首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During voluntary contractions, the skeletal muscle of healthy older adults often fatigues less than that of young adults, a result that has been explained by relatively greater reliance on muscle oxidative metabolism in the elderly. Our aim was to investigate whether this age-related fatigue resistance was eliminated when oxidative metabolism was minimized via ischemia induced by cuff (220 mmHg). We hypothesized that 1) older men (n = 12) would fatigue less than young men (n = 12) during free-flow (FF) contractions; 2) both groups would fatigue similarly during ischemia; and 3) reperfusion would reestablish the fatigue resistance of the old. Subjects performed 6 min of intermittent, maximal voluntary isometric contractions of the ankle dorsiflexors under FF and ischemia-reperfusion (IR) conditions. Ischemia was maintained for the first 3 min of contractions, followed by rapid cuff deflation and reperfusion for 3 additional minutes of contractions. Central activation, peripheral activation, and muscle contractile properties were measured at 3 and 6 min of contractions. Older men fatigued less than young men during FF (P 相似文献   

2.
Sex differences in fatigue resistance of the adductor pollicis (AP) muscle were studied in 24 older adults who were divided into three groups: 12 older men (69.8 +/- 4.60 years), 6 older women not on hormone replacement therapy (HRT) (70.2 +/- 4.02 years), and 6 older women on HRT (68.7 +/- 6.47 years). Fatigue in the AP muscle was induced using an intermittent (5 s contraction, 5 s rest) submaximal voluntary contraction (50% of maximal voluntary contraction (MVC)) protocol, which was continued until exhaustion (i.e., when subjects could either no longer maintain a 5-s contraction at 50% MVC or when the MVC was deemed to be lower than the target force). There was no effect of HRT on MVC or time to fatigue (TTF); therefore, the older women were pooled as one subject group. At baseline, men were stronger than women for MVC (75.9 +/- 18.8 N in men vs. 56.8 +/- 10.0 N in women; P < 0.05) and evoked twitch force (7.3 +/- 1.7 N in men vs. 5.2 +/- 0.8 N in women; P < 0.05). There was no difference in TTF between men and women (14.77 +/- 7.06 min in men vs. 11.53 +/- 4.91 min in women; P > 0.20), nor was there a significant relationship between baseline muscle force and TTF (r = 0.14). There was also no difference in the pattern of fatigue and recovery between the men and women. These results suggest that there is no difference in endurance or fatigue characteristics of the AP muscle in men and women over the age of 65 years, and that baseline muscle force does not predict fatigue resistance in this muscle.  相似文献   

3.
Recently, we reported that, at similar voluntary force development during static submaximal intermittent contractions of the adductor pollicis muscle, fatigue developed more slowly in women than in men under conditions of normobaric normoxia (NN) (Acta Physiol Scand 167: 233-239, 1999). We postulated that the slower fatigue of women was due, in part, to a greater capacity for muscle oxidative phosphorylation. The present study examined whether a gender difference in adductor pollicis muscle performance also exists during acute exposure to hypobaric hypoxia (HH; 4,300-m altitude). Healthy young men (n = 12) and women (n = 21) performed repeated static contractions at 50% of maximal voluntary contraction (MVC) force of rested muscle for 5 s followed by 5 s of rest until exhaustion. MVC force was measured before and at the end of each minute of exercise and at exhaustion. Exhaustion was defined as an MVC force decline to 50% of that of rested muscle. For each gender, MVC force of rested muscle in HH was not significantly different from that in NN. MVC force tended to decline at a faster rate in HH than in NN for men but not for women. In both environments, MVC force declined faster (P < 0.01) for men than for women. For men, endurance time to exhaustion was shorter (P < 0.01) in HH than in NN [6.08 +/- 0.7 vs. 8.00 +/- 0.7 (SE) min]. However, for women, endurance time to exhaustion was similar (not significant) in HH (12.86 +/- 1.2 min) and NN (13.95 +/- 1.0 min). In both environments, endurance time to exhaustion was longer for women than for men (P < 0.01). Gender differences in the impact of HH on adductor pollicis muscle endurance persisted in a smaller number of men and women matched (n = 4 pairs) for MVC force of rested muscle and thus on submaximal absolute force and, by inference, ATP demand in both environments. In contrast to gender differences in the impact of HH on small-muscle (adductor pollicis) exercise performance, peak O(2) uptake during large-muscle exercise was lower in HH than in NN by a similar (P > 0.05) percentage for men and women (-27.6 +/- 2 and -25.1 +/- 2%, respectively). Our findings are consistent with the postulate of a higher adductor pollicis muscle oxidative capacity in women than in men and imply that isolated performance of muscle with a higher oxidative capacity may be less impaired when the muscle is exposed to HH.  相似文献   

