首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
 Isozyme analysis of seed samples derived from natural and managed populations of the tropical pine Pinus caribaea vars ‘bahamensis’ and ‘caribaea’ was used to assess population genetic structure in its native range and to detect changes occurring during early domestication of the species. Baseline data from natural populations of the two varieties showed that populations sampled as seed are characterized by high gene diversity (mean He=0.26) and a low level of inbreeding ( mean Fis=0.15). A UPGMA tree of genetic relatedness among populations indicates that the two varieties represent distinct evolutionary units. Within each variety there is significant differentiation among populations, and this is greater for the more fragmented populations of var ‘bahamensis’ (Fst=0.08) than for var ‘caribaea’ (Fst=0.02). Seed from a seed orchard population of var ‘caribaea’ established within its natural range showed no change in genetic diversity but did show a reduced inbreeding coefficient (Fis=0.09) compared with its progenitor populations, suggesting a decrease in selfing and/or biparental inbreeding. A bulked seed sample from an exotic plantation of var ‘bahamensis’ in Australia displayed a large increase in the inbreeding coefficient (Fis=0.324) compared with that found in natural populations, possibly due to elevated self-fertilization. Finally, a bulked seed sample from an exotic plantation population of var ‘caribaea’ from China showed enhanced genetic diversity, an increase in the inbreeding coefficient and more linkage disequilibrium than its presumed progenitor populations. It was also genetically divergent from them. RFLP analysis of chloroplast DNA variation in the Chinese sample suggested that seeds of the related taxa P. elliottii and P. taeda, or seeds derived from hybridization with these taxa growing in the seed production area, had been included in the seed crop during harvesting. We conclude that monitoring of appropriate genetic markers may be an effective means of identifying potentially deleterious genetic changes occurring during forest tree domestication. Received: 10 August 1998 / Accepted: 8 September 1998  相似文献   

2.
We present the first study of patterns of genetic diversity of sorghum landraces at the local scale. Understanding landrace diversity aids in deciphering evolutionary forces under domestication, and has applications in the conservation of genetic resources and their use in breeding programs. Duupa farmers in a village in Northern Cameroon distinguished 59 named sorghum taxa, representing 46 landraces. In each field, seeds are sown as a mixture of landraces (mean of 12 landraces per field), giving the potential for extensive gene flow. What level of genetic diversity underlies the great morphological diversity observed among landraces? Given the potential for gene flow, how well defined genetically is each landrace? To answer these questions, we recorded spatial patterns of planting and farmers’ perceptions of landraces, and characterized 21 landraces using SSR markers. Analysis using distance and clustering methods grouped the 21 landraces studied into four clusters. These clusters correspond to functionally and ecologically distinct groups of landraces. Within-landrace genetic variation accounted for 30% of total variation. The average F is over landraces was 0.68, suggesting high inbreeding within landraces. Differentiation among landraces was substantial and significant (F st = 0.36). Historical factors, variation in breeding systems, and farmers’ practices all affected patterns of genetic variation. Farmers’ practices are key to the maintenance, despite gene flow, of landraces with different combinations of agronomically and ecologically pertinent traits. They must be taken into account in strategies of conservation and use of genetic resources.  相似文献   

3.
 A barley lambda-phage library was screened with (GA)n and (GT)n probes for developing microsatellite markers. The number of repeats ranged from 2 to 58 for GA and from 2 to 24 for GT. Fifteen selected microsatellite markers were highly polymorphic for barley. These microsatellite markers were used to estimate the genetic diversity among 163 barley genotypes chosen from the collection of the IPK Genebank, Germany. A total of 130 alleles were detected by 15 barley microsatellite markers. The number of alleles per microsatellite marker varied from 5 to 15. On average 8.6 alleles per locus were observed. Except for GMS004 all other barley microsatellite markers showed on average a high value of gene diversity ranging from 0.64 to 0.88. The mean value of gene diversity in the wild forms and landraces was 0.74, and even among the cultivars the gene diversity ranged from 0.30 to 0.86 with a mean of 0.72. No significant differences in polymorphism were detected by the GA and GT microsatellite markers. The estimated genetic distances revealed by the microsatellite markers were, on average , 0.75 for the wild forms, 0.72 for landraces and 0.70 among cultivars. The microsatellite markers were able to distinguish between different barley genotypes. The high degree of polymorphisms of microsatellite markers allows a rapid and efficient identification of barley genotypes. Received: 26 November 1997 / Accepted: 19 January 1998  相似文献   

