首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.

Background

Epithelial cell adhesion molecule (EpCAM)-based enumeration of circulating tumor cells (CTC) has prognostic value in patients with solid tumors, such as advanced breast, colon, and prostate cancer. However, poor sensitivity has been reported for non-small cell lung cancer (NSCLC). To address this problem, we developed a microcavity array (MCA) system integrated with a miniaturized device for CTC isolation without relying on EpCAM expression. Here, we report the results of a clinical study on CTCs of advanced lung cancer patients in which we compared the MCA system with the CellSearch system, which employs the conventional EpCAM-based method.

Methods

Paired peripheral blood samples were collected from 43 metastatic lung cancer patients to enumerate CTCs using the CellSearch system according to the manufacturer’s protocol and the MCA system by immunolabeling and cytomorphological analysis. The presence of CTCs was assessed blindly and independently by both systems.

Results

CTCs were detected in 17 of 22 NSCLC patients using the MCA system versus 7 of 22 patients using the CellSearch system. On the other hand, CTCs were detected in 20 of 21 small cell lung cancer (SCLC) patients using the MCA system versus 12 of 21 patients using the CellSearch system. Significantly more CTCs in NSCLC patients were detected by the MCA system (median 13, range 0–291 cells/7.5 mL) than by the CellSearch system (median 0, range 0–37 cells/7.5 ml) demonstrating statistical superiority (p = 0.0015). Statistical significance was not reached in SCLC though the trend favoring the MCA system over the CellSearch system was observed (p = 0.2888). The MCA system also isolated CTC clusters from patients who had been identified as CTC negative using the CellSearch system.

Conclusions

The MCA system has a potential to isolate significantly more CTCs and CTC clusters in advanced lung cancer patients compared to the CellSearch system.  相似文献   

2.

Background

Asialoglycoprotein receptor (ASGPR)-ligand-based separation combined with identification with Hep Par 1 or pan-cytokeratin (P-CK) antibody have been demonstrated to detect circulating tumor cells (CTCs) in hepatocellular carcinoma (HCC). The aim of this study was to develop an improved enrichment and identification system that allows the detection of all types of HCC CTCs.

Methods

The specificity of the prepared anti-ASGPR monoclonal antibody was characterized. HCC cells were bound by ASGPR antibody and subsequently magnetically isolated by second antibody-coated magnetic beads. Isolated HCC cells were identified by immunofluorescence staining using a combination of anti-P-CK and anti-carbamoyl phosphate synthetase 1 (CPS1) antibodies. Blood samples spiked with HepG2 cells were used to determine recovery and sensitivity. CTCs were detected in blood samples from HCC patients and other patients.

Results

ASGPR was exclusively expressed in human hepatoma cell line, normal hepatocytes and HCC cells in tissue specimens detected by the ASGPR antibody staining. More HCC cells could be identified by the antibody cocktail for CPS1 and P-CK compared with a single antibody. The current approach obtained a higher recovery rate of HepG2 cells and more CTC detection from HCC patients than the previous method. Using the current method CTCs were detected in 89% of HCC patients and no CTCs were found in the other test subjects.

Conclusions

Our anti-ASGPR antibody could be used for specific and efficient HCC CTC enrichment, and anti-P-CK combined with anti-CPS1 antibodies is superior to identification with one antibody alone in the sensitivity for HCC CTC detection.  相似文献   

3.

Introduction

Assessment of EGFR mutation in non-small cell lung cancer (NSCLC) patients is mandatory for optimization of pharmacologic treatment. In this respect, mutation analysis of circulating tumor cells (CTCs) may be desirable since they may provide real-time information on patient''s disease status.

Experimental Design

Blood samples were collected from 37 patients enrolled in the TRIGGER study, a prospective phase II multi-center trial of erlotinib treatment in advanced NSCLC patients with activating EGFR mutations in tumor tissue. 10 CTC preparations from breast cancer patients without EGFR mutations in their primary tumors and 12 blood samples from healthy subjects were analyzed as negative controls. CTC preparations, obtained by the Veridex CellSearch System, were subjected to ultra-deep next generation sequencing (NGS) on the Roche 454 GS junior platform.

