首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land use intensification drives biodiversity loss worldwide. In heterogeneous landscape mosaics, both overall forest area and anthropogenic matrix structure induce changes in biological communities in primary habitat remnants. However, community changes via cross‐habitat spillover processes along forest–matrix interfaces remain poorly understood. Moreover, information on how landscape attributes affect spillover processes across habitat boundaries are embryonic. Here, we quantify avian α‐ and β‐diversity (as proxies of spillover rates) across two dominant types of forest–matrix interfaces (forest–pasture and forest–eucalyptus plantation) within the Atlantic Forest biodiversity hotspot in southeast Brazil. We also assess the effects of anthropogenic matrix type and landscape attributes (forest cover, edge density and land‐use diversity) on bird taxonomic and functional β‐diversity across forest–matrix boundaries. Alpha taxonomic richness was higher in forest edges than within both matrix types, but between matrix types, it was higher in pastures than in eucalyptus plantations. Although significantly higher in forests edges than in the adjacent eucalyptus, bird functional richness did not differ between forest edges and adjacent pastures. Community changes (β‐diversity) related to species and functional replacements (turnover component) were higher across forest–pasture boundaries, whereas changes related to species and functional loss (nested component) were higher across forest–eucalyptus boundaries. Forest edges adjacent to eucalyptus had significant higher species and functional replacements than forest edges adjacent to pastures. Forest cover negatively influenced functional β‐diversity across both forest–pasture and forest–eucalyptus interfaces. We show the importance of matrix type and the structure of surrounding landscapes (mainly forest cover) on rates of bird assemblage spillover across forest‐matrix boundaries, which has profound implications to biological fluxes, ecosystem functioning and land‐use management in human‐modified landscapes.  相似文献   

2.
Biodiversity extinction thresholds are abrupt declines in biological diversity that occur with habitat loss, associated with a decline in habitat connectivity. Matrix quality should influence the location of thresholds along habitat loss gradients through its effects on connectivity; however these relationships have seldom been explored empirically. Using field data from 23 independent 1254 ha landscapes in the Brazilian Atlantic Forest, we evaluated how tropical avian biodiversity responds to native forest loss within habitat patches embedded either in homogeneous pasture matrix context (with a high proportion of cattle pastures), and heterogeneous coffee matrix context (with high abundance of sun coffee plantations). We considered taxonomic, functional, and phylogenetic diversity, and tested if matrix type and choice of diversity metric influenced the location of biodiversity thresholds along the forest cover gradient. We found that matrix type postponed the abrupt loss of taxonomic diversity, from a threshold of 35% of forest cover in homogeneous pasture matrix to 19% in heterogeneous coffee matrix. Phylogenetic diversity responded similarly, with thresholds at 30 and 24% in homogeneous‐pasture and heterogeneous‐coffee matrices, respectively, but no relationship with forest cover was detected when corrected for richness correlation. Despite the absence of a threshold for functional diversity in either matrix types, a strong decline below 20% of habitat amount was detected. Finally, below 20% native habitat loss, all diversity indices demonstrated abrupt declines, indicating that even higher‐quality matrices cannot postpone diversity loss below this critical threshold. These results highlight that taxonomic diversity is a more sensitive index of biodiversity loss in fragmented landscapes, which may be used as a benchmark to prevent subsequent functional and phylogenetic losses. Furthermore, increasing matrix quality appears an efficient conservation strategy to maintain higher biodiversity levels in fragmented landscapes over a larger range of habitat loss.  相似文献   