4.
Knowledge of genebank and on-farm genetic diversity, particularly in an introduced crop species, is crucial to the management and utilization of the genetic resources available. Microsatellite markers were used to determine genetic diversity in 574 accessions of cacao, Theobroma cacao L., representing eight groups covering parental populations in West Africa, genebank, and farmers’ populations in Nigeria. From the 12 microsatellite markers used, a total of 144 alleles were detected with a mean allelic richness of 4.39 alleles/locus. The largest genetic diversity was found in the Upper Amazon parent population (H nb  = 0.730), followed by the 1944 Posnette’s Introduction (H nb  = 0.704), and was lowest in the Local parent population (H nb  = 0.471). Gene diversity was appreciably high in the farmers’ populations (H nb  = 0.563–0.624); however, the effective number of alleles was lower than that found in the genebank’s Posnette’s population. Fixation index estimates indicated deficiency of heterozygotes in the Upper Amazon and the Local parent populations (F is  = 0.209 and 0.160, respectively), and excess of heterozygotes in the Trinitario parent population (F is  = −0.341). The presence of inbreeding in the Local parent populations and substructure (Wahlund effect) in the Upper Amazon were suggested for the deficiency of heterozygotes observed. Non-significant genetic differentiation observed between the genebank’s and farmers’ populations indicated significant impact of national breeding programs on varieties grown in farmers’ plantations. From this study, we showed that appreciable genetic diversity was present in on-farm and field genebank collections of cacao that can be exploited for crop improvement in West Africa. Suggestions for future conservation of on-farm genetic diversity and local landraces are further discussed.  相似文献   

5.
The Risso’s dolphin (Grampus griseus) has a worldwide distribution, but little is known about their population genetic structure. Local coastal populations are never known to be abundant, and are sometimes under anthropogenic impact. Therefore the question of regional differentiation by genetic drift and overall diversity levels is of conservation interest. Here we present preliminary data that clearly indicate genetic differentiation and lower genetic diversity of a population sampled in UK waters (primarily from the Western Isles, Scotland) compared to a Mediterranean sample. Significant differentiation was found in comparison with a sample from the Mediterranean for both microsatellite DNA markers (F ST = 0.0296) and mtDNA sequence data (F ST = 0.260; ϕ ST = 0.542). Allelic diversity was lower in the UK for nearly all loci.  相似文献   

6.
 The potential of DNA markers such as microsatellites, minisatellites and RAPDs was investigated in pearl millet [Pennisetum glaucum (L.) R. Br] with respect to their abundance and variability. Southern analysis, using 22 different di-, tri-, tetra- and penta-oligonucleotide probes and five minisatellite probes, identified (GATA)4 as the most useful probe for the detection of multiple polymorphic fragments among pearl millet cultivars and landraces from India. The clustering patterns of pearl millet cultivars and landraces based on (GATA)4 and RAPD (randomly amplified polymorphic DNA) markers differed. The landraces, representing eight states in India, could not be grouped based on their geographical distribution with the DNA markers. RAPD analysis revealed a high degree of genetic diversity among the cultivars and landraces employed in this study. The probability of an identical match by chance for any two genotypes using (GATA)4 and RAPDs was 3.02×10-20 for cultivars and 5.2×10-9 for landraces. The microsatellite (GATA)4 and RAPDs provide useful tools for genotype identification and for the assessment of genetic relationships in pearl millet. Received: 19 October 1997 / Accepted: 9 December 1997  相似文献   

7.