Results

CTCs fulfilling all Veridex criteria were present in 41% of the patients examined, ranging in number between 1 and 29. In addition to validated CTCs, potential neoplastic elements were seen in 33 cases. These included cells not fulfilling all Veridex criteria (also known as “suspicious objects”) found in 5 (13%) of 37 cases, and isolated or clustered large naked nuclei with irregular shape observed in 33 (89%) cases. EGFR mutations were identified by NGS in CTC preparations of 31 (84%) patients, corresponding to those present in matching tumor tissue. Twenty-five (96%) of 26 deletions at exon 19 and 6 (55%) of 11 mutations at exon 21 were detectable (P = 0.005). In 4 (13%) cases, multiple EGFR mutations, suggesting CTC heterogeneity, were documented. No mutations were found in control samples.

Conclusions

We report for the first time that the CellSearch System coupled with NGS is a very sensitive and specific diagnostic tool for EGFR mutation analysis in CTC preparations with potential clinical impact.  相似文献   

4.

Introduction

We investigated the frequency of detection and the prognostic and predictive significance of circulating tumor cells (CTCs) in patients with recurrent/metastatic (R/M) head and neck carcinoma (HNC) before starting systemic therapy.

Patients and methods

Using the CellSearch technology, CTCs were assessed prospectively in peripheral blood of 53 R/M-HNC patients. We performed spiking experiments to test the diagnostic performance of the CellSearch platform in identifying squamous carcinoma cells.

Results

CTCs were identified in 14 (26%) and 22 (41%) patients at baseline and at any time point, respectively. In univariate analysis ≥2 CTCs had a poorer prognostic role than 0–1 CTC. In multivariate analysis, the presence of one CTC or more was associated with a poor prognosis both in terms of progression-free survival (PFS) [Hazard Ratio (HR): 3.068, 95% confidence interval (CI): 1.53–6.13, p 0.002] and overall survival (OS) [HR: 3.0, 95% CI: 1.48–6.0, p 0.002]. A disease control after systemic therapy was obtained in 8% of CTC-positive patients as opposed to 45% in CTC-negative ones (p 0.03). The epidermal growth factor receptor (EGFR) expression was identified in 45% of CTC-positive patients.

Discussion

In conclusion, CTCs are detected in one out of three patients with RM-HNC. CTC detection is a strong prognostic parameter and may be predictive of treatment efficacy. The frequency of EGFR expression in CTCs seems to be lower than that expected in the primary tumor.  相似文献   

5.

Purpose

Clinical development of cancer drugs has a low success rate. Prognostic and predictive biomarkers using minimally invasive approaches hold promise for increasing the probability of success by enabling disease characterization, patient selection and early detection of drug treatment effect. Enumeration and molecular characterization of circulating tumor cells (CTC) may address some of these needs, and thus were evaluated for utility in a Phase I solid tumor clinical study.

Experimental Design

Blood samples for CTC analysis were obtained from 24 cancer patients in a multi-center all-comer Phase I study of MEDI-575, a novel anti-PDGFRα antibody. Samples were taken at screening and analyzed for enumeration of CTC using the CellSearch® platform and for molecular characterization using a novel quantitative RT-PCR assay.

Results

Fifty-nine percent of the patients showed at least 1 CTC per 7.5 ml of blood at baseline. Progression-free survival (PFS) and overall survival (OS) of patients with 0 CTCs at baseline were longer than PFS and Os for patients with 1-3 and >3 CTCs (8.8 versus 1.4 and 1.3 months PFS, P = 0.02; 9.0 vs 7.4 and 3.5 months OS, P = 0.20, respectively). Patients with 0 CTC showed a greater percentage of stable disease than the other 2 groups with 1-3 and >3 CTCs (57% vs 29% and 0%). The multimarker qRT-PCR method detected CTC in 40% of the patients, and 80% of these patients were positive for pre-selected drug target genes.

