首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The time course and orientation of attachment of Rhizobium trifolii 0403 to white clover root hairs was examined in slide cultures by light and electron microscopy. Inocula were grown for 5 days on defined BIII agar medium and represented the large subpopulation of fully encapsulated single cells which uniformly bind the clover lectin trifoliin A. When 10(7) cells or more were added per seedling, bacteria attached within minutes, forming randomly oriented clumps at the root hair tips. Several hours later, single cells attached polarly to the sides of the root hair. This sequence of attachment to clover root hairs was selective for R. trifolii at inoculum sizes of 10(7) to 4 X 10(8) per seedling, specifically inhibited if 2-deoxy-D-glucose, a hapten for trifoliin A, was present in the inoculum, and not observed when 4 X 10(8) cells were added to alfalfa seedling roots or to large clover root cell wall fragments which lacked trifoliin A but still had trifoliin A receptors. Once attached, R. trifolii 0403 became progressively less detachable with 2-deoxy-D-glucose. At smaller inoculum sizes (10(5) to 10(6) cells per seedling), there was no immediate clumping of R. trifolii at clover root hair tips, although polar binding of bacteria along the root hair surface was observed after 4 h. The interface between polarly attached bacteria and the root hair cell wall was shown to contain trifoliin A by immunofluorescence microscopy. Also, this interface was shown by transmission electron microscopy to contain electron-dense granules of host origin. Scanning electron microscopy revealed an accumulation of extracellular microfibrils associated with the lateral and polar surfaces of the attached bacteria, detectable after 12 h of incubation with seedling roots. At this same time, there was a significant reduction in the effectiveness of 2-deoxy-D-glucose in dislodging bacteria already attached to root hairs and an increase in firm attachment of bacteria to the root hair surface, which withstood the hydrodynamic shear forces of high-speed vortexing. These results are interpreted as a sequence of phases in attachment, beginning with specific reversible interactions between bacterial and plant surfaces (phase I attachment), followed by production of extracellular microfibrils which firmly anchor the bacterium to the root hair (phase 2 adhesion). Thus, attachment of R. trifolii to clover root hairs is a specific process requiring more than just the inherent adhesiveness of the bacteria to the plant cell wall.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The time course and orientation of attachment of Rhizobium trifolii 0403 to white clover root hairs was examined in slide cultures by light and electron microscopy. Inocula were grown for 5 days on defined BIII agar medium and represented the large subpopulation of fully encapsulated single cells which uniformly bind the clover lectin trifoliin A. When 10(7) cells or more were added per seedling, bacteria attached within minutes, forming randomly oriented clumps at the root hair tips. Several hours later, single cells attached polarly to the sides of the root hair. This sequence of attachment to clover root hairs was selective for R. trifolii at inoculum sizes of 10(7) to 4 X 10(8) per seedling, specifically inhibited if 2-deoxy-D-glucose, a hapten for trifoliin A, was present in the inoculum, and not observed when 4 X 10(8) cells were added to alfalfa seedling roots or to large clover root cell wall fragments which lacked trifoliin A but still had trifoliin A receptors. Once attached, R. trifolii 0403 became progressively less detachable with 2-deoxy-D-glucose. At smaller inoculum sizes (10(5) to 10(6) cells per seedling), there was no immediate clumping of R. trifolii at clover root hair tips, although polar binding of bacteria along the root hair surface was observed after 4 h. The interface between polarly attached bacteria and the root hair cell wall was shown to contain trifoliin A by immunofluorescence microscopy. Also, this interface was shown by transmission electron microscopy to contain electron-dense granules of host origin. Scanning electron microscopy revealed an accumulation of extracellular microfibrils associated with the lateral and polar surfaces of the attached bacteria, detectable after 12 h of incubation with seedling roots. At this same time, there was a significant reduction in the effectiveness of 2-deoxy-D-glucose in dislodging bacteria already attached to root hairs and an increase in firm attachment of bacteria to the root hair surface, which withstood the hydrodynamic shear forces of high-speed vortexing. These results are interpreted as a sequence of phases in attachment, beginning with specific reversible interactions between bacterial and plant surfaces (phase I attachment), followed by production of extracellular microfibrils which firmly anchor the bacterium to the root hair (phase 2 adhesion). Thus, attachment of R. trifolii to clover root hairs is a specific process requiring more than just the inherent adhesiveness of the bacteria to the plant cell wall.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The effect of white clover root exudate on capsules of Rhizobium trifolii 0403 was examined. The clover lectin trifoliin A was detected in root exudate of two clover varieties by indirect immunofluorescence with antibody against this lectin purified from clover seed. Trifoliin A bound uniformly to encapsulated, heat-fixed cells during 1 h of incubation with root exudate. After 4 to 8 h of incubation, trifoliin A was only bound to one pole of the cells. Transmission electron microscopy showed that the capsule itself was altered. The disorganization of the acidic polymers of the capsule began in the equatorial center of the rod-shaped cell and then progressed toward the poles at unequal rates. Trifoliin A could no longer be detected on heat-fixed cells after 12 h of incubation with root exudate. However, trifoliin A was detected in situ on one pole of cells grown for 4 days in the clover root environment of Fahraeus slide cultures. Inhibition studies with the hapten 2-deoxy-d-glucose showed that trifoliin A in root exudate had a higher affinity for one of the cell poles. Immunoelectrophoresis was used to monitor the alteration of the extracellular polysaccharides from R. trifolii 0403 by concentrated root exudate. These polysaccharides were converted into products which eventually lost their ability to immunoprecipitate with homologous antibody. This progressive loss of antigenic reactivity proceeded more rapidly with root exudate from seedlings grown under nitrogen-free conditions than with root exudate from plants grown with 15 mM KNO(3). The root exudate, depleted of trifoliin A by immunoaffinity chromatography, was still able to alter the capsule of R. trifolii 0403. Reconstitution experiments showed that the substance(s) in root exudate which induced this alteration of the capsule was of a high molecular weight, heat labile, trypsin sensitive, and antigenically unrelated to trifoliin A. A variety of glycosidase activities were also detected in the fraction depleted of trifoliin A. These results suggest that enzymes in clover root exudate alter the trifoliin A-binding capsule in a way which would favor polar attachment of R. trifolii to clover root hairs.  相似文献   

