共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuroectodermal tissue close to the midbrain-hindbrain boundary (MHB) is an important secondary organizer in the developing neural tube. This so-called isthmic organizer (IsO) secretes signaling molecules, such as fibroblast growth factors (FGFs), which regulate cellular survival, patterning and proliferation in the midbrain and rhombomere 1 (R1) of the hindbrain. We have previously shown that FGF-receptor 1 (FGFR1) is required for the normal development of this brain region in the mouse embryo. Here, we have compared the gene expression profiles of midbrain-R1 tissues from wild-type embryos and conditional Fgfr1 mutants, in which FGFR1 is inactivated in the midbrain and R1. Loss of Fgfr1 results in the downregulation of several genes expressed close to the midbrain-hindbrain boundary and in the disappearance of gene expression gradients in the midbrain and anterior hindbrain. Our screen identified several previously uncharacterized genes which may participate in the development of midbrain-R1 region. Our results also show altered neurogenesis in the midbrain and R1 of the Fgfr1 mutants. Interestingly, the neuronal progenitors in midbrain and R1 show different responses to the loss of signaling through FGFR1. 相似文献
2.
Convergent Wnt and FGF signaling at the gastrula stage induce the formation of the isthmic organizer
The development of the vertebrate brain depends on the formation of local organizing centres within the neural tube that express secreted signals that refine local neural progenitor identity. The isthmic organizer (IsO) forms at the isthmic constriction and is required for the growth and ordered development of mesencephalic and metencephalic structures. The formation of the IsO, which is characterized by the generation of a complex pattern of cells at the midbrain-hindbrain boundary, has been described in detail. However, when neural plate cells are initially instructed to form the IsO, the molecular nature of the inductive signals remain poorly defined. We now provide evidence that convergent Wnt and FGF signaling at the gastrula stage are required to generate the complex polarized pattern of cells characteristic of the IsO, and that Wnt and FGF signals in combination are sufficient to reconstruct, in na?ve forebrain cells, an IsO-like structure that exhibits an organizing activity that mimics the endogenous IsO when transplanted into the diencephalon of chick embryos. 相似文献
3.
Yuasa H Takakura N Shimomura T Suenobu S Yamada T Nagayama H Oike Y Suda T 《Biochemical and biophysical research communications》2002,298(5):731-737
To investigate the behavior of hematopoietic stem cells (HSCs) in cord blood (CB), we analyzed the expression and function of TIE2, a tyrosine kinase receptor. A subpopulation of Lineage (Lin)(-/low)CD34(+) cells in CB expressed TIE2 (18.8%). Assays for long-term culture-initiating cells (LTC-IC) and cobble-stone formation revealed that Lin(-/low)CD34(+)TIE2(+) cells showed to have a capacity of primitive hematopoietic precursor cells in vitro. When Lin(-/low)CD34(+)TIE2(+) cells were cultured on the stromal cells, they transmigrated under the stromal layers and kept an immature character for a few weeks. By contrast, Lin(-/low)CD34(+)TIE2(-) cells differentiated immediately within a few weeks. Finally, we confirmed that 1x10(4)Lin(-/low)CD34(+)TIE2(+) cells were engrafted in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, while 1x10(4)Lin(-/low)CD34(+)TIE2(-) cells were not. Taken together, we conclude that TIE2 is a marker of HSCs in CB. A ligand for TIE2, Ang-1 promoted the adhesion of sorted primary Lin(-/low)CD34(+)TIE2(+) cells to fibronectin (FN), and this adhesion may play a critical role in keeping HSCs in an immature status under the stromal cells. 相似文献
4.
In the vertebrate embryo, spinal cord elongation requires FGF signaling that promotes the continuous development of the posterior nervous system by maintaining a stem zone of proliferating neural progenitors. Those escaping the caudal neural stem zone, which is expressed to Shh signal, initiate ventral patterning in the neural groove before starting neuronal differentiation in the neural tube. Here we investigated the integration of D-type cyclins, known to govern cell cycle progression under the control of extracellular signals, in the program of spinal cord maturation. In chicken embryo, we find that cyclin D2 is preferentially expressed in the posterior neural plate, whereas cyclin D1 appears in the neural groove. We demonstrated by loss- and gain-of-function experiments that FGF signaling maintains cyclin D2 in the immature caudal neural epithelium, while Shh activates cyclin D1 in the neural groove. Moreover, forced maintenance of cyclin D1 or D2 in the neural tube favors proliferation at the expense of neuronal differentiation. These results contribute to our understanding of how the cell cycle control can be linked to the patterning programs to influence the balance between proliferation and neuronal differentiation in discrete progenitors domains. 相似文献
5.