3.
Habitat loss is commonly identified as a major threat to the loss of global biodiversity. In this study, we expand on our previous work by addressing the question of how lepidopteran species richness and composition vary among remnants of North American eastern deciduous forest located within agricultural or pastoral landscapes. Specifically, we tested the relative roles of habitat quantity (measured as stand area and percent forest in the greater landscape) and habitat quality (measured as tree species diversity) as determinants of moth species richness. We sampled >19 000 individuals comprising 493 moth species from 21 forest sites in two forested ecoregions. In the unglaciated Western Allegheny Plateau, the species richness of moths with woody host plants diminished as forest stand size and percent forest in the landscape decreased, but the total species richness and abundance of moths were unaffected by stand size, percent forest in the landscape, or tree species diversity. In contrast, the overall species richness and abundance of moths in the glaciated North Central Tillplain were affected primarily by tree species diversity and secondarily by forest size. Higher tree species diversity may reduce species loss from smaller forest stands, suggesting that small, diverse forests can support comparable numbers of species to those in less diverse, large stands. Smaller forests, however, contained a disproportionate number of moth species that possess larvae known to feed on herbaceous vegetation. Thus, although woody plant feeding moths are lost from forests with changes in stand area, new species appear capable of recolonizing smaller fragments from the surrounding habitat matrix. Our study further suggests that when species replacement occurs, local patch size and habitat quality may be more important than landscape context in determining the community structure of forest Lepidoptera.  相似文献   

4.
The traditional shade cacao plantations (cabrucas) of southern Bahia, Brazil, are biologically rich habitats, encompassing many forest-dwelling species. However, a critical question for the conservation management of this specific region, and the highly fragmented Atlantic forest in general, is to what extent the conservation value of cabrucas relies on the presence of primary forest habitat in the landscape. We investigated the relative importance of cabrucas and forests for the conservation of five diverse biological groups (ferns, frogs, lizards, birds and bats) in two contrasting landscapes in southern Bahia, one dominated by forest with some interspersed cabrucas, and one dominated by cabrucas with interspersed forest fragments. The community structure (richness, abundance and diversity) of all biological groups differed between cabrucas and forests, although these differences varied among groups. A high number of forest species was found in the cabrucas. However, there were pronounced differences between the two landscapes with regard to the ability of cabrucas to maintain species richness. Irrespective of the biological group considered, cabrucas located in the landscape with few and small forest fragments supported impoverished assemblages compared to cabrucas located in the landscape with high forest cover. This suggests that a greater extent of native forest in the landscape positively influences the species richness of cabrucas. In the landscape with few small forest fragments interspersed into extensive areas of shade cacao plantations, the beta diversity of birds was higher than in the more forested landscape, suggesting that forest specialist species that rarely ventured into cabrucas were randomly lost from the fragments. These results stress both the importance and the vulnerability of the small forest patches remaining in landscapes dominated by shade plantations. They also point to the need to preserve sufficient areas of primary habitat even in landscapes where land use practices are generally favorable to the conservation of biodiversity.  相似文献   

5.
Ecological systems are vulnerable to irreversible change when key system properties are pushed over thresholds, resulting in the loss of resilience and the precipitation of a regime shift. Perhaps the most important of such properties in human-modified landscapes is the total amount of remnant native vegetation. In a seminal study Andrén proposed the existence of a fragmentation threshold in the total amount of remnant vegetation, below which landscape-scale connectivity is eroded and local species richness and abundance become dependent on patch size. Despite the fact that species patch-area effects have been a mainstay of conservation science there has yet to be a robust empirical evaluation of this hypothesis. Here we present and test a new conceptual model describing the mechanisms and consequences of biodiversity change in fragmented landscapes, identifying the fragmentation threshold as a first step in a positive feedback mechanism that has the capacity to impair ecological resilience, and drive a regime shift in biodiversity. The model considers that local extinction risk is defined by patch size, and immigration rates by landscape vegetation cover, and that the recovery from local species losses depends upon the landscape species pool. Using a unique dataset on the distribution of non-volant small mammals across replicate landscapes in the Atlantic forest of Brazil, we found strong evidence for our model predictions--that patch-area effects are evident only at intermediate levels of total forest cover, where landscape diversity is still high and opportunities for enhancing biodiversity through local management are greatest. Furthermore, high levels of forest loss can push native biota through an extinction filter, and result in the abrupt, landscape-wide loss of forest-specialist taxa, ecological resilience and management effectiveness. The proposed model links hitherto distinct theoretical approaches within a single framework, providing a powerful tool for analysing the potential effectiveness of management interventions.  相似文献   