4.
The objective was to determine whether denervation reduces or enhances the physiological effects of the K(ATP) channel during fatigue in mouse extensor digitorum longus (EDL) and soleus muscle. For this, we measured the effects of 100 microM of pinacidil, a channel opener, and of 10 microM of glibenclamide, a channel blocker, in denervated muscles and compared the data to those observed in innervated muscles from the study of Matar et al. (Matar W, Nosek TM, Wong D, and Renaud JM. Pinacidil suppresses contractility and preserves energy but glibenclamide has no effect during fatigue in skeletal muscle. Am J Physiol Cell Physiol 278: C404-C416, 2000). Pinacidil increased the (86)Rb(+) fractional loss during fatigue, and this effect was 2.6- to 3.4-fold greater in denervated than innervated muscle. Pinacidil also increased the rate of fatigue; for EDL the effect was 2.5-fold greater in denervated than innervated muscle, whereas for soleus the difference was 8.6-fold. A major effect of glibenclamide was an increase in resting tension during fatigue, which was for the EDL and soleus muscle 2.7- and 1.9-fold greater, respectively, in denervated than innervated muscle. A second major effect of glibenclamide was a reduced capacity to recover force after fatigue, an effect observed only in denervated muscle. We therefore suggest that the physiological effects of the K(ATP) channel are enhanced after denervation.  相似文献   

5.
Effects of hypoxia on diaphragm relaxation rate during fatigue   总被引:2,自引:0,他引:2  
Van Lunteren, Erik, Augusto Torres, and Michelle Moyer.Effects of hypoxia on diaphragm relaxation rate during fatigue. J. Appl. Physiol. 82(5):1472-1478, 1997.Skeletal muscle fatigue is associated with aslowing of relaxation rate. Hypoxia may increase the rate at whichfatigue occurs, but, surprisingly, mild to moderate hypoxia has notbeen found to augment the degree of slowing of relaxation duringfatigue. The present study tested the hypothesis that severe hypoxiainteracts with fatigue in slowing the rate of muscle relaxation andthat this can be modulated by altering membranous ionic conductances.Rat diaphragm muscle strips were studied in vitro while aerated with95% O2-5%CO2 (normoxia) or 95%N2-5%CO2 (hypoxia). During continuous0.1-Hz stimulation, relaxation rate and force remained stable overtime, and relaxation rate was not slowed by hypoxia. Hypoxiaaccelerated force decline during continuous 5-Hz but not intermittent20-Hz stimulation. During both 5- and 20-Hz stimulation, relaxationrate became slower over time as force declined, the extent of which wasincreased significantly by hypoxia. The extent of hypoxia-augmentedslowing of relaxation rate during fatigue increased over time and was greater than expected for a given degree of force loss. 4-Aminopyridine did not attenuate or partially attenuated, whereas loweringextracellular Clconcentration fully attenuated, the hypoxia-induced prolongation ofrelaxation rate during repetitive stimulation. Thushypoxia slows relaxation rate to a greater extent than expected for a given degree of force decline, an effect that increases over time, isat most partially attenuated by loweringK+ conductance, and is fullyattenuated by lowering membranousCl conductance.