Purple or black rice (Oryza sativa L.) is a culturally important germplasm in Asia with a long history of cultivation in northern Thailand. Purple rice is identified by the color of the rice pericarp, which varies from purple to black with the accumulation of phenolic acids, flavonoids, and anthocyanins. In the present study, we assessed molecular variation within and between wetland purple rice landraces germplasm from northern and northeastern Thailand using 12 microsatellite loci. All purple rice varieties surveyed showed high levels of homozygosity within varieties and strong genetic differentiation among varieties, indicating the fixation of genetic differences among them. This pattern is consistent with purple rice farming practices in northern Thailand, where a small portion of harvested seed is selected and replanted based on farmers’ preferences. The reduced genetic diversity and high homozygosity observed for purple rice is also consistent with patterns expected for this inbreeding crop. Genetic differentiation among the varieties showed some degree of structuring based on their geographical origin. Taken together, these data highlight that the genetic diversity and structure of wetland purple rice landraces is shaped by farmer utilization and cultivation through local cultural practices, and that conservation should focus on ex situ conservation across its cultivation range, along with on-farm, in situ conservation based on farmers’ seed-saving practices. In situ conservation may prove especially valuable for preserving the genetic identity of local varieties and promote adaptation to local environments.

  相似文献   

8.
The Przewalski’s gazelle (Procapra przewalskii) is one of the most endangered antelope species in the world. It is endemic to China and is a flagship species in the eastern part of the Qinghai–Tibet plateau. To establish effective conservation measures on this species, genetic information such as genetic structure is needed. However, there has not been a comprehensive genetic assessment on this gazelle using nuclear DNA markers yet. Here, we employed 13 microsatellite loci to investigate genetic diversity, population genetic structure and demographic history of Przewalski’s gazelle using noninvasive samples of 169 wild gazelles collected from nine populations. A total of 76 alleles were detected from the entire samples, mean allele number was 5.85, and overall H O and H E were 0.525 and 0.552, respectively. Structure and GENELAND analyses found six genetic groups in the nine populations. Between the inferred genetic groups, significant genetic differentiation and low migration rates were detected. Demographic analyses indicated that Przewalski’s gazelle experienced genetic bottleneck and severe population decline, with the ancestral effective population size reducing to less than one percent. Based on the results of this study, we provide several conservation recommendations for Przewalski’s gazelle, such as six management units, periodic monitoring and special conservation consideration on the Qiejitan population.  相似文献   

9.
Diversity among 124 sorghum landraces from 10 villages surveyed in 3 regions of Burkina Faso covering different agroecological zones was assessed by 28 agromorphological traits and 29 microsatellite markers. 94.4% of the landraces collected belonged to the botanical race guinea (consisting of 96.6% guinea gambicum and 3.4% guinea margaritiferum), 74.2% had white kernels, 13.7% had orange and 12.1% had red kernels. Compared to the “village nested within zone” factor, the “variety nested within village within zone” factor predominately contributed to the diversity pattern for all nine statistically analysed quantitative traits. The multivariate analyses performed on ten morphological traits identified five landrace groups, and of these, the red kernel sorghum types appeared the most homogenous. 2 to 17 alleles were detected per locus with a mean 4.9 alleles per locus and a gene diversity (He) of 0.37. Landraces from the sub-Sahelian zone had the highest gene diversity (He = 0.38). Cluster analysis revealed that the diversity was weakly stratified and could not be explained by any biophysical criteria. One homogenous guinea margaritiferum group was distinguished from other guinea landraces. The red kernel type appeared to be genetically distinct from all other guinea landraces. The kernel colour was the principal structuring factor. This is an example of a homogeneous group of varieties selected for a specific use (for local beer preparation), mainly grown around the households in compound fields, and presenting particular agromorphological and genetic traits. This is the most original feature of sorghum diversity in Burkina Faso and should be the focus of special conservation efforts.  相似文献   

