首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Potential involvement of the CCR10/CCL28 axis was recently reported in murine models of allergic asthma. If confirmed, blockade of the CCR10 receptor would represent an alternative to current asthma therapies. We evaluated the effect of a novel Protein Epitope Mimetic CCR10 antagonist, POL7085, in a murine model of allergic eosinophilic airway inflammation.

Methods

Mice were sensitized and challenged to ovalbumin. POL7085, a CCR10 antagonist (7.5 and 15 mg/kg), dexamethasone (1 mg/kg) or vehicle were administered intranasally once daily 1h before each allergen challenge. On day 21, airway hyperresponsiveness, bronchoalveolar lavage inflammatory cells and Th2 cytokines, and lung tissue mucus and collagen were measured.

Results

Allergen challenge induced airway hyperresponsiveness in vehicle-treated animals as measured by whole body barometric plethysmography, and eosinophilia in bronchoalveolar lavage. POL7085 dose-dependently and significantly decreased airway hyperresponsiveness (34 ± 16 %) and eosinophil numbers in bronchoalveolar lavage (66 ± 6 %). In addition, the highest dose of POL7085 used significantly inhibited lung IL-4 (85 ± 4 %), IL-5 (87 ± 2 %) and IL-13 (190 ± 19 %) levels, and lung collagen (43 ± 11 %).

Conclusions

The Protein Epitope Mimetic CCR10 antagonist, POL7085, significantly and dose-dependently decreased allergen-induced airway hyperresponsiveness and airway inflammation after once daily local treatment. Our data give strong support for further investigations with CCR10 antagonists in asthmatic disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0231-5) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

4.
5.

Background

CD86-CD28 interaction has been suggested as the principal costimulatory pathway for the activation and differentiation of naïve T cells in allergic inflammation. However, it remains uncertain whether this pathway also has an essential role in the effector phase. We sought to determine the contribution of CD86 on dendritic cells in the reactivation of allergen-specific Th2 cells.

Methods

We investigated the effects of the downregulation of CD86 by short interfering RNAs (siRNAs) on Th2 cytokine production in the effector phase in vitro and on asthma phenotypes in ovalbumin (OVA)-sensitized and -challenged mice.

Results

Treatment of bone marrow-derived dendritic cells (BMDCs) with CD86 siRNA attenuated LPS-induced upregulation of CD86. CD86 siRNA treatment impaired BMDCs’ ability to activate OVA-specific Th2 cells. Intratracheal administration of CD86 siRNA during OVA challenge downregulated CD86 expression in the airway mucosa. CD86 siRNA treatment ameliorated OVA-induced airway eosinophilia, airway hyperresponsiveness, and the elevations of OVA-specific IgE in the sera and IL-5, IL-13, and CCL17 in the bronchoalveolar lavage fluid, but not the goblet cell hyperplasia.

Conclusion

These results suggest that local administration of CD86 siRNA during the effector phase ameliorates lines of asthma phenotypes. Targeting airway dendritic cells with siRNA suppresses airway inflammation and hyperresponsiveness in an experimental model of allergic asthma.  相似文献   

6.

Background

The elastolytic enzyme matrix metalloproteinase (MMP)-12 has been implicated in the development of airway inflammation and remodeling. We investigated whether human airway smooth muscle cells could express and secrete MMP-12, thereby participating in the pathogenesis of airway inflammatory diseases.

Methods

Laser capture microdissection was used to collect smooth muscle cells from human bronchial biopsy sections. MMP-12 mRNA expression was analysed by quantitative real-time RT-PCR. MMP-12 protein expression and secretion from cultured primary airway smooth muscle cells was further analysed by Western blot. MMP-12 protein localization in bronchial tissue sections was detected by immunohistochemistry. MMP-12 activity was determined by zymography. The TransAM AP-1 family kit was used to measure c-Jun activation and nuclear binding. Analysis of variance was used to determine statistical significance.

