首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Imputing missing yield trial data   总被引:1,自引:0,他引:1  
Summary Intraspecific mitochondrial DNA (mtDNA) diversity was determined in 23 Phaseolus vulgaris genotypes, and compared to previously observed variability of morphoagronomic characters and isozyme loci. Twenty of the lines were collected from Malawian landraces; the other three were pure-bred cultivars. The mtDNAs were digested with eight restriction endonucleases, revealing complex banding patterns. Southern hybridization using cosmid clones covering about 200-kb of the genome showed a considerable amount of uniformity of the mtDNA banding patterns. However, five restriction fragment length polymorphisms (RFLPs) were detected, dividing the bean lines into two groups corresponding to the previously known Mesoamerican and Andean gene pools of P. vulgaris. The cultivar Mecosta was separated from the rest of the lines by an additional RFLP. At least two out of the six RFLPs are believed to be due to base-pair mutation events. Our results provide the first evidence that the cytoplasms of the two major germ plasm pools of beans are distinct.  相似文献   

2.
Restriction-fragment length polymorphisms in mitochondrial DNA (mtDNA) were used to evaluate population-genetic structure and matriarchal phylogeny in four species of marine fishes that lack a pelagic larval stage: the catfishes Arius felis and Bagre marinus, and the toadfishes Opsanus tau and O. beta. Thirteen informative restriction enzymes were used to assay mtDNAs from 134 specimens collected from Massachusetts to Louisiana. Considerable genotypic diversity was observed in each species. However, major mtDNA phylogenetic assemblages in catfish and toadfish (as identified in Wagner networks and UPGMA phenograms) exhibited contrasting patterns of geographic distribution: in catfish, distinct mtDNA clades were widespread, while such clades in toadfish tended to be geographically localized. By both the criteria of species' ranges and the geographic pattern of intraspecific mtDNA phylogeny, populations of marine catfish in the western Atlantic have had greater historical interconnectedness than have toadfish. Results are also compared to previously published mtDNA data in freshwater and other marine fishes. Although mtDNA differentiation among conspecific populations of continuously distributed marine fishes is usually lower than that among discontinuously distributed freshwater species inhabiting separate drainages, it is apparent that historical biogeographic factors can importantly influence genetic structure in marine as well as freshwater species.  相似文献   

3.
We have constructed restriction-site maps of the mtDNAs in 13 species and one subspecies of the Drosophila obscura group. The traditional division of this group into two subgroups (affinis and obscura) does not correspond to the phylogeny of the group, which shows two well- defined clusters (the Nearctic affinis and pseudoobscura subgroups) plus a very heterogeneous set of anciently diverged species (the Palearctic obscura subgroup). The mtDNA of Drosophila exhibits a tendency to evolve toward high A+T values. This leads to a "saturation" effect that (1) begets an apparent decrease in the rate of evolution as the time since the divergence of taxa increases and (2) reduces the value that mtDNA restriction analysis has for the phylogenetic reconstruction of Drosophila species that are not closely related.   相似文献   

4.
The mitochondrial DNA (mtDNA) phylogeny of Japanese Pandaka species (Perciformes: Gobiidae) was inferred from partial nucleotide sequences of the mitochondrial 12S and 16S rRNA genes (1083bp). The resultant mtDNA tree showed two major clades (clade I and clade II), which were inconsistent with the present taxonomic classification. One of the major clades was further divided into two geographical groups, distributed on the Japanese Major Islands (clade I-A) and from Amami-oshima Island to Iriomote Island (clade I-B). The mtDNA haplotypes in clade II were found only on Iriomote Island. The mtDNA divergences in clade I indicated that the Japanese Major Island (clade I-A) and Ryukyu (clade I-B) groups have been geographically isolated from each other for millions of years, based on the putative molecular divergence rate. The geographical distributions of mtDNA haplotypes in clade I-A and clade I-B also suggested that Pandaka gobies had not dispersed to distant offshore islands, indicating that their geographical differentiation may be closely associated with the geological history of the Japanese and Ryukyu Archipelagos.This revised version was published online in January 2005 with corrections to the repetition of the 1st authors name.  相似文献   

