首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The karyotypes of somatic cells of three species in Ferula L. (Umbelliferae) from China are reported for the first time in this paper. F. licentiana Hand. -Mazz., endemic to China, has the karyotype formula of 2n= 22= 14m+ 2sm+ 6st( 2SAT), which consists of nine pairs of L chromosomes (the relative length > 8.0) and two pairs of M chromosomes (the relative length, 8.0- 6.0). The index of the karyotypic asymmetry (AS. K%) is 36.36%, and the karyotype belongs to 2A (Stebbins 1971). F. licentiana var. tunshanica (Su) Shan et Q. X. Liu has the karyotypic formula of 2n=22= 14m+ 8st(2SAT), and the other characters of karyotype are very similar to those of F. licentiana. The karyotypic formula of F. bungeana Kitag. is 2n=22= 12m+ 6sm+ 2st. There are 8 pairs of L chromosomes and 3 pairs of M chromosomes in this karyotype. The AS.K% is 45.45% and thus the karyotype is rather symmetrical (2A). Based on above data, F.licentiana var. tunshanica may be treated as a variety of F.licentiana and F.bungeana be separated from Subgen. Peucedanoides. According to our study and available data, we consider that the basic chromosome number of Ferula is x= 11. The karyotypic evolution of 11 species in the genus from China is analysed. All species are grouped into 5 groups based on the cluster analysis of chromosome data: I.F. akitschensis B. Fedtsch. ex K.-Pol.; II. F. lapidosa Korov., III. F. bungeana. The above-mentioned three species belong to Subgen. Peucedanoides in classification. IV. This group is divided into two subgroups: (1) F. syreitschikowii K.-Pol. and F. ovina (Boiss.) Boiss.; (2) F. lehmannii Boiss., F. licentiana, F. licentiana var. tunshanica, F. Kirialovii Pimen. and F. sumbul (Kauffm.)Hook. f., in which F.lehmannii belongs to Subgen. Merwia, F. syteritschikowii to Subgen. Narthex and the rest five species to Subgen.Peucedanoides. V. F.caspica M. Bieb. of Subgen. Doromatoides.  相似文献   

2.
A survey of flavonoids in sixteen of the seventeen taxa in the genusPerideridia (Umbelliferae) showed the presence of thirteen glycosides of the flavonols kaempferol, quercetin, and isorhamnetin, and seven glycosides of the flavones apigenin, luteolin and chrysoeriol. An anthocyanin and four other flavonoids also occur, but remain unidentified dueto their low concentration. Several species characteristically produce speciesspecific compounds. The majority of species, however, produce flavonoids common to one or more taxa, but each taxon can be distinguished by its own specific complement of these flavonoids. Based on classes of flavonoids the genus can be divided into three groups: (1) those species which produce only flavonols; (2) those which produce mainly flavonols and a few flavones; and (3) those which produce predominantly flavones with flavonols absent or present only in trace amounts. Geographically, the flavonol-producing species are centered in California, extending northeastward to Idaho and eastward into Arizona. The flavonol/flavone producers are concentrated more towards the Pacific Northwest and eastward through the Rocky Mountains to the midwestern United States.  相似文献   

3.
The flavonoids of an additional eight species of Clibadium have been determined. The compounds are derivatives of kaempferol, quercetin and quercetagetin. O-Methylated quercetagetin derivatives were found in several taxa with the possibility that 6-methoxykaempferol may also exist in one collection. Kaempferol and quercetin exist as 3-O-glucosides, galactosides, rhamnosides, rutinosides and diglucosides although not all glycosides occur in each taxon. Quercetagetin derivatives occur as 7-O-glucosides. Observations on these newly investigated species confirm previous work in the genus that three types of flavonoid profiles exist: (1) kaempferol and quercetin 3-glycosides; (2) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside; and (3) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside and O-methylated derivatives of quercetagetin.  相似文献   

4.
A survey of leaf flavonoids and isoflavonoids in several taxa of the genus Glycne subgenus Glycine was undertaken to see if this would help interpret inter- and intraspecific relationships in the genus. C-Glycosylflavones based on apigenin were found in Glycine tomentelia, G. tabacina and G. falcata. Glycosides of quercetin and kaempferol were also detected in G. tabacina. In the cultivated soybean, G. max, and its wild annual relative, G. soja, only quercetin and kaempferol glycosides have been reported. Interspecific hybrids of Glycine species sometimes show additive flavonoid patterns in F1 hybrid leaf tissue. All perennial wild species analysed including Glycine canescens and G. latifolia have the isoflavonoids genistin (genesitein 7-O-glucoside), daidzein and coumestrol in the leaves.  相似文献   

