa fever and Argentine hemorrhagic fever, respectively. At present, ribavirin is the only antiviral drug indicated for use in treatment of these diseases, but because of its limited efficacy in advanced cases of disease and its toxicity, safer and more effective antivirals are needed.

Methodology/Principal Findings

Here, we used a model of acute arenaviral infection in outbred guinea pigs based on challenge with an adapted strain of Pichindé virus (PICV) to further preclinical development of T-705 (Favipiravir), a promising broad-spectrum inhibitor of RNA virus infections. The guinea pig-adapted passage 19 PICV was uniformly lethal with an LD50 of ∼5 plaque-forming units and disease was associated with fever, weight loss, thrombocytopenia, coagulation defects, increases in serum aspartate aminotransferase (AST) concentrations, and pantropic viral infection. Favipiravir (300 mg/kg/day, twice daily orally for 14 days) was highly effective, as all animals recovered fully from PICV-induced disease even when therapy was initiated one week after virus challenge when animals were already significantly ill with marked fevers and thrombocytopenia. Antiviral activity and reduced disease severity was evidenced by dramatic reductions in peak serum virus titers and AST concentrations in favipiravir-treated animals. Moreover, a sharp decrease in body temperature was observed shortly after the start of treatment. Oral ribavirin was also evaluated, and although effective, the slower rate of recovery may be a sign of the drug''s known toxicity.

Conclusions/Significance

Our findings support further development of favipiravir for the treatment of severe arenaviral infections. The optimization of the experimental favipiravir treatment regimen in the PICV guinea pig model will inform critical future studies in the same species based on challenge with highly pathogenic arenaviruses such as Lassa and Junín.  相似文献   

13.
Lassa virus (LASV) is the causative agent of Lassa Fever and is responsible for several hundred thousand infections and thousands of deaths annually in West Africa. LASV and the non-pathogenic Mopeia virus (MOPV) are both rodent-borne African arenaviruses. A live attenuated reassortant of MOPV and LASV, designated ML29, protects rodents and primates from LASV challenge and appears to be more attenuated than MOPV. To gain better insight into LASV-induced pathology and mechanism of attenuation we performed gene expression profiling in human peripheral blood mononuclear cells (PBMC) exposed to LASV and the vaccine candidate ML29. PBMC from healthy human subjects were exposed to either LASV or ML29. Although most PBMC are non-permissive for virus replication, they remain susceptible to signal transduction by virus particles. Total RNA was extracted and global gene expression was evaluated during the first 24 hours using high-density microarrays. Results were validated using RT-PCR, flow cytometry and ELISA. LASV and ML29 elicited differential expression of interferon-stimulated genes (ISG), as well as genes involved in apoptosis, NF-kB signaling and the coagulation pathways. These genes could eventually serve as biomarkers to predict disease outcomes. The remarkable differential expression of thrombomodulin, a key regulator of inflammation and coagulation, suggests its involvement with vascular abnormalities and mortality in Lassa fever disease.  相似文献   

14.

Background

Sleeping sickness due to Trypanosoma brucei (T.b.) gambiense is still a major public health problem in some central African countries. Historically, relapse rates around 5% have been observed for treatment with melarsoprol, widely used to treat second stage patients. Later, relapse rates of up to 50% have been recorded in some isolated foci in Angola, Sudan, Uganda and Democratic Republic of the Congo (DRC). Previous investigations are not conclusive on whether decreased sensitivity to melarsoprol is responsible for these high relapse rates. Therefore we aimed to establish a parasite collection isolated from cured as well as from relapsed patients for downstream comparative drug sensitivity profiling. A major constraint for this type of investigation is that T.b. gambiense is particularly difficult to isolate and adapt to classical laboratory rodents.

Methodology/Principal Findings

From 360 patients treated in Dipumba hospital, Mbuji-Mayi, D.R. Congo, blood and cerebrospinal fluid (CSF) was collected before treatment. From patients relapsing during the 24 months follow-up, the same specimens were collected. Specimens with confirmed parasite presence were frozen in liquid nitrogen in a mixture of Triladyl, egg yolk and phosphate buffered glucose solution. Isolation was achieved by inoculation of the cryopreserved specimens in Grammomys surdaster, Mastomys natalensis and SCID mice. Thus, 85 strains were isolated from blood and CSF of 55 patients. Isolation success was highest in Grammomys surdaster. Forty strains were adapted to mice. From 12 patients, matched strains were isolated before treatment and after relapse. All strains belong to T.b. gambiense type I.

