首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Ocean warming will undoubtedly affect the migratory patterns of many marine species, but specific changes can be predicted only where behavioural mechanisms guiding migration are understood. Southern right whales show maternally inherited site fidelity to near-shore winter nursery grounds, but exactly where they feed in summer (collectively and individually) remains mysterious. They consume huge quantities of copepods and krill, and their reproductive rates respond to fluctuations in krill abundance linked to El Niño Southern Oscillation (ENSO). Here we show that genetic and isotopic signatures, analysed together, indicate maternally directed site fidelity to diverse summer feeding grounds for female right whales calving at Península Valdés, Argentina. Isotopic values from 131 skin samples span a broad range (–23.1 to –17.2‰δ13C, 6.0 to 13.8‰δ15N) and are more similar than expected among individuals sharing the same mitochondrial haplotype. This pattern indicates that calves learn summer feeding locations from their mothers, and that the timescale of culturally inherited site fidelity to feeding grounds is at least several generations. Such conservatism would be expected to limit the exploration of new feeding opportunities, and may explain why this population shows increased rates of reproductive failure in years following elevated sea-surface temperature anomalies off South Georgia, the richest known feeding ground for baleen whales in the South Atlantic.  相似文献   

2.
In the Southwestern Atlantic Ocean, humpback whales migrate every winter to the Brazilian coast for breeding and calving in the Abrolhos Bank. This breeding stock represents the remnants of a larger population heavily exploited during the beginning of the 20th century. Despite its relevance to conservation efforts, the degree of current genetic variation and the migratory relationship with Antarctic feeding areas for this population are still largely unknown. To examine these questions, we sequenced ∼400 bp of the mitochondrial DNA control region from samples taken off the Brazilian coast (n = 171) and near the Antarctic Peninsula (n = 77). The genetic variability of the Brazilian humpback whale breeding population was high and similar to that found in other Southern Hemisphere breeding grounds. Phylogenetic analysis suggested the existence of a new mitochondrial clade that exists at low frequency among Southern Hemisphere populations. Direct comparison between the Brazilian and the Colombia breeding populations and the Antarctic Peninsula feeding population showed no genetic differentiation between this feeding region and the Colombian breeding area or between feeding Areas I and II near the Antarctic Peninsula. In contrast, these populations were genetically distinct from the Brazilian population. Two humpback whales sampled off South Georgia Islands, in the Scotia Sea, shared identical haplotypes to whales from Brazil. Our results, supported by photo-identification and satellite telemetry data, suggest that the main feeding area of the Southern Hemisphere humpback whale population is likely to be located near the South Georgia/South Sandwich Islands area and not in the Antarctic Peninsula.  相似文献   

3.
From 2003 to 2009, we surveyed Las Perlas Archipelago off the Pacific coast of Panama 53 times between the months of August and October to estimate abundance of humpback whales and to test for a migratory connection with populations from the southern hemisphere. We identified 295 individuals using photo‐identification of dorsal fins, including 58 calves, and the population estimate for a single season was 100–300 solitary adults plus 25–50 mothers with calves; the estimated population of animals across all seasons using a mark and recapture model was over 1,000. Eight of the 139 fluke identifications were matched to whales in photograph catalogues from the Antarctic Peninsula and a ninth was matched to a whale sighted in Chilean waters; four of these nine individuals have also been sighted in Colombia. We conclude that Panama (Las Perlas Archipelago in particular) is an important calving area for humpback whales in the Southern Hemisphere. These data should provide a foundation for monitoring of population change and to increase awareness in Panama about the need to manage vessel traffic and tourism related to the whales at Las Perlas.  相似文献   