4.
A polysaccharide depolymerase isolated from the phage lysate of Rhizobium trifolii 4S was used to fragment capsular polysaccharides (CPS) and extracellular polysaccharides (EPS) of R. trifolii 0403 into oligosaccharides. These products were analyzed for clover lectin (trifoliin A)-binding ability, effect on infection of white clover root hairs, and changes in glycosyl and noncarbohydrate composition with culture age. The oligosaccharides from CPS of cultures grown on agar plates for 3, 5, and 7 days exhibited lectin-binding ability at levels similar to those of the corresponding intact CPS. The intact EPS did not bind to clover lectin, although the oligosaccharide fragments from EPS did. In contrast, oligosaccharides from deacetylated CPS had less than half the lectin-binding ability of the native polysaccharide substrate. The CPS from 5-day-old cultures, its corresponding oligosaccharide fragments, and the oligosaccharide fragments of EPS from 5-day-old cultures, all at a concentration of 2.5 micrograms per seedling, stimulated infection thread formation in root hairs of clover seedlings inoculated with R. trifolii 0403. Thus, this bacteriophage-induced polysaccharide depolymerase converted the acidic CPS and EPS of R. trifolii 0403 into biologically active oligosaccharides capable of binding trifoliin A and stimulating root hair infection. The amount of the noncarbohydrate substitutions (pyruvate, acetate, and ether-linked 3-hydroxybutyrate) in the CPS oligosaccharides changed with culture age as shown by 1H-nuclear magnetic resonance spectroscopy. The binding of trifoliin A, therefore, appears to be sensitive to changes in the degree of substitution of noncarbohydrate substitutions in the CPS of R. trifolii 0403.  相似文献   