5.
A. Caccone  G. D. Amato    J. R. Powell 《Genetics》1988,118(4):671-683
Levels of DNA divergence among the eight species of the Drosophila melanogaster subgroup and D. takahashii have been determined using the technique of DNA-DNA hybridization. Two types of DNA were used: single-copy nuclear DNA (scnDNA) and mitochondrial DNA (mtDNA). The major findings are: (1) A phylogeny has been derived for the group based on scnDNA which is congruent with chromosomal data, morphology, and behavior. The three homosequential species, simulans, sechellia, and mauritiana, are very closely related; the scnDNA divergence indicate the two island species are a monophyletic group. (2) The rates of change of scnDNA and mtDNA are not greatly different; if anything scnDNA evolves faster than mtDNA. (3) The rates of scnDNA evolution are not closely correlated to chromosomal (inversion) evolution. (4) The Drosophila genome appears to consist of two distinct classes of scnDNA with respect to rate of evolutionary change, a very rapidly evolving fraction and a relatively conservative fraction. (5) The absolute rate of change was estimated to be at least 1.7% nucleotide substitution per one million years. (6) DNA distance estimates based on restriction site variation are correlated with distances based on DNA-DNA hybridization, although the correlation is not very strong.  相似文献   

6.
Variation in mitochondrial DNA (mtDNA) was used together with comparative cytogenetics to examine the evolutionary history and taxonomic status of an African hystricomorphous rodent, the springhare Pedetes capensis. The mtDNA phylogeographic structure showed that the majority of the southern African populations (P. c. capensis) are characterized by unique but closely related maternal lineages. Based on restriction endonuclease fragment analysis, the east African populations (P. c. surdaster) appear more structured and are distinguished from those in southern Africa by an average sequence divergence of 5.52% (±1.4%). This marked divergence is concordant with results of the cytogenetic study. Specimens from southern Africa have 2n = 38, and those from east Africa 2n = 40. The change in diploid number is due to a single centric fusion. It is suggested that the closure of the Brachystegia or miombo woodland (20,000–10,000 B.P.), which delimits contemporary springhare ranges, may have been too recent to account for the accumulated genetic differences that distinguish these taxa. While rifting and associated habitat changes in east Africa can be invoked to explain genetic structure in this region, the southern African springhare populations, which have a high incidence of locality-specific haplotypes, show a shallow phylogeographic structure, in keeping with a relatively recent range expansion from smaller source populations. Given the magnitude of genetic, morphological, and ethological differences between the two geographic isolates, we believe that there is strong support for the elevation of the east African and southern African springhare populations to full species status, thus supporting earlier taxonomic treatments of this rodent.  相似文献   

7.
The crested newt has a widespread European distribution and encompasses four taxa recently elevated to full species: Triturus cristatus, T. carnifex, T. dobrogicus, and T. karelini. These are distinct on morphological, chromosomal, and isozymic grounds and have fairly sharp transition zones. A widespread survey (12 countries, 49 geographic sites, 210 individuals) of mtDNA variation (20–27 restriction enzyme sites mapped per individual) was made in order to 1) correlate mtDNA variation with morphological features defining the species, 2) determine the degree of differentiation within and among species, and 3) detect any introgression among species. The mtDNAs of these species were clearly differentiated (d = 3.9–7.1%). Additionally, geographic structuring was observed within T. carnifex and T. karelini, each displaying two divergent mitochondrial genome types (d = 3.5% and 4.7%, respectively). The other two (more northerly distributed) species were genetically homogeneous over most (T. cristatus) or all (T. dobrogicus) of their ranges. In the case of T. cristatus, one may infer bottlenecking as a result of Pleistocene glaciation events. This may also apply in part to T. dobrogicus, but high population connectedness and gene flow in this lowland river species may alone be sufficient for homogenization of mtDNA. Patterns of mtDNA variation were largely concordant with morphology; some interspecific mitochondrial gene flow was observed, but only close to or in the transition zones. Analyses of mapped restriction-site data by UPGMA and parsimony methods (using the closely related T. marmoratus as an outgroup) produce very similar dendrograms. The levels of divergence found concur with the systematics of the group, but the differentiation within T. carnifex and T. karelini is notable.  相似文献   