Results

We provide evidence that MMP-12 mRNA and protein are expressed by in-situ human airway smooth muscle cells obtained from bronchial biopsies of normal volunteers, and of patients with asthma, COPD and chronic cough. The pro-inflammatory cytokine, interleukin (IL)-1β, induced a >100-fold increase in MMP-12 gene expression and a >10-fold enhancement in MMP-12 activity of primary airway smooth muscle cell cultures. Selective inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphatidylinositol 3-kinase reduced the activity of IL-1β on MMP-12, indicating a role for these kinases in IL-1β-induced induction and release of MMP-12. IL-1β-induced MMP-12 activity and gene expression was down-regulated by the corticosteroid dexamethasone but up-regulated by the inflammatory cytokine tumour necrosis factor (TNF)-α through enhancing activator protein-1 activation by IL-1β. Transforming growth factor-β had no significant effect on MMP-12 induction.

Conclusion

Our findings indicate that human airway smooth muscle cells express and secrete MMP-12 that is up-regulated by IL-1β and TNF-α. Bronchial smooth muscle cells may be an important source of elastolytic activity, thereby participating in remodeling in airway diseases such as COPD and chronic asthma.  相似文献   

7.

Background

Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM) cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4), is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities.

Methods

A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs) were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B.

Results

Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3) decreased and, myosin regulatory light chain 9 isoform a (MYL-9) increased after Nogo-B knockdown.

Conclusions

These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert its effects through ARPC 2/3 and MYL-9, is necessary for the migration and contraction of airway smooth muscle cells.  相似文献   

8.

Background

CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells, attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway inflammation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.

Methods

Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.

Results

Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR. They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFα and IL-4 in lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNγ mRNA and protein expression levels.

Conclusions

We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.  相似文献   

9.

Background

Asthma is characterized by chronic airway inflammation, airway hyperresponsiveness (AHR), and airway remodeling. While exposure of house dust mites (HDM) is a common cause of asthma, the pathogenesis of the HDM-induced asthma is not fully understood. Bronchopulmonary C-fibers (PCFs) contribute to the neurogenic inflammation, viral infection induced-persistent AHR, and ovalbumin induced collagen deposition largely via releasing neuropeptides, such as substance P (SP). However, PCF roles in the pathogenesis of the HDM-induced asthma remain unexplored. The goal of this study was to determine what role PCFs played in generating these characteristics.

Methods

We compared the following variables among the PCF-intact and -degenerated BALB/c mice with and without chronic HDM exposure (four groups): 1) AHR and pulmonary SP; 2) airway smooth muscle (ASM) mass; 3) pulmonary inflammatory cells; and 4) epithelium thickening and mucus secretion.

Results

We found that HDM evoked AHR associated with upregulation of pulmonary SP and inflammation, ASM mass increase, epithelium thickenings, and mucus hypersecretion. PCF degeneration decreased the HDM-induced changes in AHR, pulmonary SP and inflammation, and ASM mass, but failed to significantly affect the epithelium thickening and mucus hypersecretion.

Conclusion

Our data suggest an involvement of PCFs in the mechanisms by which HDM induces allergic asthma via airway inflammation, AHR, and airway remodeling.
  相似文献   

10.

Background

Asthmatics exhibit reduced airway dilation at maximal inspiration, likely due to structural differences in airway walls and/or functional differences in airway smooth muscle, factors that may also increase airway responsiveness to bronchoconstricting stimuli. The goal of this study was to test the hypothesis that the minimal airway resistance achievable during a maximal inspiration (Rmin) is abnormally elevated in subjects with airway hyperresponsiveness.

Methods

The Rmin was measured in 34 nonasthmatic and 35 asthmatic subjects using forced oscillations at 8 Hz. Rmin and spirometric indices were measured before and after bronchodilation (albuterol) and bronchoconstriction (methacholine). A preliminary study of 84 healthy subjects first established height dependence of baseline Rmin values.

Results

Asthmatics had a higher baseline Rmin % predicted than nonasthmatic subjects (134 ± 33 vs. 109 ± 19 % predicted, p = 0.0004). Sensitivity-specificity analysis using receiver operating characteristic curves indicated that baseline Rmin was able to identify subjects with airway hyperresponsiveness (PC20 < 16 mg/mL) better than most spirometric indices (Area under curve = 0.85, 0.78, and 0.87 for Rmin % predicted, FEV1 % predicted, and FEF25-75 % predicted, respectively). Also, 80% of the subjects with baseline Rmin < 100% predicted did not have airway hyperresponsiveness while 100% of subjects with Rmin > 145% predicted had hyperresponsive airways, regardless of clinical classification as asthmatic or nonasthmatic.