6.
Loss, fragmentation and decreasing quality of habitats have been proposed as major threats to biodiversity world‐wide, but relatively little is known about biodiversity responses to multiple pressures, particularly at very large spatial scales. We evaluated the relative contributions of four landscape variables (habitat cover, diversity, fragmentation and productivity) in determining different components of avian diversity across Europe. We sampled breeding birds in multiple 1‐km2 landscapes, from high forest cover to intensive agricultural land, in eight countries during 2001?2002. We predicted that the total diversity would peak at intermediate levels of forest cover and fragmentation, and respond positively to increasing habitat diversity and productivity; forest and open‐habitat specialists would show threshold conditions along gradients of forest cover and fragmentation, and respond positively to increasing habitat diversity and productivity; resident species would be more strongly impacted by forest cover and fragmentation than migratory species; and generalists and urban species would show weak responses. Measures of total diversity did not peak at intermediate levels of forest cover or fragmentation. Rarefaction‐standardized species richness decreased marginally and linearly with increasing forest cover and increased non‐linearly with productivity, whereas all measures increased linearly with increasing fragmentation and landscape diversity. Forest and open‐habitat specialists responded approximately linearly to forest cover and also weakly to habitat diversity, fragmentation and productivity. Generalists and urban species responded weakly to the landscape variables, but some groups responded non‐linearly to productivity and marginally to habitat diversity. Resident species were not consistently more sensitive than migratory species to any of the landscape variables. These findings are relevant to landscapes with relatively long histories of human land‐use, and they highlight that habitat loss, fragmentation and habitat‐type diversity must all be considered in land‐use planning and landscape modeling of avian communities.  相似文献   

7.
Quantifying how human-modified landscapes shape the distribution of biodiversity is critical for developing effective conservation strategies. To address this, we evaluated three hypotheses (habitat area, habitat configuration and matrix heterogeneity hypotheses) that predict responses of biodiversity to landscape structure in human-modified landscapes. We compared characteristics of landscape structure that influence taxonomic (TD), functional (FD), and phylogenetic (PD) dimensions of biodiversity of breeding birds in temperate forests. Relationships between biodiversity and landscape structure were assessed at multiple spatial scales for 20 forest interior sites in northeastern USA. We assessed if relationships with landscape structure were consistent among dimensions and assemblages of different groups (residents, migrants and all birds). Relationships between dimensions of biodiversity and landscape structure were more prevalent for FD and PD than for TD. Forest amount and configuration were rarely associated with any dimensions of biodiversity. In contrast, the identity of the matrix and heterogeneity of the landscape were frequently associated with biodiversity, but relationships differed among groups of birds. For example, FD of all birds was associated positively with landscape diversity but FD of residents was associated negatively with landscape diversity, suggesting that landscape diversity surrounding forests may increase overall FD of birds but that not all groups of species respond similarly. Indeed, biodiversity of migrants was only weakly related to landscape structure. Differences among relationships to landscape structure for bird groups and spatial scales suggests that management plans should consider local decisions within a regional framework to balance potentially conflicting needs of species groups in human-dominated landscapes.  相似文献   