5.
The age-dependent lectin-binding ability of Rhizobium trifolii 0403 capsular polysaccharide (CPS) was examined by following the development of the capsule and its ability to interact with the white clover lectin trifoliin A. Bacteria grown on agar plates for 3, 5, 7, 14, and 21 days were examined by electron microscopy and immunofluorescence microscopy with antibodies prepared against either R. trifolii 0403 CPS or trifoliin A after pretreatment with the lectin. The capsule began to develop at one pole by day 3 and completely surrounded the cells in cultures incubated for 5 days or longer. The capsular polysaccharide on cells cultured for 3 and 5 days was completely reactive with trifoliin A, became noticeably less reactive by day 7, and was only reactive with the lectin at one pole of a few cells after that time. The quantity and location of lectin receptors on bacteria of different ages directly correlated with their attachment in short-term clover root hair-binding studies. Cells from 3- or 21-day-old cultures attached almost exclusively in a polar fashion, whereas cells grown for 5 days attached to root hairs randomly and in the highest numbers. CPS isolated from a 5-day-old culture had higher lectin-binding ability than CPS from 3- and 7-day-old cultures, whereas the CPS from a 14-day-old culture had the lowest. Chemical analyses of the isolated CPS showed changes in the levels of uronic acids (as glucuronic acid), pyruvate, and O-acetyl substitutions with culture age, but the neutral sugar composition remained relatively constant. These results provide evidence that the age-dependent distribution of lectin receptors dictates the level and orientation of attachments of R. trifolii 0403 to clover root hairs.  相似文献   

6.
In-vivo synthesis of the white-clover lectin, trifoliin A, was examined by the incorporation of labeled amino acids into protein during heterotrophic growth of intact Trifolium repens L. seedlings. Lectin synthesis was quantified by measuring the level of labeled protein immunoprecipitated from root exudate, from the hapten (2-deoxyglucose) eluate of the roots, and from root and shoot homogenates. The presence of labeled trifoliin A was confirmed by non-denaturing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by fluorography and comparison with trifoliin A standards. In-vivo-labeled trifoliin A was detected in seedling root homogenate 2 h after the addition of labeled amino acids and on the root surface by 8 h. Incorporation of labeled amino acids into protein and trifoliin A was greatest with 2-d-old seedlings and was greater when the plants were grown continuously in the dark than when they were exposed to 14 h light daily. Significantly more labeled lectin accumulated on the root surface of seedlings grown with 1.5 mM KNO3 than of seedlings grown either without N or with 15.0 mM KNO3. The labeled lectin from the root surface in all nitrate treatments and from the rootexudate samples of seedlings grown N-free and with 1.5 mM KNO3 was fully able to bind to Rhizobium trifolii. In contrast, only 2% of the immunoprecipitable protein found in the root exudate of seedlings grown with 15.0 mM KNO3 was able to bind to the bacteria. Thus, excess nitrate does not repress the synthesis of trifoliin A in the root, but does affect the distribution and activity of this newly synthesized lectin in a way which reduces its ability to interact with R. trifolii. By using Western blot analysis, much more total trifoliin A is detected in the homogenates of shoots than roots. However, greater than 80% of the total labeled protein and 85–90% of the total labeled lectin were found in the root homogenates of 2-d-old dark-grown seedlings incubated for 5 h with labeled amino acids. In addition, Western blot analysis indicated that the shoot homogenate contained smaller-molecular-weight peptides which reacted with the specific anti-trifoliin A antibody. These studies indicate that stored trifoliin A in the seed is degraded in the shoots during seedling development, while newly synthesized trifoliin A in the roots is excreted to the root surface and external environment.Abbreviations IgG immunoglobulin G - LPS lipopolysaccharide - PBS 10 mM potassium-phosphate buffer, pH 7.0, containing 0.8% NaCl - PBS-T 20 mM phosphate-buffered saline, pH 7.4, containing 0.05% Tween 20 - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