  相似文献   

6.
This study examined the effect of high- (75 Hz, 1 min) and low- (5 Hz, 1.5 min) frequency stimulation on contractile and biochemical properties of the diaphragm. Tension was reduced to 21 +/- 1 and 54 +/- 2% (SE) of the initial value after high- and low-frequency stimulation, respectively. After 0, 0.25, 1, and 2 min of recovery from high-frequency stimulation, 5 Hz elicited more force (expressed as % of initial tension) than 75-Hz stimulation. Time 0 recovery values were 21 +/- 1 and 78 +/- 6% of the initial force for 75- and 5-Hz stimulation, respectively. By 1 min of recovery, force elicited by 5-Hz stimulation had returned to the prefatigue value. In contrast, force production with 75-Hz stimulation did not full recover until 10-15 min. After fatigue produced by low-frequency stimulation, force production with 5-Hz stimulation was reduced to 54 +/- 2% of the initial tension, a value significantly lower than the 71 +/- 2% of initial force elicited by 75-Hz stimulation. Force production with 5-Hz stimulation increased rapidly in the first 15 s of recovery (54 +/- 2% at 0 and 70 +/- 2% at 15 s) and by 5 min was significantly greater than the force elicited by 75-Hz stimulation (100 +/- 3 vs. 93 +/- 1%). As before, force production at 75-Hz stimulation did not fully recover until 10-15 min. Both fatigue protocols produced a significant prolongation in isometric twitch contraction and one-half relaxation times. Creatine phosphate (CP) concentration was reduced and muscle lactate increased by both fatigue protocols.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Van Lunteren, Erik, and Michelle Moyer. Effects of DAPon diaphragm force and fatigue, including fatigue due toneurotransmission failure. J. Appl.Physiol. 81(5): 2214-2220, 1996.Among theaminopyridines, 3,4-diaminopyridine (DAP) is a more effectiveK+ channel blocker than is4-aminopyridine (4-AP), and, furthermore, DAP enhances neuromusculartransmission. Because 4-AP improves muscle contractility, wehypothesized that DAP would also increase force and, in addition,ameliorate fatigue and improve the neurotransmission failure componentof fatigue. Rat diaphragm strips were studied in vitro (37°C). Infield-stimulated muscle, 0.3 mM DAP significantly increased diaphragmtwitch force, prolonged contraction time, and shifted theforce-frequency relationship to the left without altering peak tetanicforce, resulting in increased force at stimulation frequencies 50 Hz.During 20-Hz intermittent stimulation, DAP increased diaphragm peakforce compared with control during a 150-s fatigue run and,furthermore, significantly improved maintenance of intratrain force.The relative contribution of neurotransmission failure to fatigue wasestimated by comparing the force generated by phrenic nerve-stimulatedmuscles with that generated by curare-treated field-stimulated muscles.DAP significantly increased force in nerve-stimulated muscles and, inaddition, reduced the neurotransmission failure contribution todiaphragm fatigue. Thus DAP increases muscle force atlow-to-intermediate stimulation frequencies, improves overall force andintratrain fatigue during 20-Hz intermittent stimulation, and reducesneurotransmission failure.

  相似文献   

8.
The effects of estrogen on skeletal muscle fatigue are controversial. To determine the effects of estrogen and gender on rat extensor digitorum longus (EDL) muscle, we either injected 40 microg beta-estradiol 3/benzoate.kg BW(-1) to female rats or sham injected male or female rats for 14 days. Subsequently a 90 min fatigue protocol consisting of electrical stimulation at 10 Hz delivered in 500 ms trains was administered. Force was recorded for a 5 s period at the start of the protocol (0 min) and at 5 min intervals until completion following 90 min of stimulation. After 90 min, EDL force generation at 10 Hz stimulation declined in all groups to between 50-60 % of initial values. However, no significant difference in fatigue rate or final 10 Hz stimulated force was seen between females administered estrogen, sham injected females or males. Hence, estrogen administration and gender did not significantly affect EDL muscle fatigue in this model.  相似文献   