8.
Despite many ecological and evolutionary studies, the history of several species complexes within the freshwater crustacean genus Daphnia (Branchiopoda, Anomopoda) is poorly understood. In particular, the Daphnia longispina group, comprising several large-lake species, is characterized by pronounced phenotypic plasticity, many hybridizing species and backcrossing. We studied clonal assemblages from lakes and ponds comprising daphnids from several species complexes. In order to reveal patterns of reticulate evolution and introgression among species, we analysed three data sets and compared nuclear, mtDNA and morphological divergence using animals from 158 newly established clonal cultures. By examining 15 nuclear and 11 mitochondrial (12S/16S rDNA) genetic characters (allozymes/restriction enzymes), and 48 morphological traits, we found high clonal diversity and discontinuities in genotypic and morphological space which allowed us to group clones by cytonuclear differentiation into seven units (outgroup D. pulex). In contrast to six groups emerging from nuclear divergence (related to three traditional species, D. cucullata, D. galeata, D. hyalina and three pairwise intermediate hybrids), a seventh group of clones was clearly resolved by morphological divergence: distinct mtDNA haplotypes within one nuclear defined cluster, ‘D. hyalina’, resembled traditional D. hyalina and D. rosea phenotypes, respectively. In other nuclear defined clusters, association between mtDNA haplotype and morphology was low, despite hybridization being bidirectional (reciprocal crosses). Morphological divergence was greatest between young sister species which are separated on the lake/pond level, suggesting a significant role for divergent selection during speciation along with habitat shifts. Phylogenetic analyses were restricted to four cytonuclear groups of clones related to species. mtDNA and nuclear phylogenies were consistent in low genetic divergence and monophyly of D. hyalina and D. rosea. Incongruent patterns of phylogenies and different levels of genetic differentiation between traditional species suggest reticulate evolutionary processes.  相似文献   

9.
Phylogenetic relationships of the Chugoku-Kyushu and Shikoku groups of the Japanese spinous loach, Cobitis takatsuensis, among the diploid congeners in Japan, C. biwae and Cobitis sp. complex with Niwaella delicata as an outgroup, were investigated by analyzing 20 protein-coding loci. The two groups of C. takatsuensis are clearly diverged genetically, with the genetic distance corresponding to the species level (average D=0.27). The two groups form a monophyletic cluster (bootstrap probability, P=94.9%) that is a sister cluster of C. biwae (P=63.1%). The monophyletic cluster of the Cobitis sp. complex (P=93.2%) is the most distantly related in the genus. The present results differ mostly from the mitochondrial phylogeny previously known in which the Chugoku-Kyushu group of C. takatsuensis is connected to the eastern group of C. biwae and the Shikoku group is connected to the Cobitis sp. complex with the western group of C. biwae. The contradiction between the allozymic and mitochondrial phylogenies suggests that the Shikoku group of C. takatsuensis and the western group of C. biwae received mitochondrial introgression from the Cobitis sp. complex.  相似文献   

10.
Summary Mitochondrial DNA (mtDNA) restriction endonuclease fragment patterns and patterns of mtDNA hybridized by mitochondrial gene probes were used to study phylogenetic relationships of seven Pennisetum species, including five P. americanum (pearl millet) ecotypes and a reference species from the distantly related genus, Panicum. The restriction patterns of the pearl millet ecotypes were uniform with the exception of the ecotype collected in Ethiopia. The probe hybridization method revealed more variability, with both the Rhodesian and Ethiopian ecotypes differing from the others and from each other. Considerable restriction pattern polymorphism was noted among different species of Pennisetum, and Panicum. Significant relationships were noted of Pennisetum polystachyon to P. pedicellatum and of P. purpureum to P. squamulatum using the restriction pattern method. In addition to those relationships, the hybridization method showed relationships of pearl millet to P. purpureum and to P. squamulatum. The relationships noted between species by the hybridization method agreed more closely to the cytological data than those indicated by the restriction pattern method. Therefore, the hybridization method appeared to be the preferred method for studying species relationships. The mitochondrial genome size of pearl millet was calculated to be 407 kb and the mitochondrial genome sizes of other Pennisetum species ranged from 341 to 486 kb.Florida Agricultural Experiment Station Journal Series No. 8485.  相似文献   

