首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
George W. Uetz 《Oecologia》1989,81(2):154-159
Summary Increased prey capture efficiency in colonial spiders is a consequence of the ricochet effect, as prey are captured after they bounce off several webs in succession. In this study, the prey capture of three species of colonial spiders in the genus Metepeira from Mexico are compared. These species, from different habitats, show varying levels of social organization (group size and withingroup spacing) that affect prey capture from ricochets. Metepeira sp. a (a presumed new species tentatively named atascadero) from desert grassland habitats, occur solitarily or in small groups, and gain little from prey ricochets: prey capture rates are low and variance in prey captured/spider is high. M. spinipes, from mesic agricultural sites, occur in groups of 10–150, and show a ricochet effect resulting in more and larger prey, and reduced variance in capture rate. M. incrassata, from tropical rainforest/agricultural sites, occur in large colonies of hundreds to thousands of individuals, and show a similar ricochet effect. The ricochet effect does not influence taxonomic composition of prey in either M. atascadero or M. spinipes, but does in tropical M. incrassata. This result, however, is primarily due to the capacity of certain taxa (eg., Lepidoptera), more common in the tropics, to escape more easily from spider webs. A comparison of prey capture efficiency of colonial M. incrassata with that of solitary M. atascadero shows that the ricochet effect provides an increase in efficiency across all size classes of prey.  相似文献   

2.
Aggregation behavior is common throughout the animal world, although it is rare in spiders (Araneae). Nephila clavipes spiders are frequently found both in solitary webs and in aggregations of conspecifics. N. clavipes aggregations are not considered social, because these spiders do not engage in food sharing or group parental care. The currently accepted explanation for N. clavipes aggregations is that they form passively, as spiders aggregate in response to the patchy distribution of food resources in the environment. Here, we show instead that N. clavipes females actively seek out conspecifics and, therefore, that aggregations arise from conspecific attraction. We experimentally established that (1) N. clavipes females actively follow the trails left by conspecifics and (2) aggregations are formed independently of prey density in a particular area. These results suggest that while aggregations in high food patches increase encounter rates of conspecific spiders and support the nutritional needs of multiple large spiders, this potential benefit is not the proximate mechanism for aggregation. Thus, we hypothesize that N. clavipes females likely acquire fitness benefits from aggregating with conspecifics.  相似文献   

3.
Summary While a number of advantages may result from group living, it may also lead to increased levels of attack by parasites because groups may be easier to find. This leads to the prediction that levels of parasitism should increase with colony size. We test this prediction by comparing colony size and parasitoid load for two species of colonial orb-weaving spiders from Mexico, Metepeira (undesc. sp., tentatively named atascadero) and Metepeira incrassata, which exhibit contrasting levels of social organization and utilize different habitats. For M. atascadero, which occurs solitarily or in small groups in desert/mesquite grassland habitat, rates of egg-sac parasitism fluctuate widely from year to year, and are closely tied to spider egg output. There is no relationship between colony size and rate of parasitism. For colonial M. incrassata, which occur in tropical rain forest/agricultural habitat, rates of parasitism are relatively constant from year to year. However, there is a positive relationship between colony size and rate of parasitism in this species. These differences are discussed with regard to the stability of the two habitats, prey availability, and the foraging behavior of the respective parasitoids.  相似文献   

4.
Abstract The foraging behaviour, web characteristics and prey availability of two sympatric orb-weaving spiders, Nephila plumipes and Eriophora transmarina (Araneae: Araneoidea), are compared. The spiders are similarly sized but have different temporal foraging patterns. Nephila plumipes spins a relatively permanent web and captures most of its prey during the day. Eriophora transmarina only forages at night, spinning a new web every night and usually dismantling it at dawn. These different foraging activities are most likely to be responsible for the observed differences in the types and rates of prey capture: E. transmarina captured mostly Lepidoptera that were more abundant at night than during the day, while N. plumipes captured mostly Hymenoptera that were more abundant during the day than at night. While nocturnal E. transmarina have less time available for foraging than the diurnal N. plumipes, the former has a substantially higher nocturnal prey capture rate. We argue that the difference between the species in their prey capture rates are likely to be due to differences in the architecture of their webs.  相似文献   

