首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A catalytic component of the bovine mitochondrial NADH:ubiquinone oxidoreductase complex (Complex I) is a soluble NADH dehydrogenase iron-sulfur flavoprotein (FP). FP is composed of three subunits of Mr 51,000, 24,000, and 9,000, and contains FMN and two iron-sulfur clusters. Previous studies by others with the use of various chemical probes had suggested that, except for an access for NADH to the 51-kDa subunit, the FP polypeptides are buried within Complex I and shielded from the medium. In the present study, monospecific antibodies were raised to each of the three FP subunits, and used in conjunction with Complex I, submitochondrial particles (SMP), mitoplasts, and intact mitochondria as sources of antigens. Results of enzyme-linked immunosorbent assays and 125I-protein A labeling experiments indicated that epitopes from the 51-, 24-, and 9-kDa subunits of FP are exposed to the medium in Complex I and SMP, but not in mitoplasts and mitochondria. Appropriate enzymatic assays showed that none of the antibodies inhibited the NADH dehydrogenase activity of isolated FP or the NADH oxidase activity of SMP. These results have been discussed in relation to the structure of Neurospora Complex I deduced from membrane crystals of the isolated enzyme complex by Leonard et al. [K. Leonard, H. Haiker, and H. Weiss (1987) J. Mol. Biol. 194, 277-286].  相似文献   

2.
The mitochondrial energy-linked nicotinamide nucleotide transhydrogenase is a homodimer of monomer Mr = 109,228. Hydropathy analysis of its cDNA-deduced amino acid sequence (1043 residues) has indicated that the molecule is composed of 3 domains: a 430-residue-long hydrophilic N-terminal domain which binds NAD(H), a 200-residue-long hydrophilic C-terminal domain which binds NADP(H), and a 400-residue-long hydrophobic central domain which appears to be made up mainly of about 14 hydrophobic clusters of approximately 20 residues each. In this study, antibodies were raised to the hydrophilic N- and C-terminal domains cleaved from the isolated transhydrogenase by proteolytic digestion, and to a synthetic, hydrophilic pentadecapeptide, which corresponded to position 540-554 within the central hydrophobic domain. Immunochemical experiments with mitoplasts (mitochondria denuded of outer membrane) and submitochondrial particles (inside-out inner membrane vesicles) as sources of antigens showed that essentially the entire N- and C-terminal hydrophilic domains of the transhydrogenase, as well as epitopes from the central pentadecapeptide, protrude from the inner membrane into the mitochondrial matrix, where the N- and C-terminal domains would be expected to come together to form the enzyme's catalytic site. Treatment of mitoplasts with several proteolytic enzymes indicated that large protease-sensitive masses of the transhydrogenase are not exposed on the cytosolic side of the inner membrane, which agreed with the exception that the central highly hydrophobic domain of the molecule should be largely membrane-intercalated. Trypsin, alpha-chymotrypsin, and papain had little or no effect on the mitoplast-embedded transhydrogenase. Proteinase K, subtilisin (Nagarse), thermolysin, and pronase E each split the mitoplast-embedded enzyme into two fragments only, a fragment of approximately 70 kDa containing the N-terminal hydrophilic domain, and one of approximately 40 kDa bearing the C-terminal hydrophilic domain. The cleavage site of proteinase K was determined to be A690 -A691, which is located in a small hydrophilic segment within the central hydrophobic domain. This protease-sensitive loop appears to be exposed on the cytosolic side of the inner membrane. The proteinase K-nicked enzyme containing two peptides of 71 and 39 kDa was isolated from mitoplasts and shown to have high transhydrogenase activity.  相似文献   