11.
Summary E. coli 15T- carries two distinct sets of DNA restriction and modification activities. The genetic information for system A is contained in the bacterial chromosome and linked to the thr region. This fact suggests host specificity A to be related to those of strains K and B. The genes controlling system 15 are on a plasmid which is related to phage Pl: it competes with Pl for stable inheritance in the carried state and it genetically recombines with Pl. This recombination may produce plasmid genomes with newly assorted characters (see Table 3). One of them is an active, Pl-like prophage with the 15-specific instead of the parental Pl-specific restriction and modification characters. Superinfection of 15T- with Pl may also result in curing of the bacteria from the restriction plasmid.Bot A- and 15-specific restrictions and modifications act on bacterial DNA, on the DNA of various sex factors and on the DNA of certain bacteriophages, e.g. of phage . Phage 82 DNA is sensitive only to 15-specific restriction, but not to A-specific restriction.Independently of the A- and 15-specific restrictions, the growth of phage in E. coli 15T- encounters another limitation of yet unknown nature. No such limitation is observed either with phage 82 or with mutants of occurring at a frequency of about 10-5.  相似文献   

12.
Summary To study the structure of in vivo mitochondrial DNA recombination intermediates in Saccharomyces cerevisiae, we used a deletion mutant of the wild type mitochondrial genome. The mtDNA of this petite is composed of a direct tandem repetition of an 4,600 pb monomer repeat unit with a unique HhaI restriction enzyme site per repeat. The structure of native mtDNA isolated from log phase cells, and mtDNA crosslinked in vivo with trioxsalen plus UVA irradiation, was studied by electron microscopy. Both populations contained crossed strand Holliday type recombination intermediates. Digestion of both non-crosslinked and crosslinked and mtDNA with the enzyme HhaI released X and H shaped structures composed of two monomers. Electron microscopic analysis revealed that these structures had pairs of equal length arms as required for homologous recombination intermediates and that junctions could occur at points along the entire monomer length. The percentage of recombining monomers in both non-crosslinked and trioxsalen crosslinked mtDNA was calculated by quantitative analysis of all the structures present in an HhaI digest. The relationship between these values and the apparent dispersive replication of mtDNA in density-shift experiments and mtDNA fragility during isolation is discussed.  相似文献   

13.
The haplotypes of Y chromosome (paternally inherited) and mtDNA (maternally inherited) were analyzed in representatives of six Jewish communities (Ashkenazic, North African, Near Eastern, Yemenite, Minor Asian/Balkanian, and Ethiopian). For both elements, the Ethiopian community has a mixture of typically African and typically Caucasian haplotypes and is significantly different from all others. The other communities, whose haplotypes are mostly Caucasian, are more closely related; significant differences that were found among some of them possibly indicate the effects of admixture with neighboring communities of non-Jews. The different contribution of the Y chromosome and mtDNA haplotypes to the significant differences among the communities can be explained by unequal involvement of males and females in the different admixtures. In all communities, except the Ethiopians, the level of diversity () for Y chromosome haplotypes is higher than that for mtDNA haplotypes, suggesting that in each community the people who become parents include more males than females. An opposite proportion (more females than males) is found among the Ethiopians. Correspondence to: U. Ritte  相似文献   

14.
Summary Among the fertile sugar beet lines with nuclear sterility maintenance genes, rf, in a homozygous recessive state, sublines capable of reverting spontaneously at a high rate to sterility were identified. Of 24 related fertile sublines studied, 6 were found to spontaneously revert to sterility with a frequency of about 19%. Genetic analysis confirmed the cytoplasmic nature of spontaneously arising sterility. Reversion to sterility in these sublines was accompanied by alterations in the mitochondrial genome structure: loss of the autonomously replicating minicircle c (1.3 kb) and changes in the restriction patterns of high-molecular-weight mitochondrial DNA (mtDNA). Southern hybridixation analysis with cloned minicircle c as a probe revealed no integration of this DNA molecule into the main mitochondrial and nuclear genomes of the revertants. Comparative BamHI and EcoRI restriction analysis of the mtDNA from the sterile revertants and fertile parental subline showed that the spontaneous reversion is accompanied by extensive genomic rearrangement. Southern blot analysis with cloned -subunit of F1-ATPase (atpA) and cytochrome c oxidase subunit II (COX II) genes as probes indicated that the changes in mtDNA accompanying spontaneous reversion to sterility involved these regions. The mitochondrial genomes of the spontaneous revertants and the sterile analogue were shown to be identical.  相似文献   