Conclusion

CTC enumeration of patients in an all-comer study is feasible and may allow for patient stratification for PFS and Os to evaluate the clinical response of investigational agents. Gene expression profiling of isolated CTC may provide a means for molecular characterization of selected tumor targets.  相似文献   

6.

Background

Surgery is the treatment of choice for patients with non-small cell lung cancer (NSCLC) stages I-IIIA. However, more than 20% of these patients develop recurrence and die due to their disease. The release of tumor cells into peripheral blood (CTCs) is one of the main causes of recurrence of cancer. The objectives of this study are to identify the prognostic value of the presence and characterization of CTCs in peripheral blood in patients undergoing radical resection for NSCLC.

Patients and Methods

56 patients who underwent radical surgery for previously untreated NSCLC were enrolled in this prospective study. Peripheral blood samples for CTC analysis were obtained before and one month after surgery. In addition CTCs were phenotypically characterized by epidermal growth factor receptor (EGFR) expression.

Results

51.8% of the patients evaluated were positive with the presence of CTCs at baseline. A decrease in the detection rate of CTCs was observed in these patients one month after surgery (32.1%) (p = 0.035). The mean number of CTCs was 3.16 per 10 ml (range 0–84) preoperatively and 0.66 (range 0–3) in postoperative determination. EGFR expression was found in 89.7% of the patients at baseline and in 38.9% patients one month after surgery. The presence of CTCs after surgery was significantly associated with early recurrence (p = 0.018) and a shorter disease free survival (DFS) (p = .008). In multivariate analysis CTC presence after surgery (HR = 5.750, 95% CI: 1.50–21.946, p = 0.010) and N status (HR = 0.296, 95% CI: 0.091–0.961, p = 0.043) were independent prognostic factors for DFS.

Conclusion

CTCs can be detected and characterized in patients undergoing radical resection for non-small cell lung cancer. Their presence might be used to identify patients with increased risk of early recurrence.  相似文献   

7.

Background

Evaluation of cancer biomarkers from blood could significantly enable biomarker assessment by providing a relatively non-invasive source of representative tumor material. Circulating Tumor Cells (CTCs) isolated from blood of metastatic cancer patients hold significant promise in this regard.

Methodology/Principal Findings

Using spiked tumor-cells we evaluated CTC capture on different CTC technology platforms, including CellSearch® and two biochip platforms, and used the isolated CTCs to develop and optimize assays for molecular characterization of CTCs. We report similar performance for the various platforms tested in capturing CTCs, and find that capture efficiency is dependent on the level of EpCAM expression. We demonstrate that captured CTCs are amenable to biomarker analyses such as HER2 status, qRT-PCR for breast cancer subtype markers, KRAS mutation detection, and EGFR staining by immunofluorescence (IF). We quantify cell surface expression of EGFR in metastatic lung cancer patient samples. In addition, we determined HER2 status by IF and FISH in CTCs from metastatic breast cancer patients. In the majority of patients (89%) we found concordance with HER2 status from patient tumor tissue, though in a subset of patients (11%), HER2 status in CTCs differed from that observed in the primary tumor. Surprisingly, we found CTC counts to be higher in ER+ patients in comparison to HER2+ and triple negative patients, which could be explained by low EpCAM expression and a more mesenchymal phenotype of tumors belonging to the basal-like molecular subtype of breast cancer.

Conclusions/Significance

Our data suggests that molecular characterization from captured CTCs is possible and can potentially provide real-time information on biomarker status. In this regard, CTCs hold significant promise as a source of tumor material to facilitate clinical biomarker evaluation. However, limitations exist from a purely EpCAM based capture system and addition of antibodies to mesenchymal markers could further improve CTC capture efficiency to enable routine biomarker analysis from CTCs.  相似文献   

8.