3.
Bovine mitochondrial NADH-ubiquinone reductase (complex I), the first enzyme in the electron-transport chain, is a membrane-bound assembly of more than 30 different proteins, and the flavoprotein (FP) fraction, a water-soluble assembly of the 51-, 24-, and 10-kDa subunits, retains some of the catalytic properties of the enzyme. The 51-kDa subunit binds the substrate NAD(H) and probably contains both the cofactor, FMN, and also a tetranuclear iron-sulfur center, while a binuclear iron-sulfur center is located in the 24- or 10-kDa proteins. The 75-kDa subunit is the largest of the six proteins in the iron-sulfur protein (IP) fraction, and its sequence indicates that it too contains iron-sulfur clusters. Partial protein sequences have been determined at the N-terminus and at internal sites in the 51-kDa subunit, and the corresponding cDNA encoding a precursor of the protein has been isolated by using a novel strategy based on the polymerase chain reaction. The mature protein is 444 amino acids long. Its sequence, and those of the 24- and 75-kDa subunits, shows that mitochondrial complex I is related to a soluble NAD-reducing hydrogenase from the facultative chemolithotroph Alcaligenes eutrophus H16. This enzyme has four subunits, alpha, beta, gamma, and delta, and the alpha gamma dimer is an NADH oxidoreductase that contains FMN. The gamma-subunit is related to residues 1-240 of the 75-kDa subunit of complex I, and the alpha-subunit sequence is a fusion of homologues of the 24- and 51-kDa subunits, in the order N- to C-terminal. The most highly conserved regions are in the 51-kDa subunit and probably form parts of nucleotide binding sites for NAD(H) and FMN. Another conserved region surrounds the sequence motif CysXXCysXXCys, which is likely to provide three of the four ligands of a 4Fe-4S center, possibly that known as N-3. Characteristic ligands for a second 4Fe-4S center are conserved in the 75-kDa and gamma-subunits. This relationship with the bacterial enzyme implies that the 24- and 51-kDa subunits, together with part of the 75-kDa subunit, constitute a structural unit in mitochondrial complex I that is concerned with the first steps of electron transport.  相似文献   

4.
The mitochondrial proton-translocating nicotinamide nucleotide transhydrogenase is embedded in the inner membrane as a homodimer of monomer Mr = 109,288. Its N-terminal 430 residues and C-terminal 200 residues protrude into the matrix, whereas its central 400 residues appear to intercalate into the inner membrane as 14 hydrophobic clusters of about 20 residues each (Yamaguchi, M., and Hatefi, Y. (1991) J. Biol. Chem. 266, 5728-5735). Treatment of mitoplasts (mitochondria denuded of outer membrane) with several proteolytic enzymes cleaves the transhydrogenase into a 72-kDa N-terminal and a 37-kDa C-terminal fragment. The cleavage site of proteinase K was determined to be Ala690-Ala691, which is located in a small loop of the transhydrogenase exposed on the cytosolic side of the inner membrane. This paper shows that the bisected transhydrogenase can be purified from proteinase K-treated mitoplasts with retention of greater than or equal to 85% transhydrogenase activity. The inactivation rate of the bisected enzyme by trypsin and N-ethylmaleimide was altered in the presence of NADP and NADPH, suggesting substrate-induced conformation changes similar to those reported previously for the intact transhydrogenase. Also, like the intact enzyme, proteoliposomes of the bisected transhydrogenase were capable of membrane potential formation and internal acidification coupled to NADPH----NAD transhydrogenation. The properties of the bisected transhydrogenase have been discussed in relation to those of the two-subunit Escherichia coli transhydrogenase, the bisected lac permease (via gene restriction), and the fragmented and reconstituted bacteriorhodopsin.  相似文献   