4.
Reports of killer whales (Orcinus orca) preying on large whales have been relatively rare, and the ecological significance of these attacks is controversial. Here we report on numerous observations of killer whales preying on neonate humpback whales (Megaptera novaeangliae) off Western Australia (WA) based on reports we compiled and our own observations. Attacking killer whales included at least 19 individuals from three stable social groupings in a highly connected local population; 22 separate attacks with known outcomes resulted in at least 14 (64%) kills of humpback calves. We satellite‐tagged an adult female killer whale and followed her group on the water for 20.3 h over six separate days. During that time, they attacked eight humpback calves, and from the seven known outcomes, at least three calves (43%) were killed. Overall, our observations suggest that humpback calves are a predictable, plentiful, and readily taken prey source for killer whales and scavenging sharks off WA for at least 5 mo/yr. Humpback “escorts” vigorously assisted mothers in protecting their calves from attacking killer whales (and a white shark, Carcharodon carcharias). This expands the purported role of escorts in humpback whale social interactions, although it is not clear how this behavior is adaptive for the escorts.  相似文献   

5.
Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region.  相似文献   

6.
Humpback whales wintering in the Revillagigedo Archipelago, Mexico, have been considered a different subpopulation from those found off mainland Mexico and Baja California. The primary feeding grounds for Revillagigedo humpbacks remain unknown. In February 2003, we deployed 11 Argos satellite‐monitored radio tags to track movements and surfacings of humpback whales (five adults without calves, five mothers with calves, one calf) off Socorro Island in the Revillagigedo Archipelago. Tracking ranged from 222 to 10,481 km over 4.9–149.1 d. Eight whales left Socorro Island: five visited other Mexican wintering destinations, seven moved north of these areas. Migration routes were primarily offshore (average 444 km). Two whales were tracked to feeding grounds: one to British Columbia (46 d migration), and one to Alaska (49 d migration). Mean travel speeds were 1.2 km/h in wintering areas, 4.0 km/h during migration, and 2.2 km/h in feeding areas. Overall surfacing rates ranged from 21 to 88 surfacings/h. Surfacing rates differed between the calf and all other whales, and between feeding areas and migratory/wintering areas for the calf and an adult without a calf. The calf also showed diel variation in surfacing rates. The offshore habits of tagged whales may explain scarce resightings of Revillagigedo humpbacks outside the Revillagigedo Archipelago.  相似文献   

7.
Humpback whales sing long, complex songs on their wintering grounds. On 25 August 1979 and 3 September 1981, we made recordings of humpback whale songs in southeastern Alaska, showing that humpback whales also sing on the summer feeding grounds. Both these Alaskan samples are songs in that they are repeating cyclical sound patterns and follow the known structure for humpback whale song. The Alaskan songs contain all the same material sung in the same order as that heard off Mexico and Hawaii in the surrounding wintering seasons. However, song, theme and some phrase durations are abbreviated in the Alaskan songs. The recording of these two songs represents the full sample of song recorded from 155 days over five years of attempting to record humpback whale song in Alaskan waters.  相似文献   

8.
Humpback whales undertake long‐distance seasonal migrations between low latitude winter breeding grounds and high latitude summer feeding grounds. We report the first in‐depth population genetic study of the humpback whales that migrate to separate winter breeding grounds along the northwestern and northeastern coasts of Australia, but overlap on summer feeding grounds around Antarctica. Weak but significant differentiation between eastern and western Australia was detected across ten microsatellite loci (FST = 0.005, P = 0.001; DEST = 0.031, P = 0.001, n = 364) and mitochondrial control region sequences (FST = 0.017 and ΦST = 0.069, P = 0.001, n = 364). Bayesian clustering analyses using microsatellite data could not resolve any population structure unless sampling location was provided as a prior. This study supports the emerging evidence that weak genetic differentiation is characteristic among neighboring Southern Hemisphere humpback whale breeding populations. This may be a consequence of relatively high gene flow facilitated by overlapping summer feeding areas in Antarctic waters.  相似文献   

9.
SWIMMING SPEEDS OF SINGING AND NON-SINGING HUMPBACK WHALES DURING MIGRATION   总被引:2,自引:0,他引:2  
Limited data exist on swimming speeds of humpback whales ( Megaptera novaeangliae ) and none on swimming speeds of singing whales during migration. We tracked humpback whales visually and acoustically during migration from the breeding grounds past our study site on the east coast of Australia (latitude 26°28'S). The mean swimming speed for whales while singing was 2.5 km/h, significantly less than for non-singing whales with a mean of 4.0 km/h but significantly greater than the mean of 1.6 km/h observed for singing whales on the Hawaiian breeding grounds. Between song sessions, there was no significant difference in speeds between whales that had been singing and other whales. Migration speeds were less for whales while singing but increased during the season. Although humpback whales can swim rapidly while singing (maximum observed 15.6 km/h), they generally do not do so, even during migration. Slower migration by singers would delay their return to the polar feeding areas and may be costly, but may be a strategy to provide access to more females.  相似文献   