5.
Group foraging is rare in spiders, occurring only where preyavailability is high. If colonial web-building increases individualprey capture rates as shown, why does group foraging not occurmore often where prey are scarce? Risk sensitivity may explainthis paradox, as variance in prey capture is reduced in groups;risk-averse spiders should join groups only when prey exceeda threshold level. Field studies show that group foraging variesas predicted between species, between populations of a singlespecies, and between sites within a population. However, recentmodels suggest the necessity of examining variance within individualsover time rather than between individuals within populations.Additionally, mechanisms responsible for variance reductionin colonial webs may be less effective than previously assumed.New field data suggest that while prey variance over time maybe somewhat less for individual spiders in groups than for solitaries,the relationship between colonial web-building and variancein prey capture is far more complex than originally thought.The influence of risk sensitivity on reproductive success andthe evolution of colonial web-building is discussed.  相似文献   

6.
Higher rates of encounter with wasp predators are a consequenceof group living for Metepeira incrassala (Araneae: Araneidae),a colonial orb-weaving spider from tropical Mexico. Field observationof wasp attacks on these stationary prey groups, which varywidely in size, allows separation of attacks at the colony andindividual level and provides evidence of a complex attack-abatementeffect. No predator attacks were observed for solitaries andsmall groups of two to eight spiders. In groups of 10 spidersor more, predator encounter rate increases with group size,although at a decreasing rate. This nonlinear relationship suggestsan encounter avoidance effect that may be due in part to a visualapparency effect, wherein the target area presented by thesethree-dimensional colonies does not increase proportionatelywith increasing group size. Despite increased encounter ratesin larger colonies, individual risk decreases with colony size,but not entirely similar to the manner predicted by a numericaldilution effect. Dilution of attack risk per individual maybe offset by the foraging behavior of wasp predators, as theyconcentrate their foraging and sequentially attack more spidersin larger groups. Even so, wasp capture efficiency decreaseswithcolony size, as spiders become aware of attacks on others,suggesting an early warning effect from web vibrations. As aresult of these combined effects, in colonies of 10 of morespiders, overall predation risk from wasps decreases with increasinggroup size.  相似文献   

7.
The communal orb-weaving spider, Philoponella republicana,was observed in the subtropical moist forest of Southeast Peru. These spiders live in colonies of conspecifics whose individual orbs are connected by silk. The wrapping of a prey prior to feeding is a large component of the prey capture process because P. republicanahas no venom with which to kill an insect. Wrapping time was the only aspect of prey capture that was strongly correlated with the size of the insect captured. Occasionally we observed several individuals working together to wrap a prey item. These joint efforts were more frequent on prey larger than the capturing spider. Although group captures accounted for only 5.5% of captures, they represented 14.7% of the biomass obtained. A comparison of the relationship between wrapping time and prey size for solitary and group efforts suggested that, by working together, the spiders reduced their total handling time. In most cases only one spider fed on the captured prey.  相似文献   

8.
Individuals of the orb-weaving spider Nephila clavipesbuild complex webs with a region used for prey capture, the orb, and tangle webs opposite either face, the barrier webs. Barrier webs have been hypothesized to serve a variety of functions, including predator defense, and the primary function of the barrier web should be reflected in the relative size of the barrier to the orb under varying conditions of foraging success and predation risk. To investigate the effects of predation pressure and foraging success on barrier web structure, I conducted a comparative study in three disjunct populations that differed in predation risk and foraging success. Although both the orb web and the barrier webs are silk, there was no indication of a foraging-defense trade-off. Barrier web structure did not change during seasonal shifts in orb web size related to changes in preycapture rate, and barrier web silk density and orb radius were positively correlated. The hypothesis that the construction of barrier webs is in part a response to predation pressure was supported. Barrier webs do deflect attacks by some predators, and barrier webs built by small spiders, suffering frequent predation attempts, had a higher silk density than barrier webs built by larger individuals. Additionally, barrier web complexity decreased at a later age in areas with higher predation risk.  相似文献   