5.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

6.
A Dupuis  J M Skehel  J E Walker 《Biochemistry》1991,30(11):2954-2960
The chloroplast genomes of Marchantia polymorpha, Nicotiana tabacum, and Oryza sativa contain open reading frames (ORFs or potential genes) encoding homologues of some of the subunits of mitochondrial NADH:ubiquinone oxidoreductase (complex I). Seven of these subunits (ND1-ND4, ND4L, ND5, and ND6) are products of the mitochondrial genome, and two others (the 49- and 30-kDa components of the iron-sulfur protein fraction) are nuclear gene products. These findings have been taken to indicate the presence in chloroplasts of an enzyme related to complex I, possibly an NAD(P)H:plastoquinone oxidoreductase, participating in chlororespiration. This view is reinforced by the present work in which we have shown that chloroplast genomes encode a homologue of the 23-kDa subunit, another nuclear-encoded component of bovine complex I. The 23-kDa subunit is in the hydrophobic protein fraction of the enzyme, the residuum after removal of the flavoprotein and iron-sulfur protein fractions. The sequence motif CysXXCysXXCysXXXCysPro, which provides ligands for tetranuclear iron-sulfur centers in ferredoxins, occurs twice in its polypeptide chain and is evidence of two associated 4Fe-4S clusters. This is the only iron-sulfur protein identified so far in the hydrophobic protein fraction of complex I, and so it is possible that one of these centers is that known as N-2, the donor of electrons to ubiquinone. The sequence of the 23-kDa subunit is closely related to potential proteins, which also contain the cysteine-rich sequence motifs, encoded in the frxB ORFs in chloroplast genomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
An ubiquinone-binding protein (QP) was purified from mitochondrial NADH-ubiquinone reductase (Complex I). Complex I was separated into 3 fragments: a fraction of hydrophobic proteins, that of soluble iron-sulfur protein (IP) and soluble NADH dehydrogenase of flavoprotein by a procedure involving the resolution with DOC and cholate, followed by ethanol and ammonium acetate fractionations. About 40% of the total ubiquinone was recovered in the IP fragment which consisted of 12 polypeptides. The QP was purified from the IP fragment with a hydrophobic affinity chromatography. SDS-polyacrylamide gel electrophoresis showed that the purified QP corresponded to 14-kDa polypeptide of the IP fragment and was a different protein from the QP (12.4 kDa) in Complex III. The purified QP (14 kDa) contained one mol ubiquinone per mol. The ubiquinone-depleted IP fragment could rebind ubiquinone. These results indicate that an ubiquinone-binding site in Complex I is on the 14-kDa polypeptide of the IP fragment.  相似文献   

8.
The orientation of rat liver cytochrome c oxidase subunits in the inner mitochondrial membrane was investigated with monospecific antisera against subunit II and nine nuclear-coded subunits. Mitoplasts were incubated with the antisera and the amount of bound antibodies was determined either directly with fluorescein-conjugated protein A or indirectly by back-titration of unbound antibodies with a nitrocellulose immunoassay. All subunits were found oriented to the cytosolic side, except subunits VIb and VIIc which did not react with their corresponding antisera. Antisera against subunits I, III and Vb were not available.  相似文献   

9.
Iron homeostasis is tightly regulated, as cells work to conserve this essential but potentially toxic metal. The translation of many iron proteins is controlled by the binding of two cytoplasmic proteins, iron regulatory protein 1 and 2 (IRP1 and IRP2) to stem loop structures, known as iron-responsive elements (IREs), found in the untranslated regions of their mRNAs. In short, when iron is depleted, IRP1 or IRP2 bind IREs; this decreases the synthesis of proteins involved in iron storage and mitochondrial metabolism (e.g. ferritin and mitochondrial aconitase) and increases the synthesis of those involved in iron uptake (e.g. transferrin receptor). It is likely that more iron-containing proteins have IREs and that other IRPs may exist. One obvious place to search is in Complex I of the mitochondrial respiratory chain, which contains at least 6 iron-sulfur (Fe-S) subunits. Interestingly, in idiopathic Parkinson's disease, iron homeostasis is altered, and Complex I activity is diminished. These findings led us to investigate whether iron status affects the Fe-S subunits of Complex I. We found that the protein levels of the 75-kDa subunit of Complex I were modulated by levels of iron in the cell, whereas mRNA levels were minimally changed. Isolation of a clone of the 75-kDa Fe-S subunit with a more complete 5'-untranslated region sequence revealed a novel IRE-like stem loop sequence. RNA-protein gel shift assays demonstrated that a specific cytoplasmic protein bound the novel IRE and that the binding of the protein was affected by iron status. Western blot analysis and supershift assays showed that this cytosolic protein is neither IRP1 nor IRP2. In addition, ferritin IRE was able to compete for binding with this putative IRP. These results suggest that the 75-kDa Fe-S subunit of mitochondrial Complex I may be regulated by a novel IRE-IRP system.  相似文献   