10.
We investigated the characteristics and composition of 4,506 humpback whale pods observed in Hervey Bay between 1992 and 2005. We use these data to analyze and model the variability of pod size and composition, and to assess the importance of Hervey Bay for particular classes of humpback whales. Pods ranged in size from one to nine individuals. Pairs were the most frequent pod type (1,344, 29.8%), followed by mother‐calf alone (1,249, 27.7%), trios (759, 16.8%), singletons (717, 15.9%), and 4+ whales (437, 9.7%). Of the 4,506 pods, calves were present in 40%, and 10.8% of all pods had one or more escorts present. Of the 1,804 pods observed with calves present, 1,251 (69.4%) were mothers alone with their calves. The size and composition of pods in the study area varied significantly as the season progressed. Pods with calves present were rarely recorded early in the season but dominated later in the season. A significant increase over years in larger groups may be related to social and behavioral changes as the population expands. The data indicate that Hervey Bay is important to immature males and females early in the season, to mature males and females in mid‐season, and to mother‐calf pairs (either alone or with escorts) in mid‐to‐late season.  相似文献   

11.
We investigated sex‐related site fidelity by humpback whales to the Fueguian Archipelago, a new feeding area in the eastern South Pacific, by examining the resighting histories of 45 males and 39 females recorded from 2003 to 2012. Results indicated an overall annual return to the feeding area of 74.8%, and annual sex ratio is roughly equal in the population. The probability of an individual being resighted across years and in subsequent years was not significantly different for both males and females, however, the proportion of resighting within a year was significantly higher for individual males compared to females. Potential sources of sex‐related bias were analyzed, but none were found to be significant. Greater intraannual resighting frequency for males may reflect sex‐based differences in spatial occupation and short‐range movements due to potential differences in energy budgets.  相似文献   

12.
The recognized calving grounds of humpback whales (Megaptera novaeangliae) that breed along the Western Australian coast (Breeding Stock D) extend along the Kimberley coast between Camden Sound and Broome (15°–18°S). However, there are reports of neonates further south, suggesting that the calving areas may be poorly defined. During aerial photogrammetric research in 2013 and 2015, we sighted large numbers of humpback whale calves along North West Cape (21°47′–22°43′S). We estimated the minimum relative calf abundance to be 463–603 in 2013 and 557–725 in 2015. We categorized the calves as either neonate or post neonate according to their color and size. The majority of calves sighted in both years (85% in 2013; 94% in 2015) were neonates. Our observations indicate that a minimum of approximately 20% (17.1%–24.3%) of the expected number of calves of this population are born near, or south of, North West Cape. We thus demonstrate that the calving grounds for the Breeding Stock D population extend south from Camden Sound in the Kimberley (15°S) to at least North West Cape (22°43′S), 1,000 km southwest of the currently recognized calving area.  相似文献   

13.
Latitudinal preferences within the breeding range have been suggested for Breeding Stock G humpback whales that summer in different feeding areas of the eastern South Pacific. To address this hypothesis, humpback whales photo‐identified from the Antarctic Peninsula and the Fueguian Archipelago (southern Chile) were compared with whales photo‐identified from lower latitudes extending from northern Peru to Costa Rica. This comparison was performed over a time span that includes 18 austral seasons. A total of 238 whales identified from the Antarctic Peninsula and 25 whales from the Fueguian Archipelago were among those photo‐identified at the breeding grounds. Our findings showed that humpback whales from each feeding area were resighted unevenly across the breeding grounds, which suggests a degree of spatial structuring in the migratory pathway. Humpback whales that feed at the Antarctic Peninsula were more likely to migrate to the southern breeding range between northern Peru and Colombia, whereas whales that feed at the Fueguian Archipelago were more likely to be found in the northern range of the breeding ground off Panama. Further photo‐identification efforts and genetic sampling from poorly sampled or unsampled areas are recommended to confirm these reported connectivity patterns.  相似文献   

