首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
2.
3.
4.
RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core and a novel so-called arch domain, which protrudes from the core. The helicase core contains highly conserved helicase domains RecA-1 and 2, and two structural domains of unclear functions, winged helix domain (WH) and ratchet domain. How the structural domains (arch, WH and ratchet domain) coordinate with the helicase domains and what roles they are playing in regulating Mtr4p helicase activity are unknown. We created a library of Mtr4p structural domain mutants for the first time and screened for those defective in the turnover of TRAMP and exosome substrate, hypomodified tRNAiMet. We found these domains regulate Mtr4p enzymatic activities differently through characterizing the arch domain mutants K700N and P731S, WH mutant K904N, and ratchet domain mutant R1030G. Arch domain mutants greatly reduced Mtr4p RNA binding, which surprisingly did not lead to significant defects on either in vivo tRNAiMet turnover, or in vitro unwinding activities. WH mutant K904N and Ratchet domain mutant R1030G showed decreased tRNAiMet turnover in vivo, as well as reduced RNA binding, ATPase and unwinding activities of Mtr4p in vitro. Particularly, K904 was found to be very important for steady protein levels in vivo. Overall, we conclude that arch domain plays a role in RNA binding but is largely dispensable for Mtr4p enzymatic activities, however the structural domains in the helicase core significantly contribute to Mtr4p ATPase and unwinding activities.  相似文献   

5.
6.
The DEAD-box RNA helicase Dbp5 is an essential and conserved mRNA export factor which functions in the ATP dependent remodeling of RNA/protein complexes. As such it displaces mRNA bound proteins at the cytoplasmic site of the nuclear pore complex. For the regulation of its RNA-dependent ATPase activity during late steps of nuclear transport, Dbp5 requires the nucleoporin Nup159 and its cofactors Gle1 and IP6. In addition to its role in mRNA export, a second important function of Dbp5 was identified in translation termination, where it acts together with eRF1 once the translation machinery has reached the stop codon. Similar to mRNA export, this function also requires Gle1–IP6, however, the counterpart of Nup159 is still missing. Potential other functions of the nucleo-cytoplasmic protein Dbp5 are discussed as well as its substrate specificity and details in its regulatory cycle that are based on recent biochemical and structural characterization. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

7.
Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export.   总被引:9,自引:0,他引:9  
The DBP5 gene encodes a putative RNA helicase of unknown function in the yeast Saccharomyces cerevisiae. It is shown here that Dbp5p is an ATP-dependent RNA helicase required for polyadenylated [poly(A)+] RNA export. Surprisingly, Dbp5p is present predominantly, if not exclusively, in the cytoplasm, and is highly enriched around the nuclear envelope. This observation raises the possibility that Dbp5p may play a role in unloading or remodeling messenger RNA particles (mRNPs) upon arrival in the cytoplasm and in coupling mRNP export and translation. The functions of Dbp5p are likely to be conserved, since its potential homologues can be found in a variety of eukaryotic cells.  相似文献   

8.

Background

RNA helicase A regulates a variety of RNA metabolism processes including HIV-1 replication and contains two double-stranded RNA binding domains (dsRBD1 and dsRBD2) at the N-terminus. Each dsRBD contains two invariant lysine residues critical for the binding of isolated dsRBDs to RNA. However, the role of these conserved lysine residues was not tested in the context of enzymatically active full-length RNA helicase A either in vitro or in the cells.

Methods

The conserved lysine residues in each or both of dsRBDs were substituted by alanine in the context of full-length RNA helicase A. The mutant RNA helicase A was purified from mammalian cells. The effects of these mutations were assessed either in vitro upon RNA binding and unwinding or in the cell during HIV-1 production upon RNA helicase A–RNA interaction and RNA helicase A-stimulated viral RNA processes.

Results

Unexpectedly, the substitution of the lysine residues by alanine in either or both of dsRBDs does not prevent purified full-length RNA helicase A from binding and unwinding duplex RNA in vitro. However, these mutations efficiently inhibit RNA helicase A-stimulated HIV-1 RNA metabolism including the accumulation of viral mRNA and tRNALys3 annealing to viral RNA. Furthermore, these mutations do not prevent RNA helicase A from binding to HIV-1 RNA in vitro as well, but dramatically reduce RNA helicase A–HIV-1 RNA interaction in the cells.

Conclusions

The conserved lysine residues of dsRBDs play critical roles in the promotion of HIV-1 production by RNA helicase A.