5.
The genus Ferula L., with 180–185 species, is one of the largest genera of the Umbelliferae (Apiaceae). It is distributed in the ancient Mediterranean florogenetic area extending from Macaronesia, northeast Africa and the Iberian Peninsula to middle Asia, China and western Himalaya. One hundred and seventy‐five species occur in Asia; the biodiversity centers being in central Asia, Iran and Afghanistan. The presently adopted classification of Ferula by E. P. Korovin is based on leaf, synflorescence, flower and fruit morphology, as well as some ecological considerations. Among fruit anatomical characters only the number of vittae (secretory ducts) was used to divide Ferula into six subgenera, one of which is Merwia. Fruit anatomy and morphology will be useful for a taxonomic revision of Ferula. In the present study, free‐hand and microtome sections of mericarps were studied with light microscopy, and fruit surfaces with SEM. Twenty‐two species, attributed to the subgenus Merwia as well as Ferula ghorana, were studied for the first time. The species differ from one another in the presence/absence of an indumentum, hair morphology and surface structure, position and number of vittae and vascular bundles, degree of development of marginal ribs, the presence or absence in the mesocarp of an outer collenchymatous layer and an inner mechanical layer. The studied species were divided into six carpological groups. The results suggest that the subgenus is not a natural monophyletic taxon. It is suggested that the name Merwia should be reserved for a small section which includes Ferula litwinowiana and the closest desert species, while other species of Merwia may be classified in several oligotypic sections. Ferula decurrens and F. mogoltavica have erroneously been regarded as having an affinity with F. litwinowiana.  相似文献   

6.
Flavonoids of 11 samples of Cercis, comprising seven species, were isolated and identified. Only 3-O-monoglycosides of kaempferol, quercetin and myricetin were obtained. Bauhinia (the largest genus in tribe Cercideae) is akin to Cercis because flavones are rarely found in the former. On the other hand, species of Bauhinia often present glycosides of isorhamnetin and a wider diversity of glycosides, and only rarely present myricetin. The frequent occurrence of this flavonol and the simpler flavonoid profile of Cercis may reflect a greater antiquity of Cercis as compared with Bauhinia. With the exception of C. canadensis var. mexicana, Cercis taxa from xerophytic habitats did not yield kaempferol glycosides in detectable amounts, as opposed to taxa from mesophytic habitats. The results obtained are consistent with proposals of merging C. reniformis into synonymy of C. occidentalis, as well as the recognition of two North American species, C. canadensis and C. occidentalis, and the recognition of the Asian C. gigantea.  相似文献   

7.
Three quercetin glycosides, quercetin 5-O-beta-D-glucoside, quercetin 7-O-beta-D-glucoside, and quercetin 4'-O-beta-D-glucoside, and two kaempferol glycosides, kaempferol 5-O-beta-D-glucoside and kaempferol 7-O-beta-D-glucoside, along with their aglycones, quercetin and kaempferol, were isolated from an ethanolic extract of Sasamayu cocoon shells. The chemical structures were characterized by chemical and spectroscopic methods including UV spectrometry and HPLC-ESI-MS. The five flavonol glycosides of the shell are different structurally from those of the leaves of mulberry (Morus alba). It was suggested that potent antioxidative activity in the cocoon is mainly due to flavonoid compounds since free radical scavenging activity was found in the cocoon flavonoids identified here.  相似文献   

8.
HPLC and chemical analyses of the flavonoids in culms of 11 Chondropetalum species divide the genus into two groups: seven, with glycosides of myricetin larycitin and syringetin; and four, with glycosides of kaempferol, quercetin, gossypetin, gossypetin 7-methyl ether and herbacetin 4′-methyl ether. This chemical dichotomy is correlated with anatomical differences and confirms the view that the genus requires taxonomic revision. HPLC measurements on those species with myricetin derivatives show that taxa with a qualitatively similar pattern of glycosides can be readily separated on quantitative grounds. Syringetin 3-arabinoside and a glycoside of herbacetin 4′-methyl ether are reported for the first time from the genus.  相似文献   

9.
As a result of the surveying of 13 taxa of the genus Diplotaxis, it was found that their leaf flavonoids are flavonol glycosides derived from either kaempferol, quercetin and isorhamnetin. Multivariate analysis of these flavonoid data of taxa suggest a close chemotaxonomic affinity. On the basis of their chemical composition the taxa relationships are discussed. The allopolyploid origin of D. muralis with D. tenuifolia and D. viminea as parentals is strongly supported by chemical evidence.  相似文献   