14.
Singing by males is a major feature of the mating system of humpback whales, Megaptera novaeangliae (Borowski). Although a few songs have been opportunistically recorded on the whales' high-latitude feeding grounds, singing in these regions was thought to be only sporadic. We report results from the first continuous acoustic monitoring of a humpback whale feeding ground (off Cape Cod, MA, USA) in spring. Using autonomous sea-floor recording systems, we found singing on a daily basis over the entire 25 day monitoring period, from 14 May to 7 June 2000. For much of the period, song was recorded 24 h per day. These results, combined with evidence for aseasonal conceptions in whaling catch data, suggest that the humpback whale breeding season should no longer be considered as confined to lower-latitude regions in winter. Rather, we suggest breeding extends geographically and temporally onto feeding grounds into at least spring and early summer. Singing at these times represents either low-cost opportunistic advertising by (perhaps relatively few) males to court females that failed to conceive during the winter, and/or possibly an intrasexual display.  相似文献   

15.
REPRODUCTIVE RATES OF HUMPBACK WHALES OFF CALIFORNIA   总被引:1,自引:0,他引:1  
From 1986 to 1996 we examined the reproductive rates, calving rates, and reproductive histories of mature females as part of photo-identification studies of humpback whales that feed off California, Oregon, and Washington during summer and fall. Annual reproductive rates were measured by two methods: proportion of all whales that were calves based on sightings (0.6%-5.9% per year, mean = 3.6%, SD = 1.6) and based on individually identified animals (1.1%-8.0% per year, mean = 4.1%, SD = 1.8). The reproductive rate based on sightings varied significantly by year ( G test, P < 0.001), region ( G test, P < 0.001), and by month ( G test, P < 0.05). Seventy-nine sexually mature females were identified with 97 calves out of a total of 844 known individuals over the 11-yr study. Mother-calf separation on the feeding grounds was recorded in several instances. The apparent reproductive rates of this population are considerably lower than rates of 4%–15% reported from other feeding areas for this species. Our estimates are likely biased downward because this population has been increasing at about 5% per year. Calves may have been missed due to early weaning and because of our sampling from small boats late in the season. We also found evidence of geographic segregation of mother-calf pairs within our large study area. Despite these factors, we conclude the reproductive rate of this population appears to be lower than has been reported in other areas.  相似文献   

16.
Group formation in humpback whales has been described in relation to different components of the migratory cycle, yet it is debated whether such groups represent real social bonding or ephemeral aggregations. Cooperative behaviours are exhibited during feeding activities, and it has been suggested that males may cooperate during competition for mates. Since most cooperative behaviours are expected to originate among kin, genetic relatedness represents a critical variable in the understanding of any social phenomenon, especially when cooperation cannot be confirmed unequivocally. Using an approach combining multi-locus microsatellite genotyping and several genetic relatedness estimators, we analyzed whale associations for two different wintering grounds in the Southern Hemisphere. The analyses included 648 whales sampled from 292 groups off the coast of Gabon and Northeast Madagascar, and screened for eleven microsatellite loci. Through simulations, we assessed the performance of three pairwise relatedness estimators. The individuals were molecularly sexed and their associations were investigated in the context of sex and group type. No significant association among relatives was found with the exception of mother-offspring pairs, supporting previous indications of extended maternal care. The analysis from the Gabon population also suggests that related males may avoid each other during competitive activities. Our results demonstrate that if cooperative behaviours occur on wintering grounds they are not favoured by kin selection.  相似文献   