9.
The behavior of colonial orb-weaving spiders (Metepeira incrassata) in tropical Veracruz, Mexico was studied during the total solar eclipse on July 11, 1991. Spiders behaved in a manner typical of daily activity until totality, when many began taking down webs. After solar reappearance, most spiders that had begun taking down webs rebuilt them. There was no significant difference in the overall activity patterns of spiders during totality across a range of colony sizes. Experimental illumination of part of a colony during totality altered web takedown behavior. While spiders in the darkness of totality began to take down webs, those spiders which were artificially illuminated did not. These observations suggest that the primary environmental cue responsible for the daily rhythm of web building behavior in this species is light level.  相似文献   

10.
Among group‐living spiders, subsocial representatives in the family of crab spiders (Thomisidae) are a special case, as they build protective communal leaf nests instead of extensive communal capture webs. It could thus be inferred that antipredator benefits (e.g., enhanced protection in larger nests) rather than foraging‐related advantages (e.g., capture of more and larger prey) promote sociality in this family. Nonetheless, subsocial crab spiders do share prey, and if this behaviour does not reflect mere food scramble but has a cooperative character, crab spiders may offer insights into the evolution of social foraging applicable to many other cooperative predators that hunt without traps. Here, we performed a comparative laboratory feeding experiment on three of the four subsocial crab spider species—Australomisidia ergandros, Australomisidia socialis and Xysticus bimaculatus—to determine if crab spiders derive advantages from foraging in groups. In particular, we tested artificially composed groups of five sibling spiderlings vs. single siblings in terms of prey capture success and prey size preference. Across species, groups had higher prey capture success (measured in terms of capture rates and capture latency) and were more likely to attack large, sharable prey—dynamics leading to reduced food competition among group members in favour of living and foraging in groups. Within groups, we further compared prey extraction efficiency among the three applied social foraging tactics: producing, scrounging and feeding alone. In A. ergandros, individuals were exceptionally efficient when using the non‐cooperative scrounger tactic, which entails feeding on the prey provided by others. Thus, our multispecies comparison confirms foraging advantages in maintaining a cooperative lifestyle for crab spiders, but also demonstrates the relevance of research into exploitation of cooperative foraging in this family.  相似文献   

11.
We combine statistical and phylogenetic approaches to test the hypothesis that adaptive radiation and key innovation have contributed to the diversity of the order Araneae. The number of unbalanced araneid clades (those whose species numbers differ by 90% or more) exceeds the number predicted by a null Markovian model. The current phylogeny of spider families contains 74 bifurcating nodes, of which 31 are unbalanced. As this is significantly more than the 14.8 expected unbalanced nodes, some of the diversity within the Araneae can be attributed to some deterministic cause (e.g., adaptive radiation). One of the more highly unbalanced (97%) bifurcations divides the orb-weaving spiders into the Deinopoidea and the larger Araneoidea. A simple statistical model shows that the inequality in diversity between the Deinopoidea and the Araneoidea is significant, and that it is associated with the replacement of primitive cribellar capture thread by viscous adhesive thread and a change from a horizontal to a vertical orb-web orientation. These changes improve an orb-web's ability to intercept and retain prey and expand the adaptive zone that orb-weaving spiders can occupy and are, therefore, considered to be “key innovations.”  相似文献   

12.
Species-specific differences in prey-capture success of co-existing web-building spiders are derived from complex factors: various web parameters, web placement, and the spider's response to prey. By examining these, this study revealed prey-capture modes of three species of web-building spiders of the genus Cyclosa living in the same habitat. Cyclosa octotuberculata and C. argenteoalba showed a greater prey capture rate than C. sedeculata , though size compositions of prey were similar in all species. Cyclosa octotuberculata spins thick silk with large adhesive droplets, which may contribute to the higher stopping and retention abilities of the web. Cyclosa argenteoalba constructs webs at open sites where prey is abundant, and has webs of dense mesh size, which may result in the high stopping ability of webs. In C. sedeculata , the web is less effective for stopping and retaining prey, probably owing to the thin silk with a small amount of sticky material, and the response to prey is not rapid. It seems that the former two species achieve a similar level of foraging success by using different sets of foraging traits and the third species has the disadvantage in most aspects of foraging.  相似文献   