Conclusions and Significance

We established a unique collection of T.b. gambiense from cured and relapsed patients, isolated in the same disease focus and within a limited period. This collection is available for genotypic and phenotypic characterisation to investigate the mechanism behind abnormally high treatment failure rates in Mbuji-Mayi, D.R. Congo.  相似文献   

15.

Background

Zinc treatment shortens diarrhea episodes and can prevent future episodes. In rural Africa, most children with diarrhea are not brought to health facilities. In a village-randomized trial in rural Kenya, we assessed if zinc treatment might have a community-level preventive effect on diarrhea incidence if available at home versus only at health facilities.

Methods

We randomized 16 Kenyan villages (1,903 eligible children) to receive a 10-day course of zinc and two oral rehydration solution (ORS) sachets every two months at home and 17 villages (2,241 eligible children) to receive ORS at home, but zinc at the health–facility only. Children’s caretakers were educated in zinc/ORS use by village workers, both unblinded to intervention arm. We evaluated whether incidence of diarrhea and acute lower respiratory illness (ALRI) reported at biweekly home visits and presenting to clinic were lower in zinc villages, using poisson regression adjusting for baseline disease rates, distance to clinic, and children’s age.

Results

There were no differences between village groups in diarrhea incidence either reported at the home or presenting to clinic. In zinc villages (1,440 children analyzed), 61.2% of diarrheal episodes were treated with zinc, compared to 5.4% in comparison villages (1,584 children analyzed, p<0.0001). There were no differences in ORS use between zinc (59.6%) and comparison villages (58.8%). Among children with fever or cough without diarrhea, zinc use was low (<0.5%). There was a lower incidence of reported ALRI in zinc villages (adjusted RR 0.68, 95% CI 0.46–0.99), but not presenting at clinic.

Conclusions

In this study, home zinc use to treat diarrhea did not decrease disease rates in the community. However, with proper training, availability of zinc at home could lead to more episodes of pediatric diarrhea being treated with zinc in parts of rural Africa where healthcare utilization is low.

Trial Registration

ClinicalTrials.gov NCT00530829  相似文献   

16.

Background and Aims

Plants are adapted for rodent pollination in diverse and intricate ways. This study explores an extraordinary example of these adaptations in the pincushion Leucospermum arenarium (Proteaceae) from South Africa.

Methods

Live trapping and differential exclusion experiments were used to test the role of rodents versus birds and insects as pollinators. To explore the adaptive significance of geoflory, inflorescences were raised above ground level and seed production was compared. Captive rodents and flowers with artificial stigmas were used to test the effect of grooming on the rate of pollen loss. Microscopy, nectar composition analysis and manipulative experiments were used to investigate the bizarre nectar production and transport system.

Key Results

Differential exclusion of rodents, birds and insects demonstrated the importance of rodents in promoting seed production. Live trapping revealed that hairy-footed gerbils, Gerbillurus paeba, and striped field mice, Rhabdomys pumilio, both carried L. arenarium pollen on their forehead and rostrum, but much larger quantities ended up in faeces as a result of grooming. Terrarium experiments showed that grooming exponentially diminished the pollen loads that they carried. The nectar of L. arenarium was found to be unusually viscous and to be presented in a novel location on the petal tips, where rodents could access it without destroying the flowers. Nectar was produced inside the perianth, but was translocated to the petal tips via capillary ducts. In common with many other rodent-pollinated plants, the flowers are presented at ground level, but when raised to higher positions seed production was not reduced, indicating that selection through female function does not drive the evolution of geoflory.

Conclusions

Despite the apparent cost of pollen lost to grooming, L. arenarium has evolved remarkable adaptations for rodent pollination and provides the first case of this pollination system in the genus.  相似文献   

17.