8.
Cacao agroforestry have been considered as biodiversity‐friendly farming practices by maintaining habitats for a high diversity of species in tropical landscapes. However, little information is available to evaluate whether this agrosystem can maintain functional diversity, given that agricultural changes can affect the functional components, but not the taxonomic one (e.g., species richness). Thus, considering functional traits improve the understanding of the agricultural impacts on biodiversity. Here, we measured functional diversity (functional richness‐FD, functional evenness‐FEve, and functional divergence‐Rao) and taxonomic diversity (species richness and Simpson index) to evaluate changes of bird diversity in cacao agroforestry in comparison with nearby mature forests (old‐growth forests) in the Brazilian Atlantic Forest. We used data from two landscapes with constraining areas of mature forest (49% Una and 4.8% Ilhéus) and cacao agroforestry cover (6% and 82%, respectively). To remove any bias of species richness and to evaluate assembly processes (functional overdispersion or clustering), all functional indices were adjusted using null models. Our analyses considered the entire community, as well as separately for forest specialists, habitat generalists, and birds that contribute to seed dispersal (frugivores/granivores) or invertebrate removal (insectivores). Our findings showed that small cacao agroforestry in the forested landscape sustains functional diversity (FD and FEve) as diverse as nearby forests when considering the entire community, forest specialist, and habitat generalists. However, we observed declines for frugivores/granivores and insectivores (FD and Rao). These responses of bird communities differed from those observed by taxonomic diversity, suggesting that even species‐rich communities in agroforestry may capture lower functional diversity. Furthermore, communities in both landscapes showed either functional clustering or neutral processes as the main driver of functional assembly. Functional clustering may indicate that local conditions and resources were changed or lost, while neutral assemblies may reveal high functional redundancy at the landscape scale. In Ilhéus, the neutral assembly predominance suggests an effect of functional homogenization between habitats. Thus, the conservation value of cacao agroforestry to harbor species‐rich communities and ecosystem functions relies on smallholder production with reduced farm management in a forested landscape. Finally, we emphasize that seed dispersers and insectivores should be the priority conservation targets in cacao systems.  相似文献   

9.
As old-growth forests are converted into edge-affected habitats, a substantial proportion of tropical biodiversity is potentially threatened. Here, we examine a comprehensive set of community-level attributes of fruit-feeding butterfly assemblages inhabiting edge-affected habitats in a fragmented Atlantic forest landscape devoted to sugar cane production. We also explored whether the consequences of habitat loss and fragmentation can interact and cause cascading ecosystem changes, with the pervasive simplification of tree assemblages inhabiting edge-dominated habitats, altering fruit-feeding butterfly persistence. Butterflies were sampled in three forest habitats: small fragments, forest edges and patches of forest interior of a primary forest fragment. Assemblage attributes, including taxonomic composition, correlated to some patch (patch size) and landscape (such as forest cover) metrics as well as habitat structure (tree density and richness). Fruit-feeding butterfly assemblages in the forest interior differed from those in small fragments due to an increased abundance of edge-specialist species. On the other hand, several forest-dependent species were missing in both small fragments and forest edges. Our results suggest that edge-affected habitats dominated by pioneer tree species support taxonomically distinct assemblages, including the presence of disturbance-adapted species, and butterfly community structure is highly sensitive to fragmentation- and plant-related variables, such as forest cover and pioneer tree species. In this way, while the establishment of human-modified landscapes probably results in the local extirpation of forest-dependent species, it allows the persistence of disturbance-adapted species. Thus, forest-dependent species conservation and the plant–animal interaction webs they support could be improved by retaining a significant amount of core forest habitat.  相似文献   

10.
The mechanisms affecting forest regeneration in human-modified landscapes are attracting increasing attention as tropical forests have been recognized as key habitats for biodiversity conservation, provision of ecosystem services, and human well-being. Here we investigate the effect of the leaf-cutting ants (LCA) Atta opaciceps on regenerating plant assemblages in Caatinga dry forest. Our study encompassed 15 Atta opaciceps colonies located in landscape patches with a gradient of forest cover from 8.7% to 87.8%, where we monitored regenerating individuals (seedlings and saplings of woody and herbaceous plants) in different habitats (nests, foraging areas, and control areas) over one year. We recorded 2,977 regenerating plant individuals, distributed among 55 species from 23 families. Herbaceous plants represented 82.1% and 58.2% of the total number of individuals and species, respectively. Species richness of both the whole and herbaceous plant assemblages increased along the forest cover gradient, but without difference between the habitats. Total plant abundance was highest in control areas followed by foraging areas and nests and this pattern held for both woody and herbaceous plants. Although forest cover did not influence the abundance of herbaceous plants and the whole plant assemblage, it positively affects woody plant abundance across control areas. Forest cover and habitat changed species composition of both the entire regenerating and the herbaceous assemblages. These results together indicate that LCA negatively impact regenerating plant assemblages, particularly in those sites with increased forest cover. As LCA proliferate in human-modified landscapes, they may prevent plant regeneration of disturbed areas.  相似文献   