13.
Gunnar Rehfeldt 《Oecologia》1992,89(4):550-556
Summary Predation by orb-weaving spiders and crab spiders on the damselfly Calopteryx haemorrhoidalis was studied at a small stream in Southern France. One species of orb-weaving spider, Larinioides folium, caught 76% of the damselflies which fell prey to spiders. Displacement experiments on spiders on sections of bank and the positioning of webs in male territories show that the density and distribution of damselflies is not influenced by orbweb density or by the position of webs. Predation rates corresponded to orb-web density, but neither for sex nor for stage was there a relationship with damselfly density. Mean daily predation rates ranged between 0.9% for females and 4.1% for adult males. Predation risk to adult damselflies by orb-weaving spiders was male biased, whereas among tenerals there was no bias. Males were captured more frequently at territories near the water. Captures show a maximum at noon when territorial disputes of adult males were most frequent. After orbwebs were placed within territories predation rate of males was strongly increased. Predation risk to adult females in the direct vicinity of the stream was less than in the bank vegetation where they perch close to orbwebs. The risk of predation by crab spiders, which catch damselflies at their perching sites, was not sex-biased.  相似文献   

14.
Animal body coloration serves several functions such as thermoregulation, camouflage, aposematism, and intraspecific communication. In some orb‐web spiders, bright and conspicuous body colours are used to attract prey. On the other hand, there are other species whose body colour does not attract prey. Using a spider species showing individual body‐colour variation, the present study aimed to determine whether or not the variation in body colour shows a correlation with predation rates. We studied the orb‐web spider (Cyclosa argenteoalba) using both field observations and T‐maze experiments, in which the prey were exposed to differently coloured spiders. Cyclosa argenteoalba has silver‐ and black‐coloured areas on its dorsal abdomen, with the ratio of these two colours varying continuously among individuals. The bright and conspicuous silver area reflects ultraviolet light. Results of both field observations and colour choice experiments using Drosophila flies as prey showed that darker spiders have a greater chance of capturing prey than silver spiders. This indicates that body‐colour variation affects predation success among individuals and that the bright silver colour does not function to attract prey in C. argenteoalba.  相似文献   

15.
David H. Wise 《Oecologia》1981,48(2):252-256
Summary A field experiment was conducted to establish whether or not inter-and intraspecific competition occurs between two syntopic species of orb-weaving spiders. Replicated single-species and mixed-species adult populations of the basilica spider, Mecynogea lemniscata, and the labyrinth spider, Metepeira labyrinthea, were established at a range of densities on open experimental units in the species' natural habitat. Each experimental unit was a 4mx1.6mx1m wood frame supporting branches upon which introduced spiders built webs. Survival and reproduction on the units were monitored from 1 August through 1 November 1978,There were no significant negative interspecific effects of density upon either survival or reproduction, which indicates that interspecific competition was not occurring during the experiment. There was statistically significant evidence of intraspecific competition between females for both species, but the negative density effects were small. They explained 5% of the variance in Mecynogea web height, 2% of the variance in Metepeira survival, and 1% of the variation in number of eggs per sac for Mecynogea.Hence inter-and intraspecific competition was either absent or weak in 1978, despite the fact that a field experiment conducted the previous year (Wise 1979) demonstrated that prey abundance was limiting the egg production of both species. Evidence of food limitation in 1977 followed by only weak competitive interactions the following year suggests that the significance of resource limitation and competition may vary temporally for the basilica and labyrinth spiders.  相似文献   

16.
Prey-capture behaviour of seven species of Phidippus is studied using two types of prey, house flies (adult Musca domestica ) and caterpillars (cabbage loopers, larval Trichoplusia ni ). Each species is shown to be a versatile predator which uses a different prey-specific prey-capture behaviour depending on whether prey is a fly or a caterpillar: spiders approached the two types of prey differently and leapt on them from different distances. Interspecific differences among Phidippus species are not pronounced, cxcept for variation in the distance from which spiders jumped and the spider's success at capturing a fly on the first try.  相似文献   