10.
中国伞形科前胡族阿魏亚族血清分类及亲缘关系的研究   总被引:5,自引:0,他引:5  
运用双向免疫扩散方法分析了中国伞形科Umbelliferae阿魏亚族Ferulinae 8属33种2变种的种子贮藏蛋白免疫沉淀反应的特征,并根据沉淀线的相似性,结合其他学科资料,讨论了该亚族属间的亲缘关系。认为球根阿魏属Schumannia、簇花芹属Sorartthus和伊犁芹属Talassia 3属的关系最为密切,并且均与阿魏属Fenda近缘,其中球根阿魏属应并入簇花芹属中。弓翅芹属Arcuatopterus在所分析的8个属中,与阿魏属有一定的近缘关系。胀果芹属Phlojodicarpus与前胡属Peucedanum关系较近。而川明参属Chuanminshen却与上述各属的关系均较远。此外,对阿魏属和前胡属2个大属的种间关系也进行了血清分类分析,其中所研究的9种阿魏被分成2类,16种前胡被分成3类,并结合其他学科证据分别讨论了种间的亲缘关系。  相似文献   

11.
Three quercetin glycosides, quercetin 5-O-β-D-glucoside, quercetin 7-O-β-D-glucoside, and quercetin 4′-O-β-D-glucoside, and two kaempferol glycosides, kaempferol 5-O-β-D-glucoside and kaempferol 7-O-β-D-glucoside, along with their aglycones, quercetin and kaempferol, were isolated from an ethanolic extract of Sasamayu cocoon shells. The chemical structures were characterized by chemical and spectroscopic methods including UV spectrometry and HPLC-ESI-MS. The five flavonol glycosides of the shell are different structurally from those of the leaves of mulberry (Morus alba). It was suggested that potent antioxidative activity in the cocoon is mainly due to flavonoid compounds since free radical scavenging activity was found in the cocoon flavonoids identified here.  相似文献   

12.
Flavonol glycosides were extracted from petals of Rosa damascena Mill. after industrial distillation for essential oil recovery and characterized by high-performance liquid chromatography-electrospray ionization mass spectrometry. Among the 22 major compounds analyzed, only kaempferol and quercetin glycosides were detected. To the best of our knowledge, the presence of quercetin 3-O-galactoside and quercetin 3-O-xyloside has so far not been reported within the genus Rosa. In addition, based on their fragmentation patterns, several acylated quercetin and kaempferol glycosides, some of them being disaccharides, were identified for the first time. The kaempferol glycosides, along with the kaempferol aglycone, accounted for 80% of the total compounds that were quantified, with kaempferol 3-O-glucoside being the predominant component. The high flavonol content of approximately 16 g/kg on a dry weight basis revealed that distilled rose petals represent a promising source of phenolic compounds which might be used as functional food ingredients, as natural antioxidants or as color enhancers.  相似文献   

13.
A total of 21 flavonoid compounds has been detected in 14 species of Crambe. In general, both the sections of the genus and the species can be distinguished easily by their flavonoid patterns. The members of Crambe sections Crambe and Dendrocrambe seem to be the most primitive with their perennial or rhizocarpous habit. They show a diversity of flavonol glycosides, derived from either kaempferol or quercetin. The presumed presence of proanthocyanidins confers an additional primitive character to Crambe section Dendrocrambe. In contrast, members of Crambe section Leptocrambe show a relatively poor pattern where the quercetin glycosides have disappeared. In the case of C. hispanica and C. abyssinica flavonols are completely absent while two flavones, luteolin and apigenin appear in glycosidic form; these are probably the most evolved Crambe species and exhibit an annual habit. A dendrogram exclusively based on data of the presence or absence of flavonoids has been constructed. It is similar to the one that could have been expected from use of morphological data alone, but it does provide some hints on the possible phylogenetic relationships between the species. Flavonoid evidence also supports the hypothesis on an east-west Mediterranean disjunction within the genus.  相似文献   

14.
Foliar flavonoids of 31 species of the Annonaceae native to Brazil, amounting to 76 compounds, were isolated and identified. All phenols found were glycosides of either flavones (apigenin, scutellarein, hispidulin and luteolin) or flavonols (kaempferol, rhamnocitrin, 6-hydroxyrhamnocitrin, quercetin, isorhamnetin and rhamnetin), with the latter predominating. Some members of the tribe Bocageeae are distinctive for accumulating 6-oxygenated flavones and flavonols, in addition to 7-O-methylated flavonols, a feature possibly linked to the assumed advanced condition of the tribe within the family. Members of Duguetia stand out for the apparent absence of quercetin glycosides. Anaxagorea dolichocharpa seemingly lacks flavones and flavonols entirely. A UPGMA analysis based on the distribution of flavonoids does not group the analyzed species according to the available tribal division of the Annonaceae. However, several taxonomically meaningful groupings emerged through the multivariate analysis.  相似文献   