Nitric oxide is a diffusible messenger that plays a multitude of roles within the nervous system including modulation of cell viability. However, its role in regulating neuronal survival during a defined period of neurodevelopment has never been investigated. We discovered that expression of the messenger RNA for both neuronal and endothelial nitric oxide synthase increased in the early postnatal period in the cerebellum in vivo, whilst the expression of inducible nitric oxide synthase remained constant throughout this time in development. Whilst scavenging of nitric oxide was deleterious to the survival of early postnatal cerebellar granule neurons in vitro, this effect was lost in cultures derived at increasing postnatal ages. Conversely, sensitivity to exogenous nitric oxide increased with advancing postnatal age. Thus, we have shown that as postnatal development proceeds, cerebellar granule cells alter their in vitro survival responses to both nitric oxide inhibition and donation, revealing that the nitric oxide's effects on developing neurons vary with the stage of development studied. These findings have important consequences for our understanding of the role of nitric oxide during neuronal development. 相似文献
6.
The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/β-catenin pathway, which is vital for induction and patterning of the early vertebrate brain. However, its role in later brain development is less clear. Here, we examined the mechanisms underlying effects of an Apc1 zygotic-effect mutation on late brain development in zebrafish. Apc1 is required for maintenance of established brain subdivisions and control of local organizers such as the isthmic organizer (IsO). Caudal expansion of Fgf8 from IsO into the cerebellum is accompanied by hyperproliferation and abnormal cerebellar morphogenesis. Loss of apc1 results in reduced proliferation and apoptosis in the dorsal midbrain. Mosaic analysis shows that Apc is required cell-autonomously for maintenance of dorsal midbrain cell fate. The tectal phenotype occurs independently of Fgf8-mediated IsO function and is predominantly caused by stabilization of β-catenin and subsequent hyperactivation of Wnt/β-catenin signalling, which is mainly mediated through LEF1 activity. Chemical activation of the Wnt/β-catenin in wild-type embryos during late brain maintenance stages phenocopies the IsO and tectal phenotypes of the apc mutants. These data demonstrate that Apc1-mediated restriction of Wnt/β-catenin signalling is required for maintenance of local organizers and tectal integrity. 相似文献
7.
Busk PK Hinrichsen R Bartkova J Hansen AH Christoffersen TE Bartek J Haunsø S 《Experimental cell research》2005,304(1):149-161
The myocytes of the adult mammalian heart are considered unable to divide. Instead, mitogens induce cardiomyocyte hypertrophy. We have investigated the effect of adenoviral overexpression of cyclin D2 on myocyte proliferation and morphology. Cardiomyocytes in culture were identified by established markers. Cyclin D2 induced DNA synthesis and proliferation of cardiomyocytes and impaired hypertrophy induced by angiotensin II and serum. At the molecular level, cyclin D2 activated CDK4/6 and lead to pRB phosphorylation and downregulation of the cell cycle inhibitors p21Waf1/Cip1 and p27Kip1. Expression of the CDK4/6 inhibitor p16 inhibited proliferation and cyclin D2 overexpressing myocytes became hypertrophic under such conditions. Inhibition of hypertrophy by cyclin D2 correlated with downregulation of p27Kip1. These data show that hypertrophy and proliferation are highly related processes and suggest that cardiomyocyte hypertrophy is due to low amounts of cell cycle activators unable to overcome the block imposed by cell cycle inhibitors. Cell cycle entry upon hypertrophy may be converted to cell division by increased expression of activators such as cyclin D2. 相似文献
8.
Zhang P 《Current opinion in cell biology》1999,11(6):655-662
The existence of families of cell cycle regulators reflects the need by a developing organism to precisely control proliferation of its cells and also suggests that family members may play redundant roles. Recent advances have shown redundancy to be a theme in development. 相似文献
9.
Syndecans (heparan sulfate proteoglycans) participate in cell-cell and cell-matrix adhesion and are co- and low-affinity receptors for growth factors and enzymes, respectively. We examined the influence of stable syndecan-2 expression in Swiss 3T3 cells on cell-adhesion and proliferation. Higher syndecan-2 expression changed cell morphology and increased spreading and adhesion in these cells and proliferation induced by FCS and FGF-2. This emphasizes the role of syndecan-2 in the integration of signals from soluble and insoluble factors. 相似文献
10.