Introduction

We investigated the relationship of circulating tumor cells (CTCs) in non-small cell lung cancer (NSCLC) with tumor glucose metabolism as defined by 18F-fluorodeoxyglucose (FDG) uptake since both have been associated with patient prognosis.

Materials & Methods

We performed a retrospective screen of patients at four medical centers who underwent FDG PET-CT imaging and phlebotomy prior to a therapeutic intervention for NSCLC. We used an Epithelial Cell Adhesion Molecule (EpCAM) independent fluid biopsy based on cell morphology for CTC detection and enumeration (defined here as High Definition CTCs or “HD-CTCs”). We then correlated HD-CTCs with quantitative FDG uptake image data calibrated across centers in a cross-sectional analysis.

Results

We assessed seventy-one NSCLC patients whose median tumor size was 2.8 cm (interquartile range, IQR, 2.0–3.6) and median maximum standardized uptake value (SUVmax) was 7.2 (IQR 3.7–15.5). More than 2 HD-CTCs were detected in 63% of patients, whether across all stages (45 of 71) or in stage I disease (27 of 43). HD-CTCs were weakly correlated with partial volume corrected tumor SUVmax (r = 0.27, p-value = 0.03) and not correlated with tumor diameter (r = 0.07; p-value = 0.60). For a given partial volume corrected SUVmax or tumor diameter there was a wide range of detected HD-CTCs in circulation for both early and late stage disease.

Conclusions

CTCs are detected frequently in early-stage NSCLC using a non-EpCAM mediated approach with a wide range noted for a given level of FDG uptake or tumor size. Integrating potentially complementary biomarkers like these with traditional patient data may eventually enhance our understanding of clinical, in vivo tumor biology in the early stages of this deadly disease.  相似文献   

9.

Background

Presence of circulating tumor cells (CTC) in patients with metastatic breast, colorectal and prostate cancer is indicative for poor prognosis. An automated CTC (aCTC) algorithm developed previously to eliminate the variability in manual counting of CTC (mCTC) was used to extract morphological features. Here we validated the aCTC algorithm on CTC images from prostate, breast and colorectal cancer patients and investigated the role of quantitative morphological parameters.

Methodology

Stored images of samples from patients with prostate, breast and colorectal cancer, healthy controls, benign breast and colorectal tumors were obtained using the CellSearch system. Images were analyzed for the presence of aCTC and their morphological parameters measured and correlated with survival.

Results

Overall survival hazard ratio was not significantly different for aCTC and mCTC. The number of CTC correlated strongest with survival, whereas CTC size, roundness and apoptosis features reached significance in univariate analysis, but not in multivariate analysis. One aCTC/7.5 ml of blood was found in 7 of 204 healthy controls and 9 of 694 benign tumors. In one patient with benign tumor 2 and another 9 aCTC were detected.

Significance of the study

CTC can be identified and morphological features extracted by an algorithm on images stored by the CellSearch system and strongly correlate with clinical outcome in metastatic breast, colorectal and prostate cancer.  相似文献   

10.

Purpose

Circulating Tumor Cells (CTCs) detection and phenotyping are currently evaluated in Breast Cancer (BC). Tumor cell dissemination has been suggested to occur early in BC progression. To interrogate dissemination in BC, we studied CTCs and HER2 expression on CTCs across the spectrum of BC staging.

Methods

Spiking experiments with 6 BC cell lines were performed and blood samples from healthy women and women with BC were analyzed for HER2-positive CTCs using the CellSearch®.