11.
Efforts to conserve tropical forests could be strengthened based on ecological knowledge, such as extinction thresholds in ecological processes. Many studies of extinction thresholds associated with habitat reduction have focused on animals, generally at the patch scale. However, certain plant groups are very interesting models with which to study this type of relationship, such as Myrtaceae in Neotropical forests. Because trees are long-lived organisms, local extinctions in response to habitat loss may occur in different ways due to a time lag. In this study, our objective was to assess the occurrence of extinction thresholds at the landscape scale for Myrtaceae in a large biome and the pattern of species reduction in different tree size classes. We studied nine landscapes with different amounts of available habitat (between 5 and 55 % forest cover) in different parts of the Atlantic Forest in Bahia, Brazil, and in each landscape, we evaluated four plant classes based on tree circumference: saplings (CBH between 8 and 15 cm), young (CBH between 15 and 30 cm) adults (CBH ≥30 cm) and total (all individuals with CBH ≥8 cm). Landscapes with forest cover less than 25 % presented an approximately sixfold reduction in Myrtaceae total species richness compared with landscapes with forest cover greater than 40 %. We identified a relationship with a threshold between the amount of available habitat at the landscape level and Myrtaceae richness, with a reduction in total, sapling and young species below a threshold of 40 % forest cover, whereas adults had an extinction threshold at 30 % forest cover. We discuss the differences among the categories of plants associated with a time lag and the possibilities and limitations in applying these results in environmental management.  相似文献   

12.
The rapid loss and degradation of tropical forests threatens the maintenance of biodiversity across different spatial scales. Nevertheless, the extirpation and population decline of some disturbance-sensitive species may be compensated for by colonization and proliferation of disturbance-adapted species, thus allowing distributions of community-level attributes (e.g., abundance and diversity) to be preserved in human-modified tropical landscapes. To test this poorly assessed hypothesis we evaluated species- and community-level responses of amphibians and reptiles to differences in forest patch (patch size, shape, and distance to water bodies) and landscape metrics (old-growth forest cover, degree of fragmentation, and matrix composition) in the fragmented Lacandona rainforest, Mexico. We found that the abundance of several amphibian and reptile species was strongly associated with forest patch and landscape attributes, being particularly higher in larger patches surrounded by a greater forest cover. Such changes at the species level generated notable changes in reptile communities. In particular, the abundance, diversity, and evenness of reptile communities were strongly related to patch size, patch shape, and matrix composition. Yet, because of compensatory dynamics in amphibians, this group showed weak responses at the community level. Despite such compensatory dynamics, our results indicate that forest loss at the patch and landscape levels represents the main threat to both amphibians and reptiles, thus indicating that to preserve herpetological communities in this biodiversity hotspot, conservation initiatives should be focused on preventing further deforestation.  相似文献   

13.
Extensive afforestation of agricultural areas has increased the importance of green corridors as a dispersal network. We tested the effect of spatiotemporal connectivity, edge effect and habitat structural quality of wooded corridors on the long-term immigration success of forest specialist plants relative to the performance of forest generalists. In agricultural landscapes of central and southern Estonia, we sampled 28 historically connected and 52 isolated tree lines and alleys with a minimum age of 50 years, and 93 edges of ancient forests. The regional pool of common forest plants was compiled using species’ frequency data in 91 ancient forests. Both landscape connectivity and habitat quality affected the richness of response groups, but specialists and generalists responded to different drivers. Forest specialists required long-term neighbourhoods of ancient forest and benefited from a direct connection between forest and corridor. Habitat generalists reacted positively to the recently modified structure of the landscape. When a corridor was connected to forest, the dual edge in the corridor did not result in an increased negative edge effect on forest specialist arrival. Even if both specialists and generalists required wide corridors with optimum shade, forest specialists also benefited from mature overstorey and outward overhanging branches, whereas forest generalists used disturbance-created microhabitats. We conclude that only wooded corridors with long-term connectivity to seed source forests and widely branched tree canopies will function as a green infrastructure supporting forest-specific biodiversity.  相似文献   