7.
Either NO3 (16 millimolar) or NH4+ (1 millimolar) completely inhibited infection and nodulation of white clover seedlings (Trifoliin repens) inoculated with Rhizobium trifolii. The binding of R. trifolii to root hairs and the immunologically detectable levels of the plant lectin, trifoliin, on the root hair surface had parallel declining slopes as the concentration of either NO3 or NH4+ was increased in the rooting medium. This supports the role of trifoliin in binding R. trifolii to clover root hairs. Agglutination of R. trifolii by trifoliin from seeds was not inhibited by these levels of NO3 or NH4+. The results suggest that these fixed N ions may play important roles in regulating an early recognition process in the Rhizobium-clover symbiosis, namely the accumulation of high numbers of infective R. trifolii cells on clover root hairs.  相似文献   

8.
Immunofluorescence, quantitative immunoprecipitation, and inhibition of bacterial agglutination and passive hemagglutination indicate that cross-reactive antigenic determinants are present on the surface of Rhizobium trifolii and clover roots. These determinants are immunochemically unique to this Rhizobium-legume cross-inoculation group. The multivalent lectin trifoliin and antibody to the clover root antigenic determinants bind competitively to two acidic heteropolysaccharides isolated from capsular material of R. Trifolii 0403. The major polysaccharide is an antigen which lacks heptose, 2-keto-3-deoxyoctulosonic acid, and endotoxic lipid A. The minor polysaccharide in the capsular material of R. Trifolii 0403 contains the same antigen in addition to heptose, 2-keto-3-deoxyoctonate, and lipid A. The acidic polysaccharides of two strains of R. trifolii share the clover r-ot cross-reactive antigenic determinant despite other differences in their carbohydrate composition. Studies with monovalent antigen-binding fragments of anti-clover root antibody and Azotobacter vinelandii hybrid transformants carrying the unique antigenic determinant suggest that these polysaccharides bind R. trifolii to the clover root hair tips which contain trifoliin.  相似文献   

9.
Trifoliin A, a Rhizobium-binding glycoprotein from white clover, was detected in sterile clover root exudate by a sensitive immunofluorescence assay employing encapsulated cells of Rhizobium trifolii 0403 heat-fixed to microscope slides. Its presence in root exudate was further examined by immunoaffinity chromatography. The binding of trifoliin A to cells was specifically inhibited by the hapten, 2-deoxyglucose. Significantly higher quantities of trifoliin A were detected in root exudate of seedlings grown hydroponically in nitrogen-free medium than in rooting medium containing 15 mM NO, a concentration which completely suppressed root hair infection by the nitrogen-fixing symbiont. The presence of trifoliin A in root exudate may make it possible for recognition processes to occur before the microsymbiont attaches to its plant host.  相似文献   

10.
Trifolin: a Rhizobium recognition protein from white clover   总被引:22,自引:0,他引:22  
A protein agglutinin, trifoliin, was purified from white clover seeds and seedling roots. Trifoliin specifically agglutinates the symbiont of clover, Rhizobium trifolii, at concentrations as low as 0.2 microgram protein/ml, and binds to the surface of encapsulated R. trifolii 0403. This clover protein has a subunit with Mr approximately 50 000, an isoelectric point of 7.3, and contains carbohydrate. Antibody to purified trifoliin binds to the root hair region of 24-h-old clover seedlings, but does not bind to alfalfa, birdsfoot trefoil or joint vetch. The highest concentration of trifoliin on a clover root is present at sites where material in the capsule of R. trifolii binds. 2-Deoxy-D-glucose elutes trifoliin from intact clover-seedling roots, suggesting that this protein is anchored to root cell walls through its carbohydrate binding sites. We propose that trifoliin on the root hair surface plays an important role in the recognition of R. trifolii by clover.  相似文献   