Conclusions

These findings suggest that baseline Rmin, a measurement that is easier to perform than spirometry, performs as well as or better than standard spirometric indices in distinguishing subjects with airway hyperresponsiveness from those without hyperresponsive airways. The relationship of baseline Rmin to asthma and airway hyperresponsiveness likely reflects a causal relation between conditions that stiffen airway walls and hyperresponsiveness. In conjunction with symptom history, Rmin could provide a clinically useful tool for assessing asthma and monitoring response to treatment.  相似文献   

11.

Background

Sub-epithelial extracellular matrix deposition is a feature of asthmatic airway remodelling associated with severity of disease, decline in lung function and airway hyperresponsiveness. The composition of, and mechanisms leading to, this increase in subepithelial matrix, and its importance in the pathogenesis of asthma are unclear. This is partly due to limitations of the current models and techniques to assess airway remodelling.

Methods

In this study we used a modified murine model of ovalbumin sensitisation and challenge to reproduce features of airway remodelling, including a sustained increase in sub-epithelial matrix deposition. In addition, we have established techniques to accurately and specifically measure changes in sub-epithelial matrix deposition, using histochemical and immunohistochemical staining in conjunction with digital image analysis, and applied these to the measurement of collagen and proteoglycans.

Results

24 hours after final ovalbumin challenge, changes similar to those associated with acute asthma were observed, including inflammatory cell infiltration, epithelial cell shedding and goblet cell hyperplasia. Effects were restricted to the bronchial and peribronchial regions with parenchymal lung of ovalbumin sensitised and challenged mice appearing histologically normal. By 12 days, the acute inflammatory changes had largely resolved and increased sub-epithelial staining for collagen and proteoglycans was observed. Quantitative digital image analysis confirmed the increased deposition of sub-epithelial collagen (33%, p < 0.01) and proteoglycans (32%, p < 0.05), including decorin (66%, p < 0.01). In addition, the increase in sub-epithelial collagen deposition was maintained for at least 28 days (48%, p < 0.001).

Conclusion

This animal model reproduces many of the features of airway remodelling found in asthma and allows accurate and reproducible measurement of sub-epithelial extra-cellular matrix deposition. As far as we are aware, this is the first demonstration of increased sub-epithelial proteoglycan deposition in an animal model of airway remodelling. This model will be useful for measurement of other matrix components, as well as for assessment of the molecular mechanisms contributing to, and agents to modulate airway remodelling.  相似文献   

12.

Background

Regulation of human airway smooth muscle cells (HASMC) by cytokines contributes to chemotactic factor levels and thus to inflammatory cell accumulation in lung diseases. Cytokines such as the gp130 family member Oncostatin M (OSM) can act synergistically with Th2 cytokines (IL-4 and IL-13) to modulate lung cells, however whether IL-17A responses by HASMC can be altered is not known.

Objective

To determine the effects of recombinant OSM, or other gp130 cytokines (LIF, IL-31, and IL-6) in regulating HASMC responses to IL-17A, assessing MCP-1/CCL2 and IL-6 expression and cell signaling pathways.

Methods

Cell responses of primary HASMC cultures were measured by the assessment of protein levels in supernatants (ELISA) and mRNA levels (qRT-PCR) in cell extracts. Activation of STAT, MAPK (p38) and Akt pathways were measured by immunoblot. Pharmacological agents were used to assess the effects of inhibition of these pathways.

Results

OSM but not LIF, IL-31 or IL-6 could induce detectable responses in HASMC, elevating MCP-1/CCL2, IL-6 levels and activation of STAT-1, 3, 5, p38 and Akt cell signaling pathways. OSM induced synergistic action with IL-17A enhancing MCP-1/CCL-2 and IL-6 mRNA and protein expression, but not eotaxin-1 expression, while OSM in combination with IL-4 or IL-13 synergistically induced eotaxin-1 and MCP-1/CCL2. OSM elevated steady state mRNA levels of IL-4Rα, OSMRβ and gp130, but not IL-17RA or IL-17RC. Pharmacologic inhibition of STAT3 activation using Stattic down-regulated OSM, OSM/IL-4 or OSM/IL-13, and OSM/IL-17A synergistic responses of MCP-1/CCL-2 induction, whereas, inhibitors of Akt and p38 MAPK resulted in less reduction in MCP-1/CCL2 levels. IL-6 expression was more sensitive to inhibition of p38 (using SB203580) and was affected by Stattic in response to IL-17A/OSM stimulation.