9.
The purpose of this study was to compare fatigue and recovery of maximal voluntary torque [maximal voluntary contraction (MVC)] and muscle oxygenation after voluntary (Vol) and electrically stimulated (ES) protocols of equal torque production. On 1 day, 10 male subjects [25 yr (SD 4)] completed a Vol fatigue protocol and, on a separate day, an ES fatigue protocol of the right dorsiflexors. Each task involved 2 min of intermittent (2-s on, 1-s off) isometric contractions at 50% of MVC. For the ES protocol, stimulation was delivered percutaneously to the common peroneal nerve at a frequency of 25 Hz. Compared with the Vol protocol, the ES protocol caused a greater impairment in MVC (75 vs. 83% prefatigue value; Pre) and greater increase in 50-Hz half relaxation time (165 vs. 117% Pre) postexercise. After acute (1 min) recovery, MVC impairment was similar for both protocols, whereas 50- Hz half relaxation time was still greater in the ES than Vol protocol. Total hemoglobin decreased to a similar extent in both protocols during exercise, but it was elevated above the resting value to a significantly greater extent for the ES protocol in recovery (18 vs. 11 microM). Oxygen saturation was significantly lower in the ES than Vol protocol during exercise (46 vs. 57% Pre), but it was significantly greater during recovery (120 vs. 105% Pre). These findings suggest that despite, equal torque production, ES contractions impose a greater metabolic demand on the muscle that leads to a transient greater impairment in MVC. The enforced synchronization and fixed frequency of excitation inherent to ES are the most likely causes for the exacerbated changes in the ES compared with the Vol protocol.  相似文献   

10.
Electrical muscle stimulation (Mstim) at a low or high frequency is associated with failure of force production, but the exact mechanisms leading to fatigue in this model are still poorly understood. Using 31P magnetic resonance spectroscopy (31PMRS), we investigated the metabolic changes in rabbit tibialis anterior muscle associated with the force decline during Mstim at low (10 Hz) and high (100 Hz) frequency. We also simultaneously recorded the compound muscle mass action potential (M-wave) evoked by direct muscle stimulation, and we analyzed its post-Mstim variations. The 100-Hz Mstim elicited marked M-wave alterations and induced mild metabolic changes at the onset of stimulation followed by a paradoxical recovery of phosphocreatine (PCr) and pH during the stimulation period. On the contrary, the 10-Hz Mstim produced significant PCr consumption and intracellular acidosis with no paradoxical recovery phenomenon and no significant changes in M-wave characteristics. In addition, the force depression was linearly linked to the stimulation-induced acidosis and PCr breakdown. These results led us to conclude that force failure during 100-Hz Mstim only results from an impaired propagation of muscle action potentials with no metabolic involvement. On the contrary, fatigue induced by 10-Hz Mstim is closely associated with metabolic changes with no alteration of the membrane excitability, thereby underlining the central role of muscle energetics in force depression when muscle is stimulated at low frequency. Finally, our results further indicate a reduction of energy cost of contraction when stimulation frequency is increased from 10 to 100 Hz.  相似文献   

11.
Abnormalities in the excitation-contraction coupling of slow-twitch muscle seem to explain the slowing and increased fatigue observed in congestive heart failure (CHF). However, it is not known which elements of the excitation-contraction coupling might be affected. We hypothesize that the temperature sensitivity of contractile properties of the soleus muscle might be altered in CHF possibly because of alterations of the temperature sensitivity of intracellular Ca(2+) handling. We electrically stimulated the in situ soleus muscle of anesthetised rats that had 6-wk postinfarction CHF using 1 and 50 Hz and using a fatigue protocol (5-Hz stimulation for 30 min) at 35, 37, and 40 degrees C. Ca(2+) uptake and release were measured in sarcoplasmic reticulum vesicles at various temperatures. Contraction and relaxation rates of the soleus muscle were slower in CHF than in sham at 35 degrees C, but the difference was almost absent at 40 degrees C. The fatigue protocol revealed that force development was more temperature sensitive in CHF, whereas contraction and relaxation rates were less temperature sensitive in CHF than in sham. The Ca(2+) uptake and release rates did not correlate to the difference between CHF and sham regarding contractile properties or temperature sensitivity. In conclusion, the discrepant results regarding altered temperature sensitivity of contraction and relaxation rates in the soleus muscle of CHF rats compared with Ca(2+) release and uptake rates in vesicles indicate that the molecular cause of slow-twitch muscle dysfunction in CHF is not linked to the intracellular Ca(2+) cycling.  相似文献   