11.
Fluorescein isothiocyanate (FITC)-labeled lectin purified from the root of Lotononis bainesii Baker was bound by cells of five out of seven L. bainesii-nodulating strains of Rhizobium under culture conditions. With the exception of a strain of Rhizobium leguminosarum, strains of noninfective rhizobia failed to bind the root lectin under these conditions. The two nonlectin binding L. bainesii-specific strains did not bind root lectin on the L. bainesii rhizoplane although this was observed with three other L. bainesii-nodulating strains. A single Rhizobium japonicum strain bound root lectin on the L. bainesii rhizoplane. There was no evidence of an interaction between the L. bainesii seed lectin and the Rhizobium strains tested.

Root lectin-specific FITC-labeled antibodies were bound to the tips of developing root hairs and lateral growth points of more mature root hairs of L. bainesii seedlings. The damaged edges of severed root hairs always bound FITC-labeled root lectin antibody. Seed lectin-specific FITC-labeled antibodies were not bound to the roots of L. bainesii. The preemergent root hair region of L. bainesii was most susceptible to infection by rhizobia but nodules also emerged in the developing and mature root hair regions. Lectin exposed at growth points on L. bainesii root hairs may provide a favorable site for host plant recognition of infective strains of Rhizobium.

  相似文献   

12.
Summary Capsular polysaccharides were isolated fromRhizobium japonicum (61A76NS) and conjugated to a fluorescent dye to determine if the specificity in theRhizobium japonicum-soybean symbiosis is expressed by a component (lectin) located on soybean roots which binds to the sugars of the bacterial capsules.The conjugated Fraction A capsular polysaccharides ofR. japonicum bound only to the root hair tips of soybean seedlings. The polysaccharide would not bind specifically to the roots of clover or alfalfa seedlings. Rhodamine conjugated polysaccharides ofR. japonicum could be inhibited from binding to soybean root hairs by the addition of N-acetylgalactosamine or galactose, effective hapten inhibitors of this type of binding. This is the first report of hapten-reversible binding of an isolated rhizobial component to soybean root hairs, the differentiated epidermal cells which are subsequently infected by this nitrogen-fixing symbiont.Paper number6046 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina.  相似文献   

13.
A new method for the isolation of root hairs from the model legume, Medicago truncatula, was developed. The procedure involves the propagation of detached roots on agar plates and the collection of root hairs by immersion in liquid nitrogen. Yields of up to 40 micro g of root hair protein were obtained from 50-100 root tips grown for 3 weeks on a single plate. The high purity of the root hair fraction was monitored by western blot analysis using an antibody to the pea epidermis specific protein PsRH2. Sequence analyses revealed that the protein homologous to PsRH2 in M. truncatula, MtRH2, is identical to the root protein MtPR10-1. The MtRH2 protein proved to be a useful endogenous marker to monitor root hair isolation since it is also specifically expressed in the root epidermis.  相似文献   

14.
Ten fluorescein isothiocyanate-labeled lectins were tested on the roots of the tropical legume Macroptilium atropurpureum Urb. Four of these (concanavalin A, peanut agglutinin, Ricinis communis agglutinin I [RCA-I], wheat germ agglutinin) were found to bind to the exterior of root cap cells, the root cap slime, and the channels between epidermal cells in the root elongation zone. One of these lectins, RCA-I, bound to the root hair tips in the mature and emerging hair zones and also to sites at which root hairs were only just emerging. There was no RCA-I binding to immature trichoblasts. Preincubation of these lectins with their hapten sugars eliminated all types of root cell binding. By using a microinoculation technique, preincubation of the root surface with RCA-I lectin was found to inhibit infection and nodulation by Rhizobium spp. Preincubation of the root surface with the RCA-I hapten beta-d-galactose or a mixture of RCA-I lectin and its hapten failed to inhibit nodulation. Application of RCA-I lectin to the root surface caused no apparent detrimental effects to the root hair cells and did not prevent the growth of root hairs. The lectin did not prevent Rhizobium sp. motility or viability even after 24 h of incubation. It was concluded that the RCA-I lectin-specific sugar beta-d-galactose may be involved in the recognition or early infection stages, or both, in the Rhizobium sp. infection of M. atropurpureum.  相似文献   