14.
Abstract.  1. Metapopulation and island biogeography theory assume that landscapes consist of habitat patches set in a matrix of non-habitat. If only a small proportion of species conform to the patch–matrix assumptions then metapopulation theory may only describe special cases rather than being of more general ecological importance.
2. As an initial step towards understanding the prevalence of metapopulation dynamics in a naturally fragmented landscape, the distribution of beetle species in three replicates of three habitat types was examined, including rainforest and eucalypt forest (the habitat patches), and buttongrass sedgeland (the matrix), in south-west Tasmania, Australia.
3. Ordination methods indicated that the buttongrass fauna was extremely divergent from the fauna of forested habitats. Permutation tests showed that the abundance of 13 of 17 commonly captured species varied significantly among habitats, with eight species confined to eucalypts or rainforest, and three species found only in buttongrass. Approximately 60% of species were confined to forested habitat implying that metapopulation theory has the potential to be very important in the forest–buttongrass landscape.
4. Although floristically the rainforest and eucalypts were extremely distinct, the beetle faunas from eucalypts and rainforests overlapped substantially. Therefore rainforest patches connected by eucalypt forest represent continuous habitat for most species.
5. Other studies report a wide range of values for the proportion of patch-specific species in fragmented landscapes. Understanding the environmental or historical conditions under which a high proportion of species become patch specialists would help to identify where spatial dynamic theory may be especially applicable, and where habitat loss and fragmentation poses the greatest threat to biodiversity.  相似文献   

15.
The once extensive native forests of New Zealand’s central North Island are heavily fragmented, and the scattered remnants are now surrounded by a matrix of exotic pastoral grasslands and Pinus radiata plantation forests. The importance of these exotic habitats for native biodiversity is poorly understood. This study examines the utilisation of exotic plantation forests by native beetles in a heavily modified landscape. The diversity of selected beetle taxa was compared at multiple distances across edge gradients between each of the six possible combinations of adjacent pastoral, plantation, clearfell and native forest land-use types. Estimated species richness (Michaelis–Menten) was greater in production habitats than native forest; however this was largely due to the absence of exotic species in native forest. Beetle relative abundance was highest in clearfell-harvested areas, mainly due to colonisation by open-habitat, disturbance-adapted species. More importantly, though, of all the non-native habitats sampled, beetle species composition in mature P. radiata was most similar to native forest. Understanding the influence of key environmental factors and stand level management is important for enhancing biodiversity values within the landscape. Native habitat proximity was the most significant environmental correlate of beetle community composition, highlighting the importance of retaining native remnants within plantation landscapes. The proportion of exotic beetles was consistently low in mature plantation stands, however it increased in pasture sites at increasing distances from native forest. These results suggest that exotic plantation forests may provide important alternative habitat for native forest beetles in landscapes with a low proportion of native forest cover.  相似文献   

16.
《Ecography》2002,25(2):161-172
Fire is a key mechanism creating and maintaining habitat heterogeneity in Mediterranean landscapes by turning continuous woody landscapes into mosaics of forests and shrublands. Due to the long historical role of fires in the Mediterranean, we hypothesised a moderate negative effect of this type of perturbation on forest bird distribution at a landscape level. We conducted point bird censuses in Aleppo pine forest patches surrounded by burnt shrublands and studied the relationships between three ecological groups of bird species (forest canopy species, forest understorey species, and ubiquitous species) and the features of local habitat, whole patch and surrounding landscape. We used a multi-scale approach to assess the effects of landscape variables at increasing spatial scales on point bird richness. Regarding local habitat components, canopy species were positively associated with tall pines while understorey species with the cover of shrubs and plants from holm-oak forests. Forest birds were positively related to patch size and irregular forest shapes, that is, with high perimeter/size ratios. Thus, these species did not seem to perceive edges as low quality but rather favourable microhabitats. We did not detect any negative effect of isolation or cover of woodlands in the landscape on the presence of forest species after local habitat factors had been accounted for. Finally, only local habitat factors entered the model for ubiquitous species. We suggest that mosaic-like landscapes shaped by fires in the Mediterranean basin are not strongly associated with negative effects fragmentation on forest birds other than those related with habitat loss.  相似文献   