Jean‐Léon Maître 《Biology of the cell / under the auspices of the European Cell Biology Organization》2017,109(9):323-338
During pre‐implantation development, the mammalian zygote transforms into the blastocyst, the structure that will implant the embryo in the maternal uterus. Consisting of a squamous epithelium enveloping a fluid‐filled cavity and the inner cell mass, the blastocyst is sculpted by a succession of morphogenetic events. These deformations result from the changes in the forces and mechanical properties of the tissue composing the embryo. Here, I review the recent studies, which, for the first time, informed us on the mechanics of blastocyst morphogenesis. 相似文献
11.
We have previously shown that the mitogenic effect of endothelin-1 (ET-1) in primary astrocytes is dependent on activation of both extracellular signal-regulated kinase (ERK)- and cytoskeleton (CSK)-dependent pathways. In this study, we evaluated the contribution of each of these pathways to the expression and activation of proteins mediating cell cycle progression. Our results suggest that ET-1-induced expression of cyclins D1 and D3 is dependent on the ERK- and CSK-dependent pathways, respectively; moreover, a decrease in the levels of the cyclin-dependent kinase inhibitor (CKI) p27 was observed as a consequence of ERK activation. Expression of both cyclins D1 and D3 together with a decrease in the p27 levels are essential for retinoblastoma protein (pRB) phosphorylation and cyclin A expression. Furthermore, the molecular events responsible for cell-cell contact inhibition of astrocyte proliferation were found to be independent of the mitogenic pathways leading to D-type cyclin expression. Cell growth arrest in confluent astrocytes was found to be correlated with increased expression of CKI p21, resulting in inhibition of D-type cyclin-associated pRB phosphorylation and cyclin A expression. Taken together, these results indicate that cyclins D1 and D3, which constitute the key mediators of the proliferative response of primary astrocytes to ET-1, are regulated by distinct signaling pathways. 相似文献
12.
Summary Reaggregate cultures were obtained from single-cell suspensions of fetal and early postnatal cerebellum, and fetal telencephalon and mesencephalon from C57BL/6J and NMRI mice and maintained in suspension under constant rotation as described previously (Seeds 1971). The percentage of dead cells in the aggregates as measured by the uptake of the fluorescent dye propidium iodide was always less than 5% of all cells. During the initial phase of reaggregation up to 20 h in vitro (hiv) several immunocytochemically defined cell types had a random distribution within the aggregate. Astrocytes were identified by indirect immunofluorescence by the use of the markers glial fibrillary acidic protein (GFAP), C1 and M1 antigens; neurons by NS-4 antigen and tetanus-toxin receptors; fibroblasts or fibroblast-like cells by fibronectin and laminin; and oligodendrocytes by myelin basic protein (MBP). Choleratoxin receptors and M 2 antigen served to distinguish the more mature from the less mature neurons. In reaggregates of early postnatal cerebellar cells neurons had started to redistribute after 40 hiv, forming an outer region containing more immature neurons and a core with more mature neurons. After 5 days in vitro (div) immature neurons were no longer detectable. From 3–8 div M1-and GFAP-positive astrocytic processes in the outer region showed a tendency for radial orientation. At later stages the processes appeared more randomly distributed and formed a dense glial network. Few oligodendrocytes and fibronectin-positive cells were present in the reaggregates. When reaggregates were prepared from 15 day-old embryonic cerebella, formation of radially oriented astrocytic processes and redistribution of neurons proceeded more slowly, but in a similar pattern as described for early postnatal cerebellum. GFAP was detectable at earlier ages than in situ. In reaggregates of 15 to 17 day old embryonic telencephalic anlage or midbrain, radially oriented astrocytic processes were not detectable. Similar to cerebellar reaggregates, accumulation of neurons in the inner region was observed. 相似文献
13.