10.
In cattle, 7 of the 30 or more subunits of the respiratory enzyme NADH:ubiquinone reductase (complex I) are encoded in mitochondrial DNA, and potential genes (open reading frames, orfs) for related proteins are found in the chloroplast genomes of Marchantia polymorpha and Nicotiana tabacum. Homologues of the nuclear-coded 49- and 23-kDa subunits are also coded in chloroplast DNA, and these orfs are clustered with four of the homologues of the mammalian mitochondrial genes. These findings have been taken to indicate that chloroplasts contain a relative of complex I. The present work provides further support. The 30-kDa subunit of the bovine enzyme is a component of the iron-sulfur protein fraction. Partial protein sequences have been determined, and synthetic oligonucleotide mixtures based on them have been employed as hybridization probes to identify cognate cDNA clones from a bovine library. Their sequences encode the mitochondrial import precursor of the 30-kDa subunit. The mature protein of 228 amino acids contains a segment of 57 amino acids which is closely related to parts of proteins encoded in orfs 169 and 158 in the chloroplast genomes of M. polymorpha and N. tabacum. Moreover, the chloroplast orfs are found near homologues of the mammalian mitochondrial genes for subunit ND3. Therefore, the plant chloroplast genomes have at least two separate clusters of potential genes encoding homologues of subunits of mitochondrial complex I. The bovine 30-kDa subunit has no extensive sequences of hydrophobic amino acids that could be folded into membrane-spanning alpha-helices, and although it contains two cysteine residues, there is no clear evidence in the sequence that it is an iron-sulfur protein.  相似文献   

11.
A preparation containing the Mr 13,400 protein (subunit VI), phospholipid, and ubiquinone was isolated from bovine heart mitochondrial ubiquinol-cytochrome c reductase by a procedure involving Triton X-100 and urea solubilization, calcium phosphate-cellulose column chromatography at different pHs, acetone precipitation, and decanoyl-N-methylglucamide-sodium cholate extraction. The protein in this preparation corresponds to subunit VI of ubiquinol-cytochrome c reductase resolved in the sodium dodecyl sulfate-polyacrylamidce gel electrophoresis system of Sch?gger et al. (1987, FEBS Lett. 21, 161-168) and has the same amino acid sequence as that of the Mr 13,400 protein reported by Wakabayashi et al. (1985, J. Biol. Chem. 260, 337-343). The phospholipid and ubiquinone present in the preparation copurify with but are not intrinsic components of, the Mr 13,400 protein. This preparation has a potency and behavior identical to that of a free phospholipid preparation in restoring activity to delipidated ubiquinol-cytochrome c reductase. Antibodies against Mr 13,400 react only with Mr 13,400 protein and complexes which contain it. They do not inhibit intact, lipid-sufficient ubiquinol-cytochrome c reductase. However, when delipidated ubiquinol-cytochrome c reductase is incubated with antibodies prior to reconstitution with phospholipid, a 55% decrease in the restoration activity is observed, indicating that the catalytic site-related epitopes of the Mr 13,400 protein are buried in the phospholipid environment. Antibodies against Mr 13,400 cause an increase of apparent Km for ubiquinol-2 in ubiquinol-cytochrome c reductase. When mitoplasts or submitochondrial particles are exposed to a horseradish peroxidase conjugate of the Fab' fragment of anti-Mr 13,400 antibodies, peroxidase activity is found mainly in the submitochondrial particles preparation; little activity is detected in mitoplasts. This suggests that the Mr 13,400 protein is extruded toward the matrix side of the membrane.  相似文献   

12.
Cytochrome b558 in phagocytes is a transmembrane protein composed of large and small subunits and considered to play a key role in O2- generation during the respiratory burst. The COOH-terminal regions of the cytochrome subunits protrude to the cytoplasmic side and are assumed to be the sites for association with cytosolic components to form an active O(2-)-generating complex (Imajoh-Ohmi, S., Tokita, K., Ochiai, H., Nakamura, M., and Kanegasaki, S. (1992) J. Biol. Chem. 267, 180-184). We show here that two synthetic peptides corresponding to the COOH-terminal region of each subunit inhibit NADPH-dependent oxygen uptake induced by sodium dodecyl sulfate (SDS) in a cell-free system consisting of plasma membrane and cytosol. The inhibition was observed when either peptide was added to the system before, but not after, the activation with SDS suggesting that interaction between the COOH-terminal regions of the cytochrome subunits and cytosolic components is important for the assembly and the activity of the O(2-)-generating system. Using the cross-linking reagent dimethyl 3,3'-dithiobis-propionimidate, we found that the cytosolic 47-kDa protein, an essential component of the O(2-)-generating system, interacted with the synthetic peptides in the presence of SDS. In addition to the 47-kDa protein, a 17-kDa protein was found to be associated with the peptide corresponding to the COOH-terminal region of the small subunit. These results indicate that the cytosolic COOH-terminal regions of cytochrome b558 subunits are the binding sites for both the cytosolic 47-kDa protein and the 17-kDa protein and that the binding takes place during activation of the system.  相似文献   