15.
Auxin and ethylene promote root hair elongation in Arabidopsis   总被引:9,自引:0,他引:9  
Genetic and physiological studies implicate the phytohormones auxin and ethylene in root hair development. To learn more about the role of these compounds, we have examined the root hair phenotype of a number of auxin- and ethylene-related mutants. In a previous study, Masucci and Schiefelbein (1996) showed that neither the auxin response mutations aux1 and axr1 nor the ethylene response mutations etr1 and ein2 have a significant effect on root hair initiation. In this study, we found that mutants deficient in either auxin or ethylene response have a pronounced effect on root hair length. Treatment of wild-type, axr1 and etr1 seedlings with the synthetic auxin, 2,4-D, or the ethylene precursor ACC, led to the development of longer root hairs than untreated seedlings. Furthermore, axr1 seedlings grown in the presence of ACC produce ectopic root hairs and an unusual pattern of long root hairs followed by regions that completely lack root hairs. These studies indicate that both auxin and ethylene are required for normal root hair elongation.  相似文献   

16.
This report describes the early cytological events in the infection byRhizobium leguminosarum biovartrifolii of the root hairs ofTrifolium repens seedlings kept alive on agar medium in glass slide culture experiment. The infection threads bearing rhizobia were formed as soon as the epidermal cells began to emerge as root hairs. On the top of some of these infected emerging root hairs, there were smoky, cell-debris-like bodies, which appeared to be derived from the cell wall dug by rhizobia. Similar bodies were also observed in longer root hairs. None of the root hair cells along the length of the roots which contained infection threads were curled or distorted. A substantial number of pink-colored nodules were later formed on the roots with non-curled infected root hairs.  相似文献   

17.
The lipopolysaccharide (LPS) from Rhizobium trifolii 0403 was isolated at different stages of growth and was examined for its (i) ability to bind a white clover lectin (trifoliin A), (ii) immunochemical properties, and (iii) composition. There was significantly more binding of trifoliin A to purified LPS and cells in the early stationary phase than to cells in the exponential phase. Immunofluorescence and enzyme-linked immunosorbent assays indicated that new antigenic determinants of the LPS appeared for brief periods on cells at the end of the lag phase and again at the beginning of the stationary phase. These new antigens were not detected on cells in midexponential or late stationary phase. Monovalent fragments of immunoglobulin G antibodies raised against the unique antigenic determinants in the LPS competitively blocked the binding of trifoliin A to cells in the early stationary phase. Gas chromatographic analysis showed that the relative quantity of several glycosyl components in the LPS increased as the culture advanced from the midexponential to the early stationary phase. In addition, LPS from cells in the early stationary phase had a higher aggregate molecular weight. Quinovosamine (2-amino-2,6-dideoxyglucose) was identified by combined gas chromatography-mass spectrometry as a sugar component of the LPS which had not been previously reported. D-Quinovosamine, N-acetyl-D-quinovosamine, and its n-propyl-beta-glycoside were effective hapten sugars which inhibited the binding of trifoliin A, anti-clover root antibody, and homologous antibody to these new determinants in the LPS. White clover plants had more infected root hairs after incubation with an inoculum of cells in the early stationary phase than after incubation with cells in the midexponential phase. The profound influence of the growth phase on the composition of lectin-binding polysaccharides of Rhizobium may be a major underlying cause of conflicting data among laboratories testing the lectin-recognition hypothesis. In addition, these chemical modifications may reflect mechanisms which regulate Rhizobium-root hair recognition in this nitrogen-fixing symbiosis.  相似文献   