Results

Based on BC cell lines experiments, HER2-positive CTCs were defined as CTCs with HER2 immunofluoresence intensity that was at least 2.5 times higher than the background. No HER2-positive CTC was detected in 42 women without BC (95% confidence interval (CI) 0–8.4%) whereas 4.1% (95%CI 1.4–11.4%) of 73 patients with ductal/lobular carcinoma in situ (DCIS/LCIS) had 1 HER2-positive CTC/22.5 mL, 7.9%, (95%CI 4.1–14.9%) of 101 women with non metastatic (M0) BC had ≥1 HER2-positive CTC/22.5 mL (median 1 cell, range 1–3 cells) and 35.9% (95%CI 22.7–51.9%) of 39 patients with metastatic BC had ≥1 HER2-positive CTC/7.5 mL (median 1.5 cells, range 1–42 cells). In CTC-positive women with DCIS/LCIS or M0 BC, HER2-positive CTCs were more commonly detected in HER2-positive (5 of 5 women) than HER2-negative BC (5 of 12 women) (p = 0.03).

Conclusion

HER2-positive CTCs were detected in DCIS/LCIS or M0 BC irrespective of the primary tumor HER2 status. Nevertheless, their presence was more common in women with HER2-positive disease. Monitoring of HER2 expression on CTCs might be useful in trials with anti-HER2 therapies.  相似文献   

11.

Background

The prognostic significance of circulating tumor cells (CTCs) detected in patients with non-small-cell lung cancer (NSCLC) is still inconsistent. We aimed to assess the prognostic relevance of CTCs using a meta-analysis.

Methods

We searched PubMed, Web of Science and EMBASE for relevant studies that assessed the prognostic relevance of CTCs in NSCLC. Statistical analyses were conducted to calculate the summary incidence, odds ratio, relative risks (RRs) and 95% confidence intervals (CIs) using fixed or random-effects models according to the heterogeneity of included studies.

Results

A total of 20 studies, comprising 1576 patients, met the inclusion criteria. In identified studies, CTCs were not correlated with histology (adenocarcinoma vs squamous cell carcinoma) (odds ratio [OR]  =  0.88; 95% confidence interval [CI]: 0.59–1.33; Z = –0.61; P = 0.545). However, pooled analyses showed that CTCs were associated with lymph node metastasis (OR = 2.06; 95% CI: 1.18–3.62; Z = 2.20; P = 0.027) and tumor stage (OR  = 1.95; 95% CI: 1.08–3.54; Z = 2.53; P = 0.011). Moreover, CTCs were significantly associated with shorter overall survival (relative risk [RR]  = 2.19; 95% CI: 1.53–3.12; Z = 4.32; P<0.0001) and progression-free/disease-free survival (RR  = 2.14; 95% CI: 1.36–3.38; Z = 3.28; P<0.0001).

Conclusion

The presence of CTCs indicates a poor prognosis in patients with NSCLC. Further well-designed prospective studies are required to explore the clinical applications of CTCs in lung cancer.  相似文献   

12.

Background

Circulating tumor cells (CTCs) are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.

Methodology/Principal Findings

Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56) (Breast cancer samples: 12–1275 CTCs/ml; Lung cancer samples: 10–1535 CTCs/ml) rapidly from clinically relevant blood volumes (7.5 ml under 5 min). Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM), fluorescence in-situ hybridization (FISH) (EML4-ALK) or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA), and demonstrate concordance with the original tumor-biopsy samples.

Conclusions/Significance

We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS) or proteomic analysis.  相似文献   

13.

Background

It has been considered that the detection methods for circulating tumor cells (CTCs) based on epithelial cell adhesion molecule (EpCAM) underestimate the number of CTCs and may miss a metastatic subpopulation with cancer stem cell (CSC) properties. Therefore, we investigated EpCAM-positive and -negative CTCs in non-small cell lung cancer (NSCLC) patients at different stages, assessed the clinical value of these CTCs and explored their capacity in the following CSC model.

Methods

CTCs were enriched by the depletion of leukocytes with bi-antibodies using a magnetic bead separation technique and then identified by the expression of EpCAM and cytokeratin 7 and 8 using multi-parameter flow cytometry. We determined the distribution of CTCs classified by the expression of EpCAM in 46 NSCLC patients with stages I to IV, assessed the diagnostic value of these CTCs by longitudinal monitoring in 4 index patients during adjuvant therapy and characterized the stemness of these CTCs by the expression of CXCR4 and CD133 in 10 patients.