13.
The activating kinase of protein phosphatase 1I is distributed in approximately equal amounts between the cytosolic and particulate fractions of bovine brain homogenates. Both species of this protein kinase have been purified to near homogeneity. The cytosolic form, purified about 7,000-fold, has an apparent Mr = approximately 75,000, as estimated by gel filtration chromatography on Sephacryl S-300. The enzyme contains two subunits, with apparent Mr = 52,000 and 46,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both subunits undergo phosphorylation when the enzyme is incubated with Mg2+ and [gamma-32P]ATP. Peptide maps of the two subunits are different, and rabbit antibodies to the 52-kDa subunit show only very minor cross-reactivity to the 46-kDa subunit. These observations indicate that the two subunits are different. The species of protein phosphatase 1I activating kinase that is associated with the membrane fraction has an apparent Mr = approximately 105,000 as estimated by gel filtration. This species also contains two subunits, with apparent Mr = 52,000 and 46,000, the properties of which are very similar, if not identical, to those of the two subunits comprising the cytosolic form of the protein kinase.  相似文献   

14.
We have analyzed a series of eleven mutations in the 49-kDa protein of mitochondrial complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica to identify functionally important domains in this central subunit. The mutations were selected based on sequence homology with the large subunit of [NiFe] hydrogenases. None of the mutations affected assembly of complex I, all decreased or abolished ubiquinone reductase activity. Several mutants exhibited decreased sensitivities toward ubiquinone-analogous inhibitors. Unexpectedly, seven mutations affected the properties of iron-sulfur cluster N2, a prosthetic group not located in the 49-kDa subunit. In three of these mutants cluster N2 was not detectable by electron-paramagnetic resonance spectroscopy. The fact that the small subunit of hydrogenase is homologous to the PSST subunit of complex I proposed to host cluster N2 offers a straightforward explanation for the observed, unforeseen effects on this iron-sulfur cluster. We propose that the fold around the hydrogen reactive site of [NiFe] hydrogenase is conserved in the 49-kDa subunit of complex I and has become part of the inhibitor and ubiquinone binding region. We discuss that the fourth ligand of iron-sulfur cluster N2 missing in the PSST subunit may be provided by the 49-kDa subunit.  相似文献   