Beyer C Ivanova T Karolczak M Küppers E 《The Journal of steroid biochemistry and molecular biology》2002,81(4-5):319-325
Estrogens have widespread biological functions in the CNS involving the coordination of developmental processes, the regulation of cell physiology, and the control of neuroendocrine systems. In the midbrain, estrogens promote the survival, maturation, and function of neurons and, in particular, of dopamine cells. Aside from classical signaling through nuclear estrogen receptors, we have provided evidence that cellular transmission of estrogen effects in the midbrain comprises a complex intracellular signaling scenario. The major conclusion drawn from our studies is that estrogens interact with yet unidentified membrane receptor complexes which stimulate the phospholipase C and induce the formation of inosite-tri-phosphate (IP3). This causes a rapid and transitory rise in intracellular free calcium. The modulation of calcium homeostasis is the primary nonclassical physiological response to estrogens in all cell types. Surprisingly, a different secondary downstream signaling cascade seems to be activated in each estrogen-responsive cell population, i.e. phosphatidylinositol-3 kinase (PI3-kinase) in GABAergic and cAMP/ protein kinase A (PKA) in dopaminergic neurons, mitogen-activated protein kinase (MAP-kinase) in astrocytes. The precise biological role of estrogens for the different cell types is still fragmentary. We assume that estrogens positively influence intracellular signaling mechanisms which are important for cell differentiation and survival. It remains to be elucidated what determines the cell type-specificity of these estrogen responses. 相似文献
14.
Molecular mechanisms of axon guidance 总被引:9,自引:0,他引:9
Chilton JK 《Developmental biology》2006,292(1):13-24
In order to form a functional nervous system, neurones extend axons, often over long distances, to reach their targets. This process is controlled by extracellular receptors and their ligands, several families of which have been identified. These proteins may act to either repel or attract growth cones and a given receptor may transduce either type of signal, depending on the cellular context. In addition to these archetypal axon guidance molecules, it is becoming apparent that molecules previously known for their role in patterning can also direct axonal outgrowth. The growth cone receptors do not act in isolation and combine with members of the same or other families to produce a graded response or even a complete reversal in its polarity. These signals can be further combined and/or modulated by processing of the molecule both directly at the cell surface and by the network of intracellular signalling pathways which are activated. The result is a sophisticated and dynamic set of cues that enable a growth cone to successfully navigate to its destination, modulating its response to changing environmental cues along its pathway. 相似文献
15.
The physical separation of the embryonic regions that give rise to the tissues and organs of multicellular organisms is a fundamental aspect of morphogenesis. Pioneer experiments by Holtfreter had shown that embryonic cells can sort based on “tissue affinities,” which have long been considered to rely on differences in cell-cell adhesion. However, vertebrate embryonic tissues also express a variety of cell surface cues, in particular ephrins and Eph receptors, and there is now firm evidence that these molecules are systematically used to induce local repulsion at contacts between different cell types, efficiently preventing mixing of adjacent cell populations. 相似文献
16.
Angiogenesis is a fundamental step in several important physiological events and pathological conditions including embryonic development, wound repair, tumor growth and metastasis. PRKX was identified as a novel type-I cAMP-dependent protein kinase gene expressed in multiple developing tissues. PRKX has also been shown to be phylogenetically and functionally distinct from PKA. This study presents the first evidence that PRKX stimulates endothelial cell proliferation, migration, and vascular-like structure formation, which are the three essential processes for angiogenesis. In contrast, classic PKA demonstrated an inhibitory effect on endothelia vascular-like structure formation. Our findings suggest that PRKX is an important protein kinase engaged in the regulation of angiogenesis and could play critical roles in various physiological and pathological conditions involving angiogenesis. PRKX binds to Pin-1, Magi-1 and Bag-3, which regulate cell proliferation, apoptosis, differentiation and tumorigenesis. The interaction of PRKX with Pin-1, Magi-1 and Bag-3 could contribute to the stimulating role of PRKX in angiogenesis. 相似文献
17.
A network of molecular interactions is required in the developing vertebrate hindbrain for the formation and anterior-posterior patterning of the rhombomeres. FGF signaling is required in this network to upregulate the expression of the Krox20 and Kreisler segmentation genes, but little is known of how FGF gene expression is regulated in the hindbrain. We show that the dynamic expression of FGF3 in chick hindbrain segments and boundaries is similar to that of the BMP antagonist, follistatin. Consistent with a regulatory relationship between BMP signaling and FGF3 expression, we find that an increase in BMP activity due to blocking of follistatin translation by morpholino antisense oligonucleotides or overexpression of BMP results in strong inhibition of FGF3 expression. Conversely, addition of follistatin leads to an increase in the level of FGF3 expression. Furthermore, the segmental inhibition of BMP activity by follistatin is required for the expression of Krox20, Hoxb1 and EphA4 in the hindbrain. In addition, we show that the maintenance of FGF3 gene expression requires FGF activity, suggestive of an autoregulatory loop. These results reveal an antagonistic relationship between BMP activity and FGF3 expression that is required for correct segmental gene expression in the chick hindbrain, in which follistatin enables FGF3 expression by inhibiting BMP activity. 相似文献
18.