Results

EpCAM-negative (E-) CTCs were detected to be significantly higher than EpCAM-positive (E+) CTCs in stage IV (p = 0.003). The patients with the percentage of E-CTCs more than 95% (r > 95%) were detected to be significantly increased from 13.3% in stage I-II to 61.1% in stage IV (p = 0.006). Kaplan–Meier analysis indicated that the patients with r > 95% had significantly shorter survival time than those with r ≤ 0.95 (p = 0.041). Longitudinal monitoring of CTCs indicated that the patients with a high percentage of E-CTCs in the blood were not responsive to either chemotherapy or targeted therapy. Further characterization of CTCs revealed that a stem-like subpopulation of CXCR4+CD133+ CTCs were detected to be significantly more prevalent in E-CTCs than that in E+CTCs (p = 0.005).

Conclusions

The enrichment of CTCs by the depletion of leukocytes with bi-antibodies is a valuable method for estimating the number of CTCs, which can be potentially applied in predicting the prognosis, monitoring the therapeutic effect of NSCLC patients and further analyzing the biology of CTCs.  相似文献   

14.

Background

To evaluate the efficacy of lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor, in therapy-resistant HER2-positive CTCs in metastatic breast cancer (MBC).

Patients and Methods

Patients with MBC and HER2-positive CTCs despite disease stabilization or response to prior therapy, received lapatinib 1500 mg daily in monthly cycles, till disease progression or CTC increase. CTC monitoring was performed by immunofluorescent microscopy using cytospins of peripheral blood mononuclear cells (PBMCs) double stained for HER2 or EGFR and cytokeratin.

Results

A total of 120 cycles were administered in 22 patients; median age was 62.5 years, 15 (68.2%) patients were post-menopausal and 20 (90.1%) had HER2-negative primary tumors. At the end of the second course, HER2-positive CTC counts decreased in 76.2% of patients; the median number of HER2-positive CTCs/patient also declined significantly (p = 0.013), however the decrease was significant only among patients presenting disease stabilization (p = 0.018) but not among those with disease progression during lapatinib treatment. No objective responses were observed. All CTC-positive patients harbored EGFR-positive CTCs on progression compared to 62.5% at baseline (p = 0.054). The ratio of EGFR-positive CTCs/total CTCs detected in all patients increased from 17.1% at baseline to 37.6% on progression, whereas the mean percentage of HER2-negative CTCs/patient increased from 2.4% to 30.6% (p = 0.03).

Conclusions

The above results indicate that lapatinib is effective in decreasing HER2-positive CTCs in patients with MBC irrespectively of the HER2 status of the primary tumor and imply the feasibility of monitoring the molecular changes on CTCs during treatment with targeted agents.

Trial Registration

Clinical trial.gov NCT00694252  相似文献   

15.

Background

Oncogenic mutations are powerful predictive biomarkers for molecularly targeted cancer therapies. For mutation detection patients have to undergo invasive tumor biopsies. Alternatively, archival samples are used which may no longer reflect the actual tumor status. Circulating tumor cells (CTC) could serve as an alternative platform to detect somatic mutations in cancer patients. We sought to develop a sensitive and specific assay to detect mutations in the EGFR gene in CTC from lung cancer patients.

Methods

We developed a novel assay based on real-time polymerase chain reaction (PCR) and melting curve analysis to detect activating EGFR mutations in blood cell fractions enriched in CTC. Non-small-cell lung cancer (NSCLC) was chosen as disease model with reportedly very low CTC counts. The assay was prospectively validated in samples from patients with EGFR-mutant and EGFR-wild type NSCLC treated within a randomized clinical trial. Sequential analyses were conducted to monitor CTC signals during therapy and correlate mutation detection in CTC with treatment outcome.