18.
A protein agglutinin, trifoliin, was purified from white clover seeds and seedling roots. Trifoliin specifically agglutinates the symbiont of clover, Rhizobium trifolii, at concentrations as low as 0.2 μg protein/ml, and binds to the surface of encapsulated R. trifolii 0403. This clover protein has a subunit with Mr ≈ 50 000, an isoelectric point of 7.3, and contains carbohydrate. Antibody to purified trifoliin binds to the root hair region of 24-h-old clover seedlings, but does not bind to alfalfa, birdsfoot trefoil or joint vetch. The highest concentration of trifoliin on a clover root is present at sites where material in the capsule of R. trifolii binds. 2-Deoxy-d-glucose elutes trifoliin from intact clover-seedling roots, suggesting that this protein is anchored to root cell walls through its carbohydrate binding sites. We propose that trifoliin on the root hair surface plays an important role in the recognition of R. trifolii by clover.  相似文献   

19.
He X  Liu YM  Wang W  Li Y 《Annals of botany》2006,98(1):49-55
BACKGROUND AND AIMS: Actin distribution in root hair tips is a controversial topic. Although the relationship between Ca2+ gradient and actin dynamics in plant tip-growth has been a focus of study, there is still little direct evidence on the exact relationship in root hair tip-growth. METHODS: G-actin was labelled by fluorescein isothiocyanate-DNase I. F-actin was labelled by tetramethylrhodamine isothiocyanate-phalloidin. Actin in root hairs of Triticum aestivum (wheat) was investigated using confocal laser-scanning microscopy. KEY RESULTS: Thick F-actin bundles did not extend into a region of approx. 5-10 microm from the tip of the growing root hairs, although they gave off branches of fine actin filaments in the hair tips. A tip-focused G-actin gradient was shown at the extreme apex of growing root hairs. In full-grown wheat root hairs, the tip-focused G-actin gradient disappeared while the thick F-actin bundles extended into the tips. BAPTA-AM, a Ca2+ disruption agent, also caused the tip-focused G-actin gradient to disappear and the diffuse F-actin bundles to appear in the tips of wheat root hairs. CONCLUSIONS: These results suggest that the tip-focused gradient of intracellular G-actin concentration at the extreme apex may be essential for root hair growth, and that preserving the tip-focused gradient needs a high Ca2+ concentration in the root hair tips.  相似文献   

20.
A symbiotically defective mutant strain of Rhizobium trifolii, UR251, was obtained by transposon Tn5 mutagenesis of R. trifolii 0403 rif and recognized by its partially ineffective (Fix +/-) phenotype on white clover plants. UR251 had a single Tn5 insertion in plasmid DNA, a wild-type plasmid pattern, and no detectable Mu DNA sequences originally present in the vector used for Tn5 mutagenesis. Agglutination by the clover lectin trifoliin A and attachment to clover root hairs was higher with UR251 than with the wild-type strain. The capsular polysaccharide (CPS) of UR251 was altered, as shown by a slower rate of CPS depolymerization with a CPS beta-lyase, PD-I; more pyruvate and less acetate and 3-hydroxybutanoate noncarbohydrate substitutions as quantitated by 1H nuclear magnetic resonance; and a higher pyruvyl transferase activity (enzymatic pyruvylation of lipid-bound saccharides). The site of increased pyruvylation in the CPS of UR251 was on the terminal galactose of the branch of the repeating oligosaccharide unit. These results show that the level of noncarbohydrate substitutions of the CPS as well as pyruvyl transferase activity are altered in R. trifolii UR251 and that trifoliin A-binding ability and clover root hair attachment are improved in this mutant strain of R. trifolii 0403 rif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号