17.
The analysis of collaborative predation sequences performed by groups of 10 individuals (females) in a nonterritorial permanent-social spider, A. eximius, shows that prey-captures are organized in successive steps. Spiders begin by throwing sticky silk, which hinders the prey in the web; they then throw dry silk, which completes the immobilization of the prey. The third step is characterized by bites that paralyze the prey that will be then carried. A concordance test reveals a coordination of the individual's acts that explains the collaborative prey-capture efficiency. No individual specialization in one type of act has been shown. On the contrary, by using living preys or artificially dead vibrated preys, we show that all individuals have equipotential behaviors. Furthermore, each spider is able to adjust its behavior to the state of the prey. Individuals already involved in prey transportation can again display bites or sticky silk throwing if the prey is artificially vibrated. This mechanism, which corresponds to stimergic processes responsible for self-organized phenomena, already described in social insects, permits a coordination of individual acts without the recourse of direct communication. These results permit us to understand better how individuals coordinate their acts and lead us to support the hypothesis that the transition between solitary species and social species in spiders could have been sudden.  相似文献   

18.
The first orb web built by newly hatched spiders resembles the adult web in its overall form and structure. However, many details show ontogenetic changes. One possible explanation for these changes is that the tiny early‐instar spiders with their minute brains will make more mistakes and build less ‘perfect’ orb webs than older and larger juveniles and adults. To test this hypothesis, known as the size limitation hypothesis, I analysed orb webs from three developmental stages, spiderlings, juveniles and adult females, in two neotropical orb‐web spiders, the araneid Eustala illicita and the nephilid Nephila clavipes. Neither species showed clear signs of being behaviourally limited or more prone to committing errors as spiderlings than were older juveniles or adults. These findings therefore do not support the size limitation hypothesis in either species. Finally, I looked for evidence of the ‘biogenetic law’, which predicts that juveniles should build less derived orb webs than the adults. Evidence for this was found in E. illicita, but not in N. clavipes.  相似文献   

19.
Spiders are common generalist predators in agroecosystems and have been suggested to lower herbivore abundance in crops. It is not clear, however, if spiders can effectively suppress pest populations, and if so, by what mechanisms. In a microcosm experiment, we examined the consumption of the bird cherry-oat aphid, Rhopalosiphum padi L. (Homoptera: Aphididae), a pest species in wheat fields, by three spider species that differ in their hunting methods. We then tested the effect of additional prey type on the ability of erigonid spiders to reduce aphids. In a 48-h experiment Mermessus denticulatus (Banks) (Araneae: Linyphiidae; Erigoninae) consumed more aphids than did Enoplognatha gemina Bosmans and Van Keer (Araneae: Theridiidae) and Bathyphantes cf. extricatus (O·P.-Cambridge) (Araneae: Linyphiidae; Linyphiinae). This difference may be due to the ability of erigonids to forage actively on the vegetation in addition to using their webs to catch prey. In a 7-week experiment, we provided springtails (Collembola) in high and low densities as additional prey to mated erigonids, prior to aphid introduction. Spiders in the low-density springtail treatment built more webs on the vegetation, and caused a 50% reduction in aphid populations. There were significantly fewer aphids in the low-density springtail treatment, but not in the high-density treatment, in comparison to the control (high-density springtails without spiders). The results suggest that additional prey density affects predatory interactions between M. denticulatus and R. padi and that erigonids, which occur in high densities in wheat fields in the Negev desert, may be involved in aphid suppression in these agroecosystems.
Efrat Gavish-RegevEmail:
  相似文献   

20.
How task specialization, individual task performance and within-group behavioural variation affects fitness is a longstanding and unresolved problem in our understanding of animal societies. In the temperate social spider, Anelosimus studiosus, colony members exhibit a behavioural polymorphism; females either exhibit an aggressive 'asocial' or docile 'social' phenotype. We assessed individual prey-capture success for both phenotypes, and the role of phenotypic composition on group-level prey-capture success for three prey size classes. We then estimated the effect of group phenotypic composition on fitness in a common garden, as inferred from individual egg-case masses. On average, asocial females were more successful than social females at capturing large prey, and colony-level prey-capture success was positively associated with the frequency of the asocial phenotype. Asocial colony members were also more likely to engage in prey-capture behaviour in group-foraging situations. Interestingly, our fitness estimates indicate females of both phenotypes experience increased fitness when occupying colonies containing unlike individuals. These results imply a reciprocal fitness benefit of within-colony behavioural variation, and perhaps division of labour in a spider society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号