15.
In February 1978, in Puerto Montt (Chile) the palearctic species Drosophila subobscura was detected. The expansion of the species in this country has been very rapid, and now it is found over a distance of at least 2000 km North-South. The newly established populations are very flourishing and show a high degree of inversion chromosomal polymorphism. On the basis of the chromosomal arrangements present, an hypothesis can be formulated about the origin and characteristics of the founder group. Possibly, the founders came from Eastern or South Eastern Spain and formed a group of 10 or more individuals. The colonization of D. subobscura in Chile seems to follow the model of expansion of a cosmopolitan species, passively transported by man rather than the more active expansion of colonizers less tied to human activity, envisaged in Carson's models of colonization processes. The high level of chromosomal polymorphism observed in the populations of D. subobscura in Chile, coincides with this interpretation.This work has been supported by a grant from the Programa de Cooperación con Iberoamérica. Ministerio de Universidades e Investigación. Spain, by the Comisión de Investigación de la Universidad de Chile (Proyecto B-027-794) and Proyecto PNUD/UNESCO (RLA 78/024).  相似文献   

16.
The sequence of the mtDNA of the grey seal, Halichoerus grypus, was determined. The length of the molecule was 16,797 base pairs. The organization of the molecule conformed with that of other eutherian mammals but the control region was unusually long due to the presence of two types of repeated motifs. The grey seal and the previously reported harbor seal, Phoca vitulina, belong to different but closely related genera of family Phocidae, true (or earless) seals. In order to determine the degree of differences that may occur between mtDNAs of closely related mammalian genera, the 2 rRNA genes, the 13 peptide coding genes, and the 22 tRNA genes of the 2 species were compared. Total nucleotide difference in the peptide coding genes was 2.0–6.1%. The range of conservative difference was 0.0–1.5%. In the inferred peptide sequences the amino acid difference was 0.0–4.5%, and the difference with respect to chemical properties of amino acids was 0.0–3.0%. A gene that showed a limited degree of difference in one mode of comparison did not necessarily show a corresponding limited difference in another mode. The ratio for differences in codon positions 1, 2, and 3 was 2.7:1:16. The corresponding ratio for conservative differences was 1.8:1. l:1. The evolutionary separation of the two species was calculated to have taken place 2–2.5 million years ago. This dating gives the figure 8 × 10–9 as the mean rate of substitution per site and year in the entire mtDNA molecule. Comparison with the cytochrome b gene of the Hawaiian monk seal and the Weddell seal suggested that the lineage of these two species and that of the grey and harbor seals separated 8 million years ago. Correspondence to: Ú. Árnason  相似文献   

17.
Summary The positive regulator gene (phoB) for alkaline phosphatase of Escherichia coli was cloned into the EcoRI site of pBR322 from the E. coli chromosome by a shotgun method. phoB was then constructed in vitro by replacing the C fragment of gtC by the phoB chromosomal fragment obtained from the hybrid plasmid. When the phoB mutant was lysogenized by phoB, the lysogen became PhoB+. The integration site of the phage was identified by P1 phage transduction to be around phoB site on the chromosome. From these results, we conclude that the cloned gene is phoB and not a gene which suppresses phenotypically phoB mutation when it is in a multi-copy state. The restriction map was constructed. Based on this information, several PhoB deletion plasmids and smaller PhoB+ plasmids were constructed in vitro. By examining PhoB phenotype when these plasmids were introduced into phoB mutant, we could define the phoB gene locus in 2 kb on the restriction map of the cloned chromosomal fragment. Cells carrying the multi-copy phoB gene produced alkaline phosphatase qualitatively under normal phosphate regulation. The phoB gene product was identified by the maxicell method as a protein with a molecular weight of approximately 31,000 daltons.  相似文献   