Results

Assay sensitivity was optimized to enable detection of a single EGFR-mutant CTC/mL peripheral blood. CTC were detected in pretreatment blood samples from all 8 EGFR-mutant lung cancer patients studied. Loss of EGFR-mutant CTC signals correlated with treatment response, and its reoccurrence preceded relapse.

Conclusions

Despite low abundance of CTC in NSCLC oncogenic mutations can be reproducibly detected by applying an unbiased CTC enrichment strategy and highly sensitive PCR and melting curve analysis. This strategy may enable non-invasive, specific biomarker diagnostics and monitoring in patients undergoing targeted cancer therapies.  相似文献   

16.

Background

Circulating tumor cell (CTC) detection and genetic analysis may complement currently available disease assessments in patients with melanoma to improve risk stratification and monitoring. We therefore sought to establish the feasibility of a telomerase-based assay for detecting and isolating live melanoma CTCs.

Methods

The telomerase-based CTC assay utilizes an adenoviral vector that, in the presence of elevated human telomerase activity, drives the amplification of green fluorescent protein. Tumor cells are then identified via an image processing system. The protocol was tested on melanoma cells in culture or spiked into control blood, and on samples from patients with metastatic melanoma. Genetic analysis of the isolated melanoma CTCs was then performed for BRAF mutation status.

Results

The adenoviral vector was effective for all melanoma cell lines tested with sensitivity of 88.7% (95%CI 85.6-90.4%) and specificity of 99.9% (95%CI 99.8-99.9%). In a pilot trial of patients with metastatic disease, CTCs were identified in 9 of 10 patients, with a mean of 6.0 CTCs/mL. At a cutoff of 1.1 CTCs/mL, the telomerase-based assay exhibits test performance of 90.0% sensitivity and 91.7% specificity. BRAF mutation analysis of melanoma cells isolated from culture or spiked control blood, or from pilot patient samples was found to match the known BRAF mutation status of the cell lines and primary tumors.

Conclusions

To our knowledge, this is the first report of a telomerase-based assay effective for detecting and isolating live melanoma CTCs. These promising findings support further studies, including towards integrating into the management of patients with melanoma receiving multimodality therapy.  相似文献   

17.
The study aims to determine the efficacy and feasibility of a novel folate receptor (FR)-based circulating tumor cell (CTC) detection method in the diagnosis of non-small cell lung cancer (NSCLC). CTCs were collected from 3 ml of blood based on negative enrichment by immunomagnetic beads and then labeled by a conjugate of a tumor-specific ligand folate and an oligonucleotide. After washing off redundant conjugates, the bound conjugates were removed and analyzed by quantitative polymerase chain reaction. The captured cells were validated as tumor cells by immunofluorescence staining. In the evaluation of clinical utility, the results showed that the CTC levels of 153 patients with NSCLC were significantly higher than the controls (49 healthy donors and 64 patients with benign lung diseases; P < .001). With a threshold of 8.64 CTC units, the method showed a sensitivity of 73.2% and a specificity of 84.1% in the diagnosis of NSCLC, especially a sensitivity of 67.2% in stage I disease. Compared with the existing clinical biomarkers such as neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), cyfra21-1, and squamous cell carcinoma antigen (SCC Ag), the method showed the highest diagnostic efficiency (area under the curve, 0.823; 95% confidence interval, 0.773–0.874). Together, our results demonstrated that FR-positive CTCs were feasible diagnostic biomarkers in patients with NSCLC, as well as in early-stage tumors.  相似文献   

18.

Background

Detection of early stage non-small cell lung cancer (NSCLC) is commonly believed to be incidental. Understanding the reasons that caused initial detection of these patients is important for early diagnosis. However, these reasons are not well studied.