General significance

The conserved lysine residues of dsRBDs are key to the interaction of RNA helicase A with substrate RNA in the cell, but not in vitro.  相似文献   

9.
10.
11.
12.
Dss1p is an evolutionarily conserved small protein that interacts with BRCA2, a tumor suppressor protein, in humans. The Schizosaccharomyces pombe strain lacking the dss1+ gene (Δdss1) shows a temperature-sensitive growth defect and accumulation of bulk poly(A)+ RNA in the nucleus at a nonpermissive temperature. In situ hybridization using probes for several specific mRNAs, however, revealed that the analyzed mRNAs were exported normally to the cytoplasm in Δdss1, suggesting that Dss1p is required for export of some subsets of mRNAs. We identified the pad1+ gene, which encodes a component of the 26S proteasome, as a suppressor for the ts phenotype of Δdss1. Unexpectedly, overexpression of Pad1p could suppress neither the defect in nuclear mRNA export nor a defect in proteasome function. In addition, loss of proteasome functions does not cause defective nuclear mRNA export. Dss1p seems to be a multifunctional protein involved in nuclear export of specific sets of mRNAs and the ubiquitin-proteasome pathway in fission yeast.  相似文献   

13.
URH49 is a mammalian protein that is 90% identical to the DExH/D box protein UAP56, an RNA helicase that is important for splicing and nuclear export of mRNA. Although Saccharomyces cerevisiae and Drosophila express only a single protein corresponding to UAP56, mRNAs encoding URH49 and UAP56 are both expressed in human and mouse cells. Both proteins interact with the mRNA export factor Aly and both are able to rescue the loss of Sub2p (the yeast homolog of UAP56), indicating that both proteins have similar functions. UAP56 mRNA is more abundant than URH49 mRNA in many tissues, although in testes URH49 mRNA is much more abundant. UAP56 and URH49 mRNAs are present at similar levels in proliferating cultured cells. However, when the cells enter quiescence, the URH49 mRNA level decreases 3–6-fold while the UAP56 mRNA level remains relatively constant. The amount of URH49 mRNA increases to the level found in proliferating cells within 5 h when quiescent cells are growth-stimulated or when protein synthesis is inhibited. URH49 mRNA is relatively unstable (T½ = 4 h) in quiescent cells, but is stabilized immediately following growth stimulation or inhibition of protein synthesis. In contrast, there is much less change in the content or stability of UAP56 mRNA following growth stimulation. Our observations suggest that in mammalian cells, two UAP56-like RNA helicases are involved in splicing and nuclear export of mRNA. Differential expression of these helicases may lead to quantitative or qualitative changes in mRNA expression.  相似文献   

14.
Mammalian UAP56 or its homolog Sub2p in Saccharomyces cerevisiae are members of the ATP-dependent RNA helicase family and are required for splicing and nuclear export of mRNA. Previously we showed that in Schizosaccharomyces pombe Uap56p is critical for mRNA export. It links the mRNA adapter Mlo3p, a homolog of Yra1p in S. cerevisiae or Aly in mammals, to nuclear pore-associated mRNA export factor Rae1p. In this study we show that, in contrast to S. cerevisiae, Uap56p in S. pombe is not required for pre-mRNA splicing. The putative RNA helicase function of Uap56p is not required for mRNA export. However, the RNA-binding motif of Uap56p is critical for nuclear export of mRNA. Within Uap56p we identified nuclear import and export signals that may allow it to shuttle between the nucleus and the cytoplasm. We found that Uap56p interacts with Rae1p directly via its nuclear export signal, and this interaction is critical for the nuclear export activity of Uap56p as well as for exporting mRNA. RNA binding and the ability to shuttle between the nucleus and cytoplasm are important features of mRNA export carriers such as HIV-Rev. Our results suggest that Uap56p could function similarly as an export carrier of mRNA in S. pombe.  相似文献   

15.
16.
Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby messenger ribonucleoprotein (mRNP) assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes, suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus.  相似文献   

17.
The Saccharomyces cerevisiae DEAD-box protein Mss116p is a general RNA chaperone that functions in splicing mitochondrial group I and group II introns. Recent X-ray crystal structures of Mss116p in complex with ATP analogs and single-stranded RNA show that the helicase core induces a bend in the bound RNA, as in other DEAD-box proteins, while a C-terminal extension (CTE) induces a second bend, resulting in RNA crimping. Here, we illuminate these structures by using high-throughput genetic selections, unigenic evolution, and analyses of in vivo splicing activity to comprehensively identify functionally important regions and permissible amino acid substitutions throughout Mss116p. The functionally important regions include those containing conserved sequence motifs involved in ATP and RNA binding or interdomain interactions, as well as previously unidentified regions, including surface loops that may function in protein-protein interactions. The genetic selections recapitulate major features of the conserved helicase motifs seen in other DEAD-box proteins but also show surprising variations, including multiple novel variants of motif III (SAT). Patterns of amino acid substitutions indicate that the RNA bend induced by the helicase core depends on ionic and hydrogen-bonding interactions with the bound RNA; identify a subset of critically interacting residues; and indicate that the bend induced by the CTE results primarily from a steric block. Finally, we identified two conserved regions—one the previously noted post II region in the helicase core and the other in the CTE—that may help displace or sequester the opposite RNA strand during RNA unwinding.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号