Background  

Two common southern African mice species, Mastomys coucha and M. natalensis, are widely distributed throughout the subregion and overlap in many areas. They also share a high degree of morphological similarity, making them impossible to distinguish in the field at present. These multimammate mice are documented carriers of serious disease vectors causing Lassa fever, plague and encephalomyocarditis, which coupled to their cohabitation with humans in many areas, could pose a significant health risk. A preliminary study reported the presence of isozyme markers at three loci (GPI-2, PT-2, -3) in one population each of M. coucha and M. natalensis. Two additional populations (from the Vaal Dam and Richards Bay) were sampled to determine the reliability of these markers, and to seek additional genetic markers.  相似文献   

18.

Background

Drug resistant typhoid fever is a major clinical problem globally. Many of the first line antibiotics, including the older generation fluoroquinolones, ciprofloxacin and ofloxacin, are failing.

Objectives

We performed a randomised controlled trial to compare the efficacy and safety of gatifloxacin (10 mg/kg/day) versus azithromycin (20 mg/kg/day) as a once daily oral dose for 7 days for the treatment of uncomplicated typhoid fever in children and adults in Vietnam.

Methods

An open-label multi-centre randomised trial with pre-specified per protocol analysis and intention to treat analysis was conducted. The primary outcome was fever clearance time, the secondary outcome was overall treatment failure (clinical or microbiological failure, development of typhoid fever-related complications, relapse or faecal carriage of S. typhi).

Principal Findings

We enrolled 358 children and adults with suspected typhoid fever. There was no death in the study. 287 patients had blood culture confirmed typhoid fever, 145 patients received gatifloxacin and 142 patients received azithromycin. The median FCT was 106 hours in both treatment arms (95% Confidence Interval [CI]; 94–118 hours for gatifloxacin versus 88–112 hours for azithromycin), (logrank test p = 0.984, HR [95% CI] = 1.0 [0.80–1.26]).Overall treatment failure occurred in 13/145 (9%) patients in the gatifloxacin group and 13/140 (9.3%) patients in the azithromycin group, (logrank test p = 0.854, HR [95% CI] = 0.93 [0.43–2.0]). 96% (254/263) of the Salmonella enterica serovar Typhi isolates were resistant to nalidixic acid and 58% (153/263) were multidrug resistant.

Conclusions

Both antibiotics showed an excellent efficacy and safety profile. Both gatifloxacin and azithromycin can be recommended for the treatment of typhoid fever particularly in regions with high rates of multidrug and nalidixic acid resistance. The cost of a 7-day treatment course of gatifloxacin is approximately one third of the cost of azithromycin in Vietnam.