Methods

We retrospectively reviewed medical records of patients diagnosed with stage I or II NSCLC between 2000 and 2009 at UT MD Anderson Cancer Center. Information on suggestive LC-symptoms or other reasons that caused detection were extracted from patients'' medical records. We applied univariate and multivariate analyses to evaluate the association of suggestive LC-symptoms with tumor size and patient survival.

Results

Of the 1396 early stage LC patients, 733 (52.5%) presented with suggestive LC-symptoms as chief complaint. 347 (24.9%) and 287 (20.6%) were diagnosed because of regular check-ups and evaluations for other diseases, respectively. The proportion of suggestive LC-symptom-caused detection had a linear relationship with the tumor size (correlation 0.96; with p<.0001). After age, gender, race, smoking status, therapy, and stage adjustment, the symptom-caused detection showed no significant difference in overall and LC-specific survival when compared with the other (non-symptom-caused) detection.

Conclusion

Symptoms suggestive of LC are the number one reason that led to detection in early NSCLC. They were also associated with tumor size at diagnosis, suggesting early stage LC patients are developing symptoms. Presence of symptoms in early stages did not compromise survival. A symptom-based alerting system or guidelines may be worth of further study to benefit NSCLC high risk individuals.  相似文献   

19.

Background

Preclinical models of non-small cell lung cancer (NSCLC) require better clinical relevance to study disease mechanisms and innovative therapeutics. We sought to compare and refine bioluminescent orthotopic mouse models of human localized NSCLC.

Methods

Athymic nude mice underwent subcutaneous injection (group 1-SC, n = 15, control), percutaneous orthotopic injection (group 2-POI, n = 30), surgical orthotopic implantation of subcutaneously grown tumours (group 3-SOI, n = 25), or transpleural orthotopic injection (group 4-TOI, n = 30) of A549-luciferase cells. Bioluminescent in vivo imaging was then performed weekly. Circulating tumour cells (CTCs) were searched using Cellsearch® system in SC and TOI models.

Results

Group 2-POI was associated with unexpected direct pleural spreading of the cellular solution in 53% of the cases, forbidding further evaluation of any localized lung tumour. Group 3-SOI was characterized by high perioperative mortality, initially localized lung tumours, and local evolution. Group 4-TOI was associated with low perioperative mortality, initially localized lung tumours, loco regional extension, and distant metastasis. CTCs were detected in 83% of nude mice bearing subcutaneous or orthotopic NSCLC tumours.

Conclusions

Transpleural orthotopic injection of A549-luc cells in nude mouse lung induces localized tumour, followed by lymphatic extension and specific mortality, and allowed the first time identification of CTCs in a NSCLC mice model.  相似文献   

20.

Background

The prognostic value of circulating tumor cells (CTCs) in ovarian cancer has been investigated in previous studies, but the results are controversial. Therefore we performed a meta-analysis to systematically review these data and evaluate the value of CTCs in ovarian cancer.

Materials and Methods

A literary search for relevant studies was performed on Embase, Medline and Web of Science databases. Then pooled hazard ratios (HRs) for survival with 95% confidence intervals (CIs), subgroup analyses, sensitivity analyses, meta-regression analyses and publication bias were conducted.

Results

This meta-analysis is based on 11 publications and comprises a total of 1129 patients. The prognostic value of the CTC status was significant in overall survival (OS) (HR, 1.61;95% CI,1.22–2.13) and progression-free survival (PFS)/disease-free survival (DFS) (HR, 1.44; 95%CI, 1.18–1.75). Furthermore, subgroup analysis revealed that the value of CTC status in OS was significant in "RT-PCR" subgroup (HR, 2.02; 95% CI, 1.34–3.03), whereas it was not significant in "CellSearch" subgroup (HR, 1.15; 95% CI 0.45–2.92) and "other ICC" subgroup (HR, 1.09; 95% CI 0.62–1.90). The presence of CTC was also associated with an increased CA-125 (OR, 4.07; 95%CI, 1.87–8.85).

Conclusion

Our study demonstrates that CTC status is associated with OS and PFS/DFS in ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号