17.
For butterflies, tolerance to the matrix may be an important criterion of habitat occurrence in fragmented landscapes. Here we examine the relative effects of habitat fragmentation and the surrounding agricultural matrix on the functional composition of fruit-feeding butterflies of the Atlantic rain forest in southeastern Brazil. Generalized linear models were used to detect the effects of landscape metrics on butterfly richness and abundance of the total assemblage and functional groups. Circular statistics were used to analyze the patterns of monthly abundance of the total assemblage and functional groups in the forest remnants and the surrounding matrices. In total, 650 butterflies representing 57 species were captured; species composition differed significantly between the forest fragments and the surrounding matrices. We recorded 22 forest specialists, 18 matrix specialists, 11 common species with matrix preference and six common species with forest preference. Forest connectivity favored the richness of forest specialists, while habitat fragmentation enhances the richness and abundance of matrix-tolerant species. Circular analysis revealed that forest specialists were more abundant in the rainy season while matrix-tolerant species proliferated in the dry season. Although maintaining connectivity of forest fragments may increase the mobility and dispersion of forest species, our results showed that landscape fragmentation modify butterfly assemblage by promoting an increase of matrix tolerant species with detriment of forest specialists.  相似文献   

18.
The recent trend of agricultural intensification in tropical landscapes poses a new threat to biodiversity conservation. Conversion of previously heterogeneous agricultural landscapes to intensive plantation agriculture simplifies and homogenizes the landscape, reducing availability, and connectivity of natural habitat for native species. To assess the impact of agricultural intensification on bats, we characterized the bat assemblage in the Sarapiquí region of Costa Rica, where heterogeneous land uses are being converted to intensive, large‐scale pineapple plantations. In 2012 and 2013, we sampled bats in 20 remnant forest patches surrounded by varying proportions of pasture, mature forest, and pineapple and captured 1821 individual bats representing 39 species. We used ordination analyses to evaluate changes in species composition, where pineapple is the main component of the agricultural matrix. We identified landscape metrics specifically correlated with pineapple and used multiple linear regression to test their effects on bat species richness, diversity, and guild‐specific relative abundance. Results suggest pineapple expansion is driving changes in assemblage composition in remnant forest patches, resulting in new assemblages with higher proportions of frugivorous bats and lower proportions of insectivorous bats than in continuous mature forests. In addition, while pineapple does not diminish total bat species richness and diversity, the reduced forest cover and increased distance between forest patches in pineapple plantations has a significant negative impact on the relative abundance of insectivores. We also identify a potential threshold effect whereby patches surrounded by more than 50 percent forest can retain assemblage composition similar to that found in continuous mature forest.  相似文献   

19.
Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.  相似文献   

20.
We explore the effect of differences in landscape structure, arising from habitat loss, on the fine-scale movement behaviors of two congeneric damselflies – Calopteryx aequabilis and C. maculata . Both species require streams for breeding and naiad development and both often use forest for foraging. We compare movement behaviors across three types of landscape: forested landscapes, where stream and forest habitat are adjacent; partially forested landscapes, where streams and forest habitat are disjunct, and non-forested landscapes, where little to no forest habitat is available. We employ a reciprocal transplant experiment to determine the extent to which movement along and away from streams is influenced by landscape structure and historical behavior or morphological adaptations. For both species, we show that both the propensity to move away from streams and rates of net displacement differ among landscape types. Both species move away from streams on landscapes with high or moderate levels of forest cover but neither moves away from streams on landscapes with little or no forest. Furthermore, C. maculata native to predominantly forested landscapes are more likely to move away from streams, regardless of the landscape structure they encounter, than are individuals native to moderately forested or non-forested landscapes. There was no effect of natal landscape on C. aequabilis . Comparisons with microlandscape studies suggest that there may be some general similarities among the different systems but these are clouded by uncertainty regarding the similarity of the underlying processes responsible for observed behavioral responses to landscape structure. Despite this uncertainty, animal movement behaviors are contingent upon the structure of the broader landscape, regardless of the absolute scale of the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号