JP Herv s J. Martí -Clú a A. Mu oz-Garcí a MC Santa-Cruz 《Biotechnic & histochemistry》2002,77(1):27-35
We have optimised an indirect immunoperoxidase technique demonstrating bromodeoxyuridine (BrdU) incorporation into dividing cells for cerebellar tissue sections of four-day-old rats injected with this marker. This permits confident identification of granule-cell precursors engaged in DNA synthesis in the external granular layer of the developing cerebellum. Preservation of BrdU immunoreactivity is attained using methanol/acetic acid fixation and different pretreatments before immunostaining, while unlabeled nuclei can be recognized clearly after Feulgen or hematoxylin counterstaining. We established conditions to ensure satisfactory BrdU uptake without affecting cell-cycle progression during the postlabeling time period. The dose of BrdU employed provides saturation S-phase labeling from at least 1 h after BrdU delivery. Various kinetic parameters and phase durations have been determined in experiments involving a single injection or cumulative labeling sequences, and the cycle time was calculated based on two models of generative behavior: steady-state and exponential growth. The working hypothesis of steadystate kinetics can be adopted successfully if the existence of neuroblasts with different proliferation rates is taken into account. 相似文献
19.
E-cadherin, the primary epithelial adherens junction protein, has been implicated as playing a critical role in nucleating formation of adherens junctions, tight junctions, and desmosomes. In addition to its role in maintaining structural tissue integrity, E-cadherin has also been suggested as an important modulator of cell signaling via interactions with its cytoplasmic binding partners, catenins, as well as with growth factor receptors. Therefore, we proposed that loss of E-cadherin from the developing mouse intestinal epithelium would disrupt intestinal epithelial morphogenesis and function. To test this hypothesis, we used a conditional knockout approach to eliminate E-cadherin specifically in the intestinal epithelium during embryonic development. We found that E-cadherin conditional knockout mice failed to survive, dying within the first 24 hours of birth. Examination of intestinal architecture at E18.5 demonstrated severe disruption to intestinal morphogenesis in animals lacking E-cadherin in the epithelium of the small intestine. We observed changes in epithelial cell shape as well as in the morphology of villi. Although junctional complexes were evident, junctions were abnormal, and barrier function was compromised in E-cadherin mutant intestine. We also identified changes in the epithelial cell populations present in E-cadherin conditional knockout animals. The number of proliferating cells was increased, whereas the number of enterocytes was decreased. Although Wnt/β-catenin target mRNAs were more abundant in mutants compared with controls, the amount of nuclear activated β-catenin protein was dramatically lower in mutants compared with controls. In summary, our data demonstrate that E-cadherin is essential for intestinal epithelial morphogenesis and homeostasis during embryonic development. 相似文献
20.
Changes in the Expression of a Neuronal Surface Protein During Development of Cerebellar Neurones In Vivo and in Culture 总被引:1,自引:8,他引:1
The expression of the neurone-specific D2 protein changes both quantitatively and qualitatively during development in vivo and in cultures of cerebellar nerve cells. The total D2 content per unit protein shows a two-fold increase in vivo from birth to postnatal day 6, after which it declines progressively to about 50% of the maximal value. This increase can be accounted for by an immature form of the protein anodic D2 being preferentially expressed at the early stages of cerebellar development. After postnatal day 9 this form gradually switches to a mature form cathodic D2. This switch can be mimicked by neuraminidase treatment, suggesting a developmental loss of sialic acid from the D2 protein. In freshly isolated cells the total D2 content per unit protein is only 30% of that in the corresponding intact tissue from 8-day-old cerebella, but it increases rapidly during the first 8 days of culture to levels similar to those of the equivalent age in vivo. The switch from anodic D2 to cathodic D2 also occurs at a faster rate in culture, probably reflecting the culture conditions that favour differentiation. The changes in the expression of D2 during development of cerebellar nerve cells in culture suggest that anodic D2 is preferentially expressed on nerve cells that are proliferating, migrating, or in the initial stages of differentiation, whereas cathodic D2 is associated with differentiated neurones. The transition between the two forms appears to occur during the formation of interneuronal contacts. 相似文献