12.
The purpose of the present study was to test the hypothesis that a preceding contractile period in isolated single skeletal muscle fibers would attenuate the decrease in pH during an identical, subsequent contractile period, thereby reducing the rate of fatigue. Intact single skeletal muscle fibers (n = 9) were isolated from Xenopus lumbrical muscle and incubated with the fluorescent cytosolic H+ indicator 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) AM for 30 min. Two identical contractile periods were performed in each fiber, separated by a 1-h recovery period. Force and intracellular pH (pHi) fluorescence were measured simultaneously while fibers were stimulated (tetanic contractions of 350-ms trains with 70-Hz stimuli at 9 V) at progressively increasing frequencies (0.25, 0.33, 0.5, and 1 contraction/s) until the development of fatigue (to 60% initial force). No significant difference (P < 0.05) was observed between the first and second contractile periods in initial force development, resting pHi, or time to fatigue (5.3 +/- 0.5 vs. 5.1 +/- 0.6 min). However, the relative decrease in the BCECF fluorescence ratio (and therefore pHi) from rest to the fatigue time point was significantly greater (P < 0.05) during the first contractile period (to 65 +/- 4% of initial resting values) compared with the second (77 +/- 4%). The results of the present study demonstrated that, when preceded by an initial fatiguing contractile period, the rise in cytosolic H+ concentration in contracting single skeletal muscle fibers during a second contractile period was significantly reduced but did not attenuate the fatigue process in the second contractile period. These results suggest that intracellular factors other than H+ accumulation contribute to the fall in force development under these conditions.  相似文献   

13.
We examined the effect of an age-related leftward shift in the force-frequency relationship on the comparative quadriceps fatigability of nine young (27 +/- 1 yr old) and nine old men (78 +/- 1 yr old) during low-frequency electrical stimulation. Two different protocols of intermittent trains (6 pulses on, 650 ms off) of electrical stimulation at 25% maximum voluntary contraction were performed by both groups: 1) 180 trains at 14.3 Hz [constant frequency (CF) protocol], and 2) 180 trains at the frequency corresponding to 60% of each subject's force-frequency curve [normalized frequency (NF) protocol; young 14.9 +/- 0.4 vs. old 12.7 +/- 0.5 Hz; P < 0.05]. The quadriceps of the old men were weaker (approximately 31%) and relaxation was slower compared with the young men, as assessed by the maximal relaxation rate constant of the 50-Hz tetanus (young 12.1 +/- 0.2 vs. old 9.2 +/- 0.5 s(-1); P < 0.05) and a leftward shift in the force-frequency relationship. The NF protocol revealed a decreased fatigability in the quadriceps with old age (percentage of 1st contraction force remaining at 180th: old 63.4 +/- 1.5 vs. young 58.2 +/- 1.7%; P < 0.05) that was masked during the CF protocol (old 60.7 +/- 1.6 vs. young 58.6 +/- 2.3%; P > 0.05). Irrespective of the protocol, the maximal relaxation rate was reduced to approximately 73 and approximately 57% of the prefatigue value in the young and old men, respectively. The age-related leftward shift in the force-frequency relationship of the quadriceps contributed to an underestimation of the fatigue resistance with old age during the CF protocol. However, when the stimulation frequency used in the NF protocol was adjusted to account for the age-related shift in the force-frequency relationship, the quadriceps muscles of the old men were less fatigable than those of the young men. Thus we suggest that whole muscle fatigability is better examined by electrical stimulation protocols that are adjusted for inter- and intragroup differences in the force-frequency relationship.  相似文献   

14.
The effect of stimulation frequency on twitch force potentiation was examined in the adductor pollicis muscle of ten normal subjects. The ulnar nerve was supramaximally stimulated at the wrist and isometric twitch force was measured from a 3-Hz train lasting 1 s. Test stimulation frequencies of 5, 10, 20, 25, 30, 40, 50 and 100 Hz were applied for 5 s each in random order (5 min apart) and the twitches (3 Hz) were applied immediately before and after (1 s) the test frequency and at intervals up to 5 min afterwards (10 s, and 1, 2 and 5 min). Poststimulation twitches were expressed as a percentage of the prestimulation twitch. Low frequency fatigue was not induced by the protocol since the 20:50 Hz ratio did not alter within each session. The degree of twitch potentiation was frequency dependent, with potentiation increasing up to 50 Hz [mean 173 (SD 16)%] but the effect was markedly less at 100 Hz [mean 133 (SD 25)%, P less than 0.01] for all subjects. The reduced potentiation at 100 Hz may have occurred due to high frequency fatigue produced by the 100-Hz test stimulation train. The optimal frequency of those examined in the experimental group was 50 Hz but this only produced maximal potentiation in six of the ten subjects and 100 Hz always produced less potentiation. These findings have implications for electrical stimulation of muscle in the clinical setting.  相似文献   