17.
Despite the extensive use of photographic identification methods to investigate humpback whales in the North Pacific, few quantitative analyses have been conducted. We report on a comprehensive analysis of interchange in the North Pacific among three wintering regions (Mexico, Hawaii, and Japan) each with two to three subareas, and feeding areas that extended from southern California to the Aleutian Islands. Of the 6,413 identification photographs of humpback whales obtained by 16 independent research groups between 1990 and 1993 and examined for this study, 3,650 photographs were determined to be of suitable quality. A total of 1,241 matches was found by two independent matching teams, identifying 2,712 unique whales in the sample (seen one to five times). Site fidelity was greatest at feeding areas where there was a high rate of resightings in the same area in different years and a low rate of interchange among different areas. Migrations between winter regions and feeding areas did not follow a simple pattern, although highest match rates were found for whales that moved between Hawaii and southeastern Alaska, and between mainland and Baja Mexico and California. Interchange among subareas of the three primary wintering regions was extensive for Hawaii, variable (depending on subareas) for Mexico, and low for Japan and reflected the relative distances among subareas. Interchange among these primary wintering regions was rare. This study provides the first quantitative assessment of the migratory structure of humpback whales in the entire North Pacific basin.  相似文献   

18.
Knowledge of humpback whale (Megaptera novaeangliae) foraging on feeding grounds is becoming increasingly important as the growing North Pacific population recovers from commercial whaling and consumes more prey, including economically important fishes. We explored spatial and temporal (interannual, within‐season) variability in summer foraging by humpback whales along the eastern side of the Kodiak Archipelago as described by stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of humpback whale skin (n = 118; 2004–2013). The trophic level (TL) of individual whales was calculated using basal food web δ15N values collected within the study area. We found evidence for the existence of two subaggregations of humpback whales (“North,” “South”) on the feeding ground that fed at different TLs throughout the study period. Linear mixed models suggest that within an average year, Kodiak humpback whales forage at a consistent TL during the feeding season. TL estimates support mixed consumption of fish and zooplankton species in the “North” (mean ± SE; 3.3 ± 0.1) and predominant foraging on zooplankton in the “South” (3.0 ± 0.1). This trend appears to reflect spatial differences in prey availability, and thus, our results suggest North Pacific humpback whales may segregate on feeding aggregations and target discrete prey species.  相似文献   

19.
The seasonal distributions of humpback and blue whales ( Megaptera novaeangliae and Balaenoptera musculus , respectively) in the North Atlantic Ocean are not fully understood. Although humpbacks have been studied intensively in nearshore or coastal feeding and breeding areas, their migratory movements between these areas have been largely inferred. Blue whales have only been studied intensively along the north shore of the Gulf of St. Lawrence, and their seasonal occurrence and movements elsewhere in the North Atlantic are poorly known. We investigated the historical seasonal distributions of these two species using sighting and catch data extracted from American 18th and 19th century whaling logbooks. These data suggest that humpback whales migrated seasonally from low-latitude calving/ breeding grounds over a protracted period, and that some of them traveled far offshore rather than following coastal routes. Also, at least some humpbacks apparently fed early in the summer west of the Mid-Atlantic Ridge, well south of their known present-day feeding grounds. In assessing the present status of the North Atlantic humpback population, it will be important to determine whether such offshore feeding does in fact occur. Blue whales were present across the southern half of the North Atlantic during the autumn and winter months, and farther north in spring and summer, but we had too few data points to support inferences about these whales' migratory timing and routes.  相似文献   

20.
The songs of the male humpback whales (Megaptera novaeangliae) have traditionally been associated with mating at tropical and subtropical mating grounds during winter. However, songs also occur out of mating season, both on feeding grounds in spring, late summer and fall. This study provides the first report of humpback whale singing behaviour in the subarctic waters of Northeast Iceland (Skjálfandi Bay) using long-term bottom-moored acoustic recorders during September 2008–February 2009 and from April to September 2009. Singing started in late November and peaked in February, within the breeding season. No songs were detected from spring to fall, despite visual detections of humpback whales. Non-song sound signals from humpback whales were detected during all recording months. Songs were partly composed of fundamental units common with other known mating grounds, and partly of song units likely unique to the study area. The variety of song unit types in the songs increased at the end of the winter recordings, indicating a gradual change in the songs throughout the winter season; as has been shown on traditional mating grounds. The relative proportion of songs compared with non-song signals was higher during dark hours than daylight hours. The short light periods of the winter, and where food is available, likely influence the daily occurrence of humpback whales’ songs in the subarctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号