Trial Registration

Controlled-Trials.com ISRCTN67946944  相似文献   

19.
The epithelium plays a key role in the spread of Lassa virus. Transmission from rodents to humans occurs mainly via inhalation or ingestion of droplets, dust, or food contaminated with rodent urine. Here, we investigated Lassa virus infection in cultured epithelial cells and subsequent release of progeny viruses. We show that Lassa virus enters polarized Madin-Darby canine kidney (MDCK) cells mainly via the basolateral route, consistent with the basolateral localization of the cellular Lassa virus receptor α-dystroglycan. In contrast, progeny virus was efficiently released from the apical cell surface. Further, we determined the roles of the glycoprotein, matrix protein, and nucleoprotein in directed release of nascent virus. To do this, a virus-like-particle assay was developed in polarized MDCK cells based on the finding that, when expressed individually, both the glycoprotein GP and matrix protein Z form virus-like particles. We show that GP determines the apical release of Lassa virus from epithelial cells, presumably by recruiting the matrix protein Z to the site of virus assembly, which is in turn essential for nucleocapsid incorporation into virions.Lassa virus (LASV), a member of the family Arenaviridae, is a highly pathogenic agent causing hemorrhagic fever as a severe clinical manifestation. Arenaviruses are currently classified into more than 20 species, which are divided into the Old World and New World virus complexes (10). The Old World group includes the prototype lymphocytic choriomeningitis virus (LCMV) and the highly human-pathogenic viruses LASV and Lujo virus, as well as the nonpathogenic Ippy, Mobala, Mopeia, and Kodoko viruses (7, 21, 36). The New World virus complex contains among others, the hemorrhagic fever-associated Junín, Machupo, Guanarito, and Sabiá viruses and the recently discovered Chapare virus (14).With the exception of the New World virus Tacaribe virus, which was isolated from fruit bats, all arenaviruses have specific rodent species as their natural reservoirs. Rodents of the Mastomys natalensis species complex were identified as the natural host of LASV in certain countries in West Africa, including Sierra Leone, Nigeria, Guinea, and Liberia (26, 35, 49). An estimated 100,000 to 300,000 human LASV infections occur annually, of which approximately 30% result in illness, which can range from mild, flu-like symptoms to fulminant hemorrhagic fever with a mortality rate of about 16% of hospitalized cases (47, 48). Due to the severe or even fatal outcome of disease, unavailability of vaccine prophylaxis, and inadequate therapeutic treatment options, LASV is classified as a biosafety level 4 agent.The primary transmission route of LASV from its host to humans is by direct exposure to virus-containing urine, which may occur via the respiratory tract, through inhalation of infected particulates, or via ingestion of contaminated food (62). Moreover, hunting and preparation for consumption of rodents have also been identified as possible risk factors for rodent-to-human transmission of LASV (67). LASV is spread from human-to-human by contact with infectious body fluids or through nosocomial contaminations (22, 27). During the infection process, virus contacts the epithelial layers of the body and, after breaking through the epithelial tissue barrier, exploits dendritic cells for further dissemination (3, 15). It has been shown for LASV, as well as for other arenaviruses, that during the course of infection, infectious virus particles are released from epithelia into body fluids and urine (32, 45, 71).As epithelial layers play a pivotal role not only in initial virus infection but also in release of virus progeny during the early stages of infection, virus spread within the organism and virus release for further transmission, the polarity of entry and release from polarized epithelia has been studied extensively with various viruses. Virus entry in polarized cells is correlated with the apical or basolateral localization of the responsible virus receptor (24, 34, 68). Viruses that are transmitted through aerosols or surface contact with body fluids are generally thought to enter the epithelial barrier from the apical side, whereas virus infections due to injuries or transmission from animals'' bites and scratches enter epithelial cell layers from the basolateral side. Further, the spread of disease is also dependent on the directional release of the virus from epithelial cells. In general, basolateral virus budding is thought to cause systemic infections, whereas local infections are a result of viruses that are released predominantly from the apical side (69). Fitting with this model, budding of wild-type Sendai virus is restricted to the apical domain of polarized cells and causes a local respiratory infection, whereas systemic spread of a Sendai virus mutant could be attributed mainly to its bipolar virus release (66). The direction of entry and release can also be highly dependent on the type of tissue involved, as Sindbis and Semliki Forest viruses show differences in directed release in colon and thyroid gland cells (75). Similar differences in polarized virus release have also been shown for different members within a single virus family (59).In order to understand virus dissemination within the organism, it is of interest to determine on which side viruses enter and leave polarized epithelial cell layers. Here, we present data on directional LASV invasion into polarized MDCK cell culture and demonstrate a directional release of LASV from these cells. Furthermore, we have elucidated how Lassa virus proteins interact to direct budding and release of LASV progeny from epithelial cell layers.  相似文献   

20.

Background

Information about malaria risk factors at high altitudes is scanty. Understanding the risk factors that determine the risk of malaria transmission at high altitude villages is important to facilitate implementing sustainable malaria control and prevention programs.

Methods

An unmatched case control study was conducted among patients seeking treatment at health centers in high altitude areas. Either microscopy or rapid diagnostic tests were used to confirm the presence of plasmodium species. A generalized linear model was used to identify the predictors of malaria transmission in high altitude villages.

Results

Males (AOR = 3.11, 95%CI: 2.28, 4.23), and those who traveled away from the home in the previous month (AOR = 2.01, 95% CI: 1.56, 2.58) were strongly associated with presence of malaria in high altitude villages. Other significant factors, including agriculture in occupation (AOR = 1.41, 95% CI: 1.05, 1.93), plants used for fencing (AOR = 1.70, 95% CI: 1.18, 2.52) and forests near the house (AOR = 1.60, 95% CI: 1.15, 2.47), were found predictors for malaria in high altitude villages.

Conclusion

Travel outside of their home was an important risk of malaria infections acquisition. Targeting males who frequently travel to malarious areas can reduce malaria transmission risks in high altitude areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号