15.
This investigation examined the mechanical responses of malignant hyperthermic (MH) and normal porcine skeletal muscle to repetitive stimulation. Twitch and maximal tetanic tensions were not significantly different between muscle types. Tensions produced during stimulation at 20-80 Hz were significantly less in MH muscle than in normal muscle. In addition, MH muscle showed significantly greater force decline (tetanic fade) at the end of contractions evoked by 20-80 Hz stimulation. When stimulated to fatigue, both normal and MH muscle exhibited similar rates of tension decline during the initial minutes. Further stimulation caused additional decline in normal muscle, but a tension plateau in MH muscle. In all cases, normal muscle had greater magnitudes of fatigue than did MH muscle. Results show that there are marked differences between MH and normal muscle in the mechanical responses to repetitive stimulation. Due to its inability to properly regulate intracellular Ca2+ exchange, it is possible that MH muscle might be a useful tool for identifying the mechanisms of muscle fatigue in normal muscle.  相似文献   

16.
There is a lack of data on fatigue changes within 24 h among patients with multiple sclerosis. The purpose of this study was to evaluate the effect of time of day on central and peripheral fatigue during a continuous 2-min maximal voluntary contraction of the quadriceps muscle in women and men with multiple sclerosis (MS). We studied age-matched MS patients (range, 40–50 years). The inclusion criteria for patients were: a Kurtzke Expanded Disability Status score and a Fatigue Severity Scale score. We found a significant gender difference in central activation ratio (CAR) in the evening. At the end of the 2-min maximal voluntary contraction (MVC), the voluntary torque decreased by about 65% in men and women with MS in both the morning and evening. We also observed that, in women, CAR decreased markedly during the first 30 s in the evening test. The most interesting finding of our study is that central fatigue increased, whereas peripheral fatigue decreased markedly in the evening only in women. It remains unclear why women’s central fatigue is greater in the evening than in the morning.  相似文献   

17.
Sleep apnea and other respiratory diseases produce hypoxemia and hypercapnia, factors that adversely affect skeletal muscle performance. To examine the effects of these chemical alterations on force production by an upper airway dilator muscle, the contractile and endurance characteristics of the geniohyoid muscle were examined in situ during severe hypoxia (arterial PO2 less than 40 Torr), mild hypoxia (PO2 45-65 Torr), and hypercapnia (PCO2 55-80 Torr) and compared with hyperoxic-normocapnic conditions in anesthetized cats. Muscles were studied at optimal length, and contractile force was assessed in response to supramaximal electrical stimulation of the hypoglossal nerve (n = 7 cats) or geniohyoid muscle (n = 2 cats). There were no significant changes in the twitch kinetics or force-frequency curve of the geniohyoid muscle during hypoxia or hypercapnia. However, the endurance of the geniohyoid, as reflected in the fatigue index (ratio of force at 2 min to initial force in response to 40-Hz stimulation at a duty cycle 0.33), was significantly reduced by severe hypoxia but not by hypercapnia or mild hypoxia. In addition, the downward shift in the force-frequency curve after the repetitive stimulation protocol was greater during hypoxia than hyperoxia, especially at higher frequencies. In conclusion, the ability of the geniohyoid muscle to maintain force output during high levels of activation is adversely affected by severe hypoxia but not mild hypoxia or hypercapnia. However, none of these chemical perturbations affected muscle contractility acutely.  相似文献   