15.
Tea is a major source of flavonols, a subclass of antioxidant flavonoids present in plant foods which potentially are beneficial to human health. Milk added to tea, a frequent habit in the United Kingdom, could inhibit absorption of tea flavonoids, because proteins can bind flavonoids effectively. Eighteen healthy volunteers each consumed two out of four supplements during three days: black tea, black tea with milk, green tea and water. A cup of the supplement was consumed every 2 hours each day for a total of 8 cups a day. The supplements provided about 100 μmol quercetin glycosides and about 60 – 70 μmol kaempferol glycosides. Addition of milk to black tea (15 ml milk to 135 ml tea) did not change the area under the curve of the plasma concentration-time curve of quercetin or kaempferol. Plasma concentrations reached were about 50 nM quercetin and 30 – 45 nM kaempferol. We conclude that flavonols are absorbed from tea and that their bioavailability is not affected by addition of milk.  相似文献   

16.
Tea is a major source of flavonols, a subclass of antioxidant flavonoids present in plant foods which potentially are beneficial to human health. Milk added to tea, a frequent habit in the United Kingdom, could inhibit absorption of tea flavonoids, because proteins can bind flavonoids effectively. Eighteen healthy volunteers each consumed two out of four supplements during three days: black tea, black tea with milk, green tea and water. A cup of the supplement was consumed every 2 hours each day for a total of 8 cups a day. The supplements provided about 100 μmol quercetin glycosides and about 60 - 70 μmol kaempferol glycosides. Addition of milk to black tea (15 ml milk to 135 ml tea) did not change the area under the curve of the plasma concentration-time curve of quercetin or kaempferol. Plasma concentrations reached were about 50 nM quercetin and 30 - 45 nM kaempferol. We conclude that flavonols are absorbed from tea and that their bioavailability is not affected by addition of milk.  相似文献   

17.
The flavonoid profiles of Astilbe (four taxa studied) and Rodgersia (two taxa studied) are based on simple flavonol glycosides. Astilbe has 3-O-mono-, 3-O-di-, and 3-O-triglycosides of kaempferol, quercetin, and myricetin, while Rodgersia has only mono- and diglycosides of kaempferol and quercetin. Astilbe×arendsii was also shown to accumulate dihydrochalcone glycosides. The flavonoid profile of Rodgersia is the simplest recorded so far in the herbaceous Saxifragaceae. The flavonoids of two species of Aruncus were shown to be based upon kaempferol and quercetin 3-O-mono- and 3-O-diglycosides. One of the species also exhibited an eriodictyol glycoside. The triglycoside differences were not considered important, but the differences in myricetin occurrences were taken as evidence against derivation of Saxifragaceae from an Aruncus-like ancestor. Should such an event be proposed, however, serious consideration would have to be given to the current pattern of myricetin occurrence in the two families.  相似文献   

18.
From the needles of Taxus baccata the following flavonoids were isolated: 3-O-rutinosides quercetin, myricetin and kaempferol, 7-O-glucosides kaempferol and quercetin, kaempferol, quercetin, myricetin. The composition of flavonols and biflavones in some of the species of the genus Taxus, namely T. celebica, T. cuspidata, T. media and cultivar varieties T. baccata 'Aurea', T. baccata 'Aurea decora', T. baccata 'Elegantissima', T. baccata 'Fastigiata', T. baccata 'Pyramidalis', T. media 'Hatfieldii' were compared by HPLC separation.  相似文献   

19.
The flavonoids of artificial interspecific hybrids in Lasthenia indicate differences in inheritance patterns among various classes of these compounds. Inheritance of production of anthochlors, kaempferol, and some patuletin glycosides is additive. Inheritance of production of luteolin and quercetin glycosides is not always additive, and in some progenies quercetin glycosides are produced that do not occur in the parents.  相似文献   

20.
The flavonoids of three species of Desmanthodium are based upon kaempferol, quercetin and quercetagetin. Sugar substitutions comprise glucosides, galactosides, rhamnosides, rutinosides and diglucosides. Four different O-methylated compounds occur in field populations of the genus, but they are found in all species and are therefore not useful for sectional or subgeneric delimitations. The flavonoid profile of Desmanthodium is very similar to that of Clibadium, which parallels their close morphological affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号