15.
S Usui  L Yu  C A Yu 《Biochemistry》1990,29(19):4618-4626
The small molecular mass ubiquinone-binding protein (QPc-9.5 kDa) was purified to homogeneity from 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyl[3H]octyl)-1,4-benzoquinol+ ++- labeled bovine heart mitochondrial ubiquinol-cytochrome c reductase. The N-terminal amino acid sequence of the isolated protein is Gly-Arg-Gln-Phe-Gly-His-Leu-Thr-Arg-Val-Arg-His-, which is identical with that of a Mr = 9500 protein in the reductase [Borchart et al. (1986) FEBS Lett. 200, 81-86]. A ubiquinone-binding peptide was prepared from [3H]azidoubiquinol-labeled QPc-9.5 kDa protein by trypsin digestion followed by HPLC separation. The partial N-terminal amino acid sequence of this peptide, Val-Ala-Pro-Pro-Phe-Val-Ala-Phe-Tyr-Leu-, corresponds to amino acid residues 48-57 in the reported Mr = 9500 protein. According to the proposed structural model for the Mr = 9500 protein, the azido-Q-labeled peptide is located in the membrane on the matrix side. These results confirm our previous assessment that the Mr = 13,400 subunit is not the small molecular weight Q-binding protein. Purified antibodies against QPc-9.5 kDa have a high titer with isolated QPc-9.5 kDa protein and complexes that contain it. Although antibodies against QPc-9.5 kDa do not inhibit intact succinate- and ubiquinol-cytochrome c reductases, a decrease of 85% and 20% in restoration of succinate- and ubiquinol-cytochrome c reductases, respectively, is observed when delipidated succinate- or ubiquinol-cytochrome reductases are incubated with antibodies prior to reconstitution with ubiquinone and phospholipid, indicating that epitopes at the catalytic site of QPc-9.5 kDa are buried in the phospholipid environment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The organization of bovine heart NADH dehydrogenase in the mitochondrial inner membrane was investigated by chemical cross-linking and radiolabelling with [125I]iododiazobenzenesulphonate (IDABS). Mitochondria or submitochondrial particles were cross-linked with disulphosuccinimidyl tartrate and dimethyl suberimidate, and dimeric products containing subunits of the NADH dehydrogenase were analysed by Western blotting with subunit-specific antisera. Cross-linking of mitochondria gave rise to (49 + 30) kDa and (49 + 19) kDa dimers and an additional dimer containing the 30 kDa subunit. Cross-linking of submitochondrial particles gave rise to (75 + 51) kDa, (75 + 30) kDa and (49 + 13) kDa dimers and a further dimer containing the 30 kDa subunit. We conclude that the 49 kDa and 30 kDa subunits are transmembranous, the 19 kDa subunit is exposed on the cytoplasmic face of the membrane, whereas the 75, 51 and 13 kDa subunits are exposed on the matrix face of the membrane. Reaction of the isolated enzyme with IDABS results in labelling of 75, 49, 42, 33, 30, 13 and 10 kDa subunits. From experiments in which mitochondria or submitochondrial particles were first labelled and NADH dehydrogenase then isolated by immunoprecipitation, it was found that labelling of the 49 kDa subunit occurs predominantly from the cytoplasmic side of the membrane. On the other hand, labelling of the 75, 13 and 10 kDa subunits occurs predominantly from the matrix side of the membrane, whereas the 30 and 33 kDa subunits are heavily labelled from either side. These findings are consistent with those obtained from cross-linking.  相似文献   

17.
There are multiple routes of NAD(P)H oxidation associated with the inner membrane of plant mitochondria. These are the phosphorylating NADH dehydrogenase, otherwise known as Complex I, and at least four other nonphosphorylating NAD(P)H dehydrogenases. Complex I has been isolated from beetroot, broad bean, and potato mitochondria. It has at least 32 polypeptides associated with it, contains FMN as its prosthetic group, and the purified enzyme is sensitive to inhibition by rotenone. In terms of subunit complexity it appears similar to the mammalian and fungal enzymes. Some polypeptides display antigenic similarity to subunits fromNeurospora crassa but little cross-reactivity to antisera raised against some beef heart complex I subunits. Plant complex I contains eight mitochondrial encoded subunits with the remainder being nuclear-encoded. Two of these mitochondrial-encoded subunits, nad7 and nad9, show homology to corresponding nuclear-encoded subunits inNeurospora crassa (49 and 30 kDa, respectively) and beef heart CI (49 and 31 kDa, respectively), suggesting a marked difference between the assembly of CI from plants and the fungal and mammalian enzymes. As well as complex I, plant mitochondria contain several type-II NAD(P)H dehydrogenases which mediate rotenone-insensitive oxidation of cytosolic and matrix NADH. We have isolated three of these dehydrogenases from beetroot mitochondria which are similar to enzymes isolated from potato mitochondria. Two of these enzymes are single polypeptides (32 and 55 kDa) and appear similar to those found in maize mitochondria, which have been localized to the outside of the inner membrane. The third enzyme appears to be a dimer comprised of two identical 43-kDa subunits. It is this enzyme that we believe contributes to rotenone-insensitive oxidation of matrix NADH. In addition to this type-II dehydrogenases, several observations suggest the presence of a smaller form of CI present in plant mitochondria which is insensitive to rotenone inhibition. We propose that this represents the peripheral arm of CI in plant mitochondria and may participate in nonphosphorylating matrix NADH oxidation.  相似文献   