18.
We hypothesized that muscle fiber bundles produce reactive oxygen intermediates and that reactive oxidant species contribute to muscular fatigue in vitro. Fiber bundles from rat diaphragm were mounted in chambers containing Krebs-Ringer solution. In studies of intracellular oxidant kinetics, bundles were loaded with 2',7'-dichlorofluorescin, a fluorochrome that emits at 520 nm when oxidized; emissions were quantified using a fluorescence microscope. Emissions from unstimulated muscles increased over time (P < 0.001). Accumulation of fluorescence was slowed by addition of catalase (P < 0.001) or superoxide dismutase (P < 0.001) and was accelerated by repetitive muscular contraction (P < 0.05). To determine effects of reactive oxygen intermediates on fatigue, curarized bundles were stimulated to contract isometrically; force was measured. Catalase, superoxide dismutase, and dimethyl sulfoxide were screened for effects on low- and high-frequency fatigue. Antioxidants inhibited low-frequency fatigue [after 5 min of repetitive contractions, force at 30 Hz was 20% greater than control (P < 0.015)] and increased the variability of fatigue at 30 Hz (P < 0.03). Antioxidants did not alter high-frequency (200-Hz) fatigue. We conclude that 1) diaphragm fiber bundles produce reactive oxygen intermediates, including O2-. and H2O2; 2) muscular contraction increases intracellular oxidant levels; and 3) reactive oxygen intermediates promote low-frequency fatigue in this preparation.  相似文献   

19.
Young women are less fatigable than young men for maximal and submaximal contractions, but the contribution of supraspinal fatigue to the sex difference is not known. This study used cortical stimulation to compare the magnitude of supraspinal fatigue during sustained isometric maximal voluntary contractions (MVCs) performed with the elbow flexor muscles of young men and women. Eight women (25.6 +/- 3.6 yr, mean +/- SD) and 9 men (25.4 +/- 3.8 yr) performed six sustained MVCs (22-s duration each, separated by 10 s). Before the fatiguing contractions, the men were stronger than the women (75.9 +/- 9.2 vs. 42.7 +/- 8.0 N.m; P < 0.05) in control MVCs. Voluntary activation measured with cortical stimulation before fatigue was similar for the men and women during the final control MVC (95.7 +/- 3.0 vs. 93.3 +/- 3.6%; P > 0.05) and at the start of the fatiguing task (P > 0.05). By the end of the six sustained fatiguing MVCs, the men exhibited greater absolute and relative reductions in torque (65 +/- 3% of initial MVC) than the women (52 +/- 9%; P < 0.05). The increments in torque (superimposed twitch) generated by motor cortex stimulation during each 22-s maximal effort increased with fatigue (P < 0.05). Superimposed twitches were similar for men and women throughout the fatiguing task (5.5 +/- 4.1 vs. 7.3 +/- 4.7%; P > 0.05), as well as in the last sustained contraction (7.8 +/- 5.9 vs. 10.5 +/- 5.5%) and in brief recovery MVCs. Voluntary activation determined using an estimated control twitch was similar for the men and women at the start of the sustained maximal contractions (91.4 +/- 7.4 vs. 90.4 +/- 6.8%, n = 13) and end of the sixth contraction (77.2 +/- 13.3% vs. 73.1 +/- 19.6%, n = 10). The increase in the area of the motor-evoked potential and duration of the silent period did not differ for men and women during the fatiguing task. However, estimated resting twitch amplitude and the peak rates of muscle relaxation showed greater relative reductions at the end of the fatiguing task for the men than the women. These results indicate that the sex difference in fatigue of the elbow flexor muscles is not explained by a difference in supraspinal fatigue in men and women but is largely due to a sex difference of mechanisms located within the elbow flexor muscles.  相似文献   

20.
Increasing stimulation frequency has been shown to increase fatigue but not when the changes in force associated with changes in frequency have been controlled. An effect of frequency, independent of force, may be associated with the metabolic cost resulting from the additional activations. Here, two separate experiments were performed on human medial gastrocnemius muscles. The first experiment (n = 8) was designed to test the effect of the number of pulses on fatigue. The declines in force during two repetitive, 150-train stimulation protocols that produced equal initial forces, one using 80-Hz trains and the other using 100-Hz trains, were compared. Despite a difference of 600 pulses (23.5%), the protocols produced similar rates and amounts of fatigue. In the second experiment, designed to test the effect of the number of pulses on the metabolic cost of contraction, 31P-NMR spectra were collected (n = 6) during two ischemic, eight-train stimulation protocols (80- and 100-Hz) that produced comparable forces despite a difference of 320 pulses (24.8%). No differences were found in the changes in P(i) concentration, phosphocreatine concentration, and intracellular pH or in the ATP turnover produced by the two trains. These results suggest that the effect of stimulation frequency on fatigue is related to the force produced, rather than to the number of activations. In addition, within the range of frequencies tested, increasing total activations did not increase metabolic cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号