10.
Ma YS  Yu H  Li YY  Yan H  Cheng X 《Biochemical genetics》2008,46(3-4):227-240
Genetic diversity and genetic structure within and among ten populations of Stephania yunnanensis H. S. Lo and three populations of S. epigaea H. S. Lo from Yunnan province were evaluated by direct amplification of length polymorphism (DALP) markers. Five primer groups were screened, and a total of 287 DNA fragments were amplified, among which 266 were polymorphic, averaging 53.2 polymorphic bands per primer group in S. yunnanensis. The percentage of polymorphic bands of S. yunnanensis was 92.68% at the species level and 61.92% within the ten populations sampled. At the species level, the observed number of alleles (N a) was 1.9268 and the effective number of alleles (N e) was 1.5933; Nei’s gene diversity (H) was 0.3414; Shannon’s information index (I) was 0.5057. At the population level, N a = 1.6192, N e = 1.4001, H = 0.2298, and I = 0.3401. Total gene diversity of S. yunnanensis was 0.3419. Gene diversity within population was 0.2298, coefficient of gene differentiation was 0.3278, and estimated gene flow was 1.0254. The results indicated that the genetic differentiation was relatively higher among populations of S. yunnanensis. DALP markers were an informative and useful method for assaying genetic diversity and authenticating species of Stephania. These data could provide basic molecular evidence for establishing a reasonable strategy for protecting and exploiting the resource of S. yunnanensis.  相似文献   

11.
Fonio millets (Digitaria exilis Stapf, D. iburua Stapf) are valuable indigenous staple food crops in West Africa. In order to investigate the genetic diversity and population differentiation in these millets, a total of 122 accessions from five countries (Benin, Burkina Faso, Guinea, Mali and Togo) were analysed by Amplified Fragment Length Polymorphisms (AFLPs). Genetic distance-based UPGMA clustering and principal coordinate analysis revealed a clear-cut differentiation between the two species and a clustering of D. exilis accessions in three major genetic groups fitting to their geographical origins. Shannon’s diversity index detected in D. iburua was low (H = 0.02). In D. exilis, the most widespread cultivated species, moderate levels of genetic diversity (Shannon’s diversity H = 0.267; Nei’s gene diversity H′ = 0.355) were detected. This genetic diversity is unequally distributed with the essential part observed in the Upper Niger River basin while a very low diversity is present in the Atacora mountain zone. Analysis of molecular variance (AMOVA) revealed that a large part of the genetic variation resides among the genetic groups (70%) and the country of origin (56%), indicating a clear genetic differentiation within D. exilis. Influence of mating system (inbreeding or apomixis), agricultural selection and ecological adaptations as well as founding effects in the genetic make-up of the landraces were visible and seemed to jointly contribute to the genetic structure detected in this species. The genetic variability found between the analysed accessions was weakly correlated with their phenotypic attributes. However, the genetic groups identified differed significantly in their mean performance for some agro-morphologic traits. The results obtained are relevant for fonio millets breeding, conservation and management of their genetic resources in West Africa.  相似文献   

12.
Island populations and populations established by reintroductions are prone to extinction, in part because they are vulnerable to deterministic and stochastic phenomena associated with geographic isolation and small population size. As population size declines, reduced genetic diversity can result in decreased fitness and reduced adaptive potential, which may hinder short- or long-term population viability. We used 32 microsatellite markers to investigate the conservation genetics of a newly established population of Evermann’s Rock Ptarmigan (Lagopus muta evermanni) at Agattu Island, in the western Aleutian Archipelago, Alaska. We found low genetic diversity (observed heterozygosity = 0.41, allelic richness = 2.2) and a small effective population size (N e  = 28.6), but a relatively large N e /N ratio = 0.55, which was attributed to multiple paternity in 80% of the broods and low reproductive skew among males (λ = 0.29). Moreover, successful breeding pairs were less related to each other than random male–female pairs. For conservation efforts based on reintroductions, a mating system with high rates of multiple paternity may facilitate retention of genetic diversity, thereby reducing the potential for inbreeding in small or isolated populations. Our results underscore the importance of quantifying genetic diversity and understanding the breeding behavior of translocated populations.  相似文献   