Conclusions

Oncostatin M can regulate HASMC responses alone or in synergy with IL-17A. OSM/IL-17A combinations enhance MCP-1/CCL2 and IL-6 but not eotaxin-1. Thus, OSM through STAT3 activation of HASMC may participate in inflammatory cell recruitment in inflammatory airway disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0164-4) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

We previously observed that allergen-exposed mice exhibit remodeling of large bronchial-associated blood vessels. The aim of the study was to examine whether vascular remodeling occurs also in vessels where a spill-over effect of bronchial remodeling molecules is less likely.

Methods

We used an established mouse model of allergic airway inflammation, where an allergic airway inflammation is triggered by inhalations of OVA. Remodeling of bronchial un-associated vessels was determined histologically by staining for α-smooth muscle actin, procollagen I, Ki67 and von Willebrand-factor. Myofibroblasts were defined as and visualized by double staining for α-smooth muscle actin and procollagen I. For quantification the blood vessels were divided, based on length of basement membrane, into groups; small (≤250 μm) and mid-sized (250–500 μm).

Results

We discovered marked remodeling in solitary small and mid-sized blood vessels. Smooth muscle mass increased significantly as did the number of proliferating smooth muscle and endothelial cells. The changes were similar to those previously seen in large bronchial-associated vessels. Additionally, normally poorly muscularized blood vessels changed phenotype to a more muscularized type and the number of myofibroblasts around the small and mid-sized vessels increased following allergen challenge.

Conclusion

We demonstrate that allergic airway inflammation in mice is accompanied by remodeling of small and mid-sized pulmonary blood vessels some distance away (at least 150 μm) from the allergen-exposed bronchi. The present findings suggest the possibility that allergic airway inflammation may cause such vascular remodeling as previously associated with lung inflammatory conditions involving a risk for development of pulmonary hypertension.  相似文献   

14.

Background

Airway remodeling and dysfunction are characteristic features of asthma thought to be caused by aberrant production of Th2 cytokines. Histamine H4 receptor (H4R) perturbation has previously been shown to modify acute inflammation and Th2 cytokine production in a murine model of asthma. We examined the ability of H4R antagonists to therapeutically modify the effects of Th2 cytokine production such as goblet cell hyperplasia (GCH), and collagen deposition in a sub-chronic model of asthma. In addition, effects on Th2 mediated lung dysfunction were also determined.

Methods

Mice were sensitized to ovalbumin (OVA) followed by repeated airway challenge with OVA. After inflammation was established mice were dosed with the H4R antagonist, JNJ 7777120, or anti-IL-13 antibody for comparison. Airway hyperreactivity (AHR) was measured, lungs lavaged and tissues collected for analysis.

Results

Therapeutic H4R antagonism inhibited T cell infiltration in to the lung and decreased Th2 cytokines IL-13 and IL-5. IL-13 dependent remodeling parameters such as GCH and lung collagen were reduced. Intervention with H4R antagonist also improved measures of central and peripheral airway dysfunction.

Conclusions

These data demonstrate that therapeutic H4R antagonism can significantly ameliorate allergen induced, Th2 cytokine driven pathologies such as lung remodeling and airway dysfunction. The ability of H4R antagonists to affect these key manifestations of asthma suggests their potential as novel human therapeutics.  相似文献   

15.

Background

Pentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by immune and structural cells. However, very little is known about the expression of PTX3 and its role in allergic asthma.

Objectives and Methods

We sought to determine the PTX3 expression in asthmatic airways and its function in human airway smooth muscle cells (HASMC). In vivo PTX3 expression in bronchial biopsies of mild, moderate and severe asthmatics was analyzed by immunohistochemistry. PTX3 mRNA and protein were measured by real-time RT-PCR and ELISA, respectively. Proliferation and migration were examined using 3H-thymidine incorporation, cell count and Boyden chamber assays.

Results

PTX3 immunoreactivity was increased in bronchial tissues of allergic asthmatics compared to healthy controls, and mainly localized in the smooth muscle bundle. PTX3 protein was expressed constitutively by HASMC and was significantly up-regulated by TNF, and IL-1β but not by Th2 (IL-4, IL-9, IL-13), Th1 (IFN-γ), or Th-17 (IL-17) cytokines. In vitro, HASMC released significantly higher levels of PTX3 at the baseline and upon TNF stimulation compared to airway epithelial cells (EC). Moreover, PTX3 induced CCL11/eotaxin-1 release whilst inhibited the fibroblast growth factor-2 (FGF-2)-driven HASMC chemotactic activity.