18.
Investigations into the phylogenetics of closely related animal species are dominated by the use of mitochondrial DNA (mtDNA) sequence data. However, the near-ubiquitous use of mtDNA to infer phylogeny among closely related animal lineages is tempered by an increasing number of studies that document high rates of transfer of mtDNA genomes among closely related species through hybridization, leading to substantial discordance between phylogenies inferred from mtDNA and nuclear gene sequences. In addition, the recent development of methods that simultaneously infer a species phylogeny and estimate divergence times, while accounting for incongruence among individual gene trees, has ushered in a new era in the investigation of phylogeny among closely related species. In this study we assess if DNA sequence data sampled from a modest number of nuclear genes can resolve relationships of a species-rich clade of North American freshwater teleost fishes, the darters. We articulate and expand on a recently introduced method to infer a time-calibrated multi-species coalescent phylogeny using the computer program *BEAST. Our analyses result in well-resolved and strongly supported time-calibrated darter species tree. Contrary to the expectation that mtDNA will provide greater phylogenetic resolution than nuclear gene data; the darter species tree inferred exclusively from nuclear genes exhibits a higher frequency of strongly supported nodes than the mtDNA time-calibrated gene tree.  相似文献   

19.
Two morphologically and ecologically distinct forms of smelt, Osmerus, reside sympatrically in Lake Utopia, south-western New Brunswick, Canada. The ‘normal-sized’ form matures at greater than 200 mm standard length, averages about 31–33 gill rakers, and spawns in lake outlets. By contrast, the ‘dwarf-sized’ form matures at less than 150 mm standard length, averages 34–36 gill rakers, and spawns in small streams 3–5 weeks later than the normal form. We tested whether these sympatric forms represented ecological polymorphism within a single population or two reproductively isolated demes by assaying variation within and between forms by mitochondrial DNA (mtDNA) restriction site and nuclear minisatellite DNA analyses. Analysis of smelt mtDNA with twelve restriction enzymes resolved ten composite genotypes (differing by an average 0.27% sequence divergence) which differed markedly in frequency between the forms. Net percentage sequence divergence between the forms was O.l6%. A Wagner parsimony/ bootstrapping analysis of the restriction site presence/absence matrix, however, suggested that there were no significant distinctions between dwarf and normal smelt based on the phylogeny of composite genotypes. Hybridization studies of genomic DNA digests with a minisatellite probe indicated both that nuclear restriction fragment differentiation and the frequency of specific fragments differed significantly between the forms. Significant genetic differentiation between the sympatric forms demonstrates that they are distinct gene pools and reproductively isolated. Our molecular evidence for reproductive isolation between dwarf and normal smelt in Lake Utopia, coupled with the persistent morphological and ecological differentiation between them, argues strongly that they are behaving as distinct species. The Lake Utopia Osmerus populations provide further illustration of the potential for rapid differentiation to the level of biological species in postglacial environments.  相似文献   

20.
Y. R. Reddi 《Genetica》1970,41(1):321-333
A cytological analysis of chromosome association was made inS. miliaceum, S. panicoides, S. almum, S. macrochacta, S. halepense, and an induced autotetraploid ofS. cernuum all with2n=40 chromosomes. The study of pachytene chromosome associations in the first two species revealed their differentiated structure, while in the other species pachytene has not been analysed in detail. Also in their basic morphology they resembled diploid Eu-sorghums. The frequency of partner exchanges among the observed associations of four chromosomes varied from 0 to 2 and they appeared to be distributed all along the length of the chromosomes. Evidence for chromosomal differentiation was recorded and it was suggested that it might bring about increased bivalent synapsis when compared to the situation in the induced autotetraploid ofS. cernuum.Data also indicate thatS. miliaceum has essentially autoploid behaviour and thatS. panicoides is not closely related to any diploid Eu-sorghum. Comparison of the ehromosome behaviour in induced autotetraploidS. cernuum at post-pachytene stages of meiosis with that obtaining inS. almum andS. halepense suggests that the latter specios might have undergone considerable chromosomal differentiation at the same time retaining autoploid behaviour.S. macrochaeta on the other hand, has been classified segmental alloploid.Meiotic irregularities were present to a varying extent and it is considered that genetic factors are also important in determining the ultimate fertility of the tetraploids studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号