13.
Castanea squinii Dode, an endemic tree widely distributed in China, plays an important role both in chestnut breeding and forest ecosystem function. The spatial genetic structure within and among populations is an important part of the evolutionary and ecological genetic dynamics of natural populations, and can provide insights into effective conservation of genetic resources. In the present study, the spatial genetic structure of a panmictic natural population of C. sequinii in the Dabie Mountain region was investigated using microsatellite markers. Nine prescreened microsatellite loci generated 29–33 alleles each, and were used for spatial autocorrelation analysis. Based on Moran’s I coefficient, a panmictic population of C. sequinii in the Dabie Mountain region was found to be lacking a spatial genetic structure. These results suggest that a high pollen-mediated gene flow among subpopulations counteract genetic drift and/or genetic differentiation and plays an important role in maintaining a random and panmictic population structure in C. sequinii populations. Further, a spatial genetic structure was detected in each subpopulation’s scale (0.228 km), with all three subpopulations showing significant fine-scale structure. The genetic variation was found to be nonrandomly distributed within 61 m in each subpopulation (Moran’s I positive values). Although Moran’s I values varied among the different subpopulations, Moran’s I in all the three subpopulations reached the expected values with an increase in distances, suggesting a generally patchy distribution in the subpopulations. The fine-scale structure seems to reflect restricted seed dispersal and microenvironment selection in C. sequinii. These results have important implications for understanding the evolutionary history and ecological process of the natural population of C. sequinii and provide baseline data for formulating a conservation strategy of Castanea species. __________ Translated from Acta Phytoecologica Sinica, 2006, 30(1): 147–156 [译自: 植物生态学报]  相似文献   

14.
Understanding the extent and partitioning of diversity within and among crop landraces and their wild/weedy relatives constitutes the first step in conserving and unlocking their genetic potential. This study aimed to characterize the genetic structure and relationships within and between cultivated and wild sorghum at country scale in Kenya, and to elucidate some of the underlying evolutionary mechanisms. We analyzed at total of 439 individuals comprising 329 cultivated and 110 wild sorghums using 24 microsatellite markers. We observed a total of 295 alleles across all loci and individuals, with 257 different alleles being detected in the cultivated sorghum gene pool and 238 alleles in the wild sorghum gene pool. We found that the wild sorghum gene pool harbored significantly more genetic diversity than its domesticated counterpart, a reflection that domestication of sorghum was accompanied by a genetic bottleneck. Overall, our study found close genetic proximity between cultivated sorghum and its wild progenitor, with the extent of crop-wild divergence varying among cultivation regions. The observed genetic proximity may have arisen primarily due to historical and/or contemporary gene flow between the two congeners, with differences in farmers’ practices explaining inter-regional gene flow differences. This suggests that deployment of transgenic sorghum in Kenya may lead to escape of transgenes into wild-weedy sorghum relatives. In both cultivated and wild sorghum, genetic diversity was found to be structured more along geographical level than agro-climatic level. This indicated that gene flow and genetic drift contributed to shaping the contemporary genetic structure in the two congeners. Spatial autocorrelation analysis revealed a strong spatial genetic structure in both cultivated and wild sorghums at the country scale, which could be explained by medium- to long-distance seed movement.  相似文献   

15.
 To gain information on the extent and nature of genetic variation in Elymus alaskanus, levels and distribution of genetic variation were assessed within and among 13 populations originating from Iceland, Norway, Sweden and Russia using allozymes. The results showed that four (30.7%) of the 13 loci were polymorphic within the species, while the mean percentage of polymorphic loci within the populations was 1.9%. The mean number of alleles per locus for the species was 1.8 and 1.02 across the populations. Genetic diversity at the species level was low (H es=0.135), and mean population diversity was notably lower (H ep=0.005). A high degree of genetic differentiation was observed among populations. The salient points emerging from this study are: (1) statistically significant differences were found in allele frequencies among populations for every polymorphic locus (P<0.001), (2) the high mean coefficient of gene differentiation (G ST) showed that 95% of the total allozyme variation was attributable to differences among populations, and (3) relatively high genetic distances between the populations were obtained (mean D=0.16). The Norwegian populations had the highest genetic diversity as compared with the other populations. Geographical comparisons revealed three different groups of populations clearly differentiated, i.e. Scandinavia (Norway and Sweden), Iceland and Russia. Cluster and principal coordinates analyses revealed the same genetic patterns of relationships among populations. Generally, this study indicates that E. alaskanus contains low allozymic variation in its populations. The implications of these results for the conservation of the species are discussed. Received: 23 October 1998 / Accepted: 19 December 1998  相似文献   