Conclusions

Our data provide the first evidence that PTX3 expression is increased in asthmatic airways. HASMC can both produce and respond to PTX3. PTX3 is a potent inhibitor of HASMC migration induced by FGF-2 and can upregulate CCL11/eotaxin-1 release. These results raise the possibility that PTX3 may play a dual role in allergic asthma.  相似文献   

16.

Background

The relationship between airway structural changes (remodeling) and airways hyperresponsiveness (AHR) is unclear. Asthma guidelines suggest treating persistent asthma with inhaled corticosteroids and long acting β-agonists (LABA). We examined the link between physiological function and structural changes following treatment fluticasone and salmeterol separately or in combination in a mouse model of allergic asthma.

Methods

BALB/c mice were sensitized to intraperitoneal ovalbumin (OVA) followed by six daily inhalation exposures. Treatments included 9 daily nebulized administrations of fluticasone alone (6 mg/ml), salmeterol (3 mg/ml), or the combination fluticasone and salmeterol. Lung impedance was measured following methacholine inhalation challenge. Airway inflammation, epithelial injury, mucus containing cells, and collagen content were assessed 48 hours after OVA challenge. Lungs were imaged using micro-CT.

Results and Discussion

Treatment of allergic airways disease with fluticasone alone or in combination with salmeterol reduced AHR to approximately naüve levels while salmeterol alone increased elastance by 39% compared to control. Fluticasone alone and fluticasone in combination with salmeterol both reduced inflammation to near naive levels. Mucin containing cells were also reduced with fluticasone and fluticasone in combination with salmeterol.

Conclusions

Fluticasone alone and in combination with salmeterol reduces airway inflammation and remodeling, but salmeterol alone worsens AHR: and these functional changes are consistent with the concomitant changes in mucus metaplasia.  相似文献   

17.

Background

The extracellular matrix is a dynamic and complex network of macromolecules responsible for maintaining and influencing cellular functions of the airway. The role of fibronectin, an extracellular matrix protein, is well documented in asthma. However, the expression and function of fibulin-1, a secreted glycoprotein which interacts with fibronectin, has not been reported. Fibulin-1 is widely expressed in basement membranes in many organs including the lung. There are four isoforms in humans (A–D) of which fibulin-1C and 1D predominate. The objective of this study was to study the expression of fibulin-1 in volunteers with and without asthma, and to examine its function in vitro.

Methodology/Principal Findings

We used immunohistochemistry and dot-blots to examine fibulin-1 levels in bronchial biopsies, bronchoalveolar lavage fluid and serum. Real-time PCR for fibulin-1C and 1D, and ELISA and western blotting for fibulin-1 were used to study the levels in airway smooth muscle cells. The function of fibulin-1C was determined by assessing its role, using an antisense oligonucleotide, in cell proliferation, migration and wound healing. A murine model of airway hyperresponsiveness (AHR) was used to explore the biological significance of fibulin-1. Levels of fibulin-1 were significantly increased in the serum and bronchoalveolar lavage fluid of 21 asthmatics compared with 11 healthy volunteers. In addition fibulin-1 was increased in asthma derived airway smooth muscle cells and fibulin-1C contributed to the enhanced proliferation and wound repair in these cells. These features were reversed when fibulin-1C was suppressed using an antisense oligomer. In a mouse model of AHR, treatment with an AO inhibited the development of AHR to methacholine.

Conclusions

Our data collectively suggest fibulin-1C may be worthy of further investigation as a target for airway remodeling in asthma.  相似文献   

18.

Background

Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. However, the dynamics of the development of these features and their spontaneous and pharmacological reversibility are still poorly understood. We have therefore investigated the dynamics of airway remodelling and repair in an experimental asthma model and studied how pharmacological intervention affects these processes.

Methods

Using BALB/c mice, the kinetics of chronic asthma progression and resolution were characterised in absence and presence of inhaled corticosteroid (ICS) treatment. Airway inflammation and remodelling was assessed by the analysis of bronchoalveolar and peribronichal inflammatory cell infiltrate, goblet cell hyperplasia, collagen deposition and smooth muscle thickening.