18.
Gradient purified preparations of the maize 400-kDa tonoplast ATPase are enriched in two major polypeptides, 72 and 62 kDa. Polyclonal antibodies were prepared against these two putative subunits after elution from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel slices and against the solubilized native enzyme. Antibodies to both the 72- and 62-kDa polypeptides cross-reacted with similar bands on immunoblots of a tonoplast-enriched fraction from barley, while only the 72-kDa antibodies cross-reacted with tonoplast and tonoplast ATPase preparations from Neurospora. Antibodies to the 72-kDa polypeptide and the native enzyme both strongly inhibited enzyme activity, but the 62-kDa antibody was without effect. The identity and function of the subunits was further probed using radiolabeled covalent inhibitors of the tonoplast ATPase, 7-chloro-4-nitro[14C]benzo-2-oxa-1,3-diazole ([14C]NBD-Cl) and N,N'-[14C]dicyclohexylcarbodiimide ([14C]DCCD). [14C]NBD-Cl preferentially labeled the 72-kDa polypeptide, and labeling was prevented by ATP. [14C]DCCD, an inhibitor of the proton channel portion of the mitochondrial ATPase, bound to a 16-kDa polypeptide. Venturicidin blocked binding to the mitochondrial 8-kDa polypeptide but did not affect binding to the tonoplast 16-kDa polypeptide. Taken together, the results implicate the 72-kDa polypeptide as the catalytic subunit of the tonoplast ATPase. The DCCD-binding 16-kDa polypeptide may comprise the proton channel. The presence of nucleotide-binding sites on the 62-kDa polypeptide suggests that it may function as a regulatory subunit.  相似文献   

19.
The mitochondrial NADH:ubiquinone oxidoreductase complex (Complex I) is inhibited by N,N'-dicyclohexylcarbodiimide (DCCD), and this inhibition correlates with incorporation of radioactivity from [14C]DCCD into a Complex I subunit of Mr 29,000 (Yagi, T. (1987) Biochemistry 26, 2822-2828). Resolution of [14C]DCCD-labeled Complex I in the presence of NaClO4 showed that the labeled Mr 29,000 subunit was in the hydrophobic fraction of the enzyme. This fraction, which contains greater than 17 unlike polypeptides, was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the Mr 29,000 subunit, containing bound [14C]DCCD, was isolated and purified. The amino acid composition and partial sequence of this subunit corresponded to those predicted from the mitochondrial DNA for the product of the mtDNA gene designated ND-1. The identity of the Mr 29,000 subunit with the ND-1 gene product was further confirmed by immunoblotting and immunoprecipitation experiments, using the hydrophobic fraction of [14C]DCCD-labeled Complex I and antiserum to a C-terminal undecapeptide synthesized on the basis of the human mitochondrial ND-1 nucleotide sequence. Thus, it appears that the DCCD-binding subunits of the respiratory chain Complexes I, III, and IV and in certain organisms the DCCD-binding subunit of the ATP synthase complex (Complex V) are all mtDNA products.  相似文献   

20.
Two related forms of the respiratory-chain complex, NADH: ubiquinone oxidoreductase (Complex I) are synthesized in the mitochondria of Neurospora crassa. Normally growing cells make a large, piericidin-A-sensitive form, which consists of some 23 different nuclear- and 6-7 mitochondrially encoded subunits. Cells grown in the presence of chloramphenicol make a small, piericidin-A-insensitive form which consists of only approximately 13 nuclear-encoded subunits. The subunits of the small form are either identical or similar to nuclear-encoded subunits of the large form. The iron-sulfur clusters in these two forms of Complex I are characterized by redox potentiometry and EPR spectroscopy. The large form of Complex I contains four EPR-detectable iron-sulfur clusters, N1, N2, N3 and N4, with the spin concentration of the individual clusters equivalent to the flavin concentration, similar to the mammalian counterparts. The small Complex I contains clusters N1, N3 and N4, but it is devoid of cluster N2. A model of the electron-transfer route through the large form of Complex I has been derived from these findings and an evolutionary pathway which leads to the emergence of large Complex I is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号