16.
In the present study we have analyzed the genetic diversity pattern in a sample of 54 Italian maize landraces, using morphological traits and molecular markers. Although the 54 landraces surveyed in this study were restricted to Lombardy, the core region of maize production in Italy, our data revealed a large genetic heterogeneity for both morphological and molecular traits in the accessions analyzed. Additionally, our data confirm that the AFLP markers produced a high frequency of polymorphic bands and were able to unequivocally fingerprint each of the landraces considered. Cluster analysis based on AFLP markers displayed a clearer separation of the accessions in comparison to morphological data. Different populations were divided into four major clusters reflecting the geographical origin and seasonal employment of the landraces analyzed. Molecular analysis of variance showed significant (P < 0.01) differences among groups, among populations within groups, and among individuals within populations. Approximately 74% of the total variance could be attributed to differences within populations. Conversely, a lower level of differentiation was detected among groups (~4%). Regarding population structures, the genetic distance between populations (F ST = 0.25 ± 0.3) and the degree of inbreeding within groups (F SC = 0.22 ± 0.2), did not diverge significantly, while both significantly differed from the degree of relatedness between markers within groups (F CT = 0.04 ± 0.03). Results are discussed in relation to a suitable conservation method.  相似文献   

17.
Brandt’s vole (Lasiopodomys brandtii) distribution is discontinuous in Inner Mongolia with some populations isolated from others. Recently, some isolated populations have suffered extinction, and the factors responsible remain elusive. Genetic drift is one of the processes affecting population genetic differentiation, and can play a substantial role in the divergence of small, isolated populations. Using seven microsatellite markers, we genotyped four geographically isolated populations of Brandt’s vole, all of which exhibit episodic fluctuations in population density. The results showed a strong genetic differentiation among the geographically distinct populations (total F ST = 0.124) and in particular, one population (Zhengxiangbaiqi) was isolated from all others (F ST values were greatest between Zhengxiangbaiqi and other populations). Furthermore, high levels of inbreeding (F IS values ranged from 0.205 to 0.290) within each distinct population suggest that inbreeding has and is likely occurring in Brandt’s vole populations. These processes can decrease average individual fitness and consequently increase the risk of extinction of the species.  相似文献   

18.
Labeo rohita, popularly known as rohu is a widely cultured species in the whole Indian subcontinent. Knowledge of the genetic diversity of this species is important to support management and conservation programs which will subsequently help in sustainable production of this species. DNA markers, mostly microsatellite markers are excellent tool to evaluate genetic variation of populations. Genetic variation of three wild and one farm population was assessed using eleven microsatellite loci. In analyzing 192 samples, the number of alleles ranged from 4 to 23; observed heterozygosity 0.500 to 0.870 and expected heterozygosity from 0.389 to 0.878. Exact test for Hardy Weinberg disequilibrium revealed that each riverine sample had at least one locus not in equilibrium except one river. Negative inbreeding coefficients (FIS) were observed across populations indicating very high level of genetic diversity but little genetic differentiation among populations.  相似文献   

19.
Theobroma grandiflorum (cupuassu) is an important fruit tree native to the Brazilian Amazon. Establishing the genetic diversity and structure of populations is critical to define long-term strategies for cupuassu conservation presently threatened by rapid deforestation. Three natural populations collected at the putative center of diversity, three groups of accessions established at a germplasm collection, and one derived from commercial plantings were analyzed. The genetic diversity was assessed using 21 polymorphic microsatellite loci originally developed for Theobroma cacao, disclosing a total of 113 alleles. The estimated genetic diversity parameters averaged over cupuassu populations (A = 3.53 alleles per locus; H e = 0.426; H o = 0.346) were lower than the values reported for other Neotropical tree species. The three natural populations presented a positive and significant fixation index (f), ranging from 0.133 to 0.234. Cupuassu apparently adhered to a general pattern of genetic diversity structure of some Neotropical tree species occurring at low densities, with a low intrapopulation genetic diversity and important levels of endogamy, possibly due to biparental inbreeding derived from the presence of spatial genetic structure in the populations. A high level of genetic divergence was