Results

Chronic allergen exposure resulted in early (goblet cell hyperplasia) and late remodelling (collagen deposition and smooth muscle thickening). After four weeks of allergen cessation eosinophilic inflammation, goblet cell hyperplasia and collagen deposition were resolved, full resolution of lymphocyte inflammation and smooth muscle thickening was only observed after eight weeks. ICS therapy when started before the full establishment of chronic asthma reduced the development of lung inflammation, decreased goblet cell hyperplasia and collagen deposition, but did not affect smooth muscle thickening. These effects of ICS on airway remodelling were maintained for a further four weeks even when therapy was discontinued.

Conclusions

Utilising a chronic model of experimental asthma we have shown that repeated allergen exposure induces reversible airway remodelling and inflammation in mice. Therapeutic intervention with ICS was partially effective in inhibiting the transition from acute to chronic asthma by reducing airway inflammation and remodelling but was ineffective in preventing smooth muscle hypertrophy.  相似文献   

19.

Background

Long-term and unresolved airway inflammation and airway remodeling, characteristic features of chronic asthma, if not treated could lead to permanent structural changes in the airways. Aldose reductase (AR), an aldo-sugar and lipid aldehyde metabolizing enzyme, mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known. In the present study, we have examined the role of AR on airway remodeling using ovalbumin (OVA)-induced chronic asthma mouse model and cultured human primary airway epithelial cells (SAECs) and mouse lung fibroblasts (mLFs).

Methods

Airway remodeling in chronic asthma model was established in mice sensitized and challenged twice a week with OVA for 6 weeks. AR inhibitor, fidarestat, was administered orally in drinking water after first challenge. Inflammatory cells infiltration in the lungs and goblet cell metaplasia, airway thickening, collagen deposition and airway hyper-responsiveness (AHR) in response to increasing doses of methacholine were assessed. The TGFβ1-induced epithelial-mesenchymal transition (EMT) in SAECs and changes in mLFs were examined to investigate AR-mediated molecular mechanism(s) of airway remodeling.

Results

In the OVA-exposed mice for 6 wks inflammatory cells infiltration, levels of inflammatory cytokines and chemokines, goblet cell metaplasia, collagen deposition and AHR were significantly decreased by treatment with AR inhibitor, fidarestat. Further, inhibition of AR prevented TGFβ1-induced altered expression of E-cadherin, Vimentin, Occludin, and MMP-2 in SAECs, and alpha-smooth muscle actin and fibronectin in mLFs. Further, in SAECs, AR inhibition prevented TGFβ1- induced activation of PI3K/AKT/GSK3β pathway but not the phosphorylation of Smad2/3.

Conclusion

Our results demonstrate that allergen-induced airway remodeling is mediated by AR and its inhibition blocks the progression of remodeling via inhibiting TGFβ1-induced Smad-independent and PI3K/AKT/GSK3β-dependent pathway.  相似文献   

20.

Background

Patients with chronic asthma have thicker intrapulmonary airways measured on high resolution computed tomography (HRCT). We determined whether the presence of lower airway bacteria was associated with increased airway wall thickness.

Methods

In 56 patients with stable severe asthma, sputum specimens obtained either spontaneously or after induction with hypertonic saline were cultured for bacteria and thoracic HRCT scans obtained. Wall thickness (WT) and area (WA) expressed as a ratio of airway diameter (D) and total area, respectively, were measured at five levels.

Results

Positive bacterial cultures were obtained in 29 patients, with H. influenzae, P. aeruginosa and S. aureus being the commonest strains. Logistic regression analysis showed that this was associated with the duration of asthma and the exacerbations during the past year. In airways > 2 mm, there was no significant difference in WA (67.5 ± 5.4 vs 66.4 ± 5.4) and WT/D (21.6 ± 2.7 vs 21.3 ± 2.4) between the culture negative versus positive groups. Similarly, in airways (≤ 2 mm), there were no significant differences in these parameters. The ratio of √wall area to Pi was negatively correlated with FEV1% predicted (p < 0.05).

Conclusions

Bacterial colonization of the lower airways is common in patients with chronic severe asthma and is linked to the duration of asthma and having had exacerbations in the past year, but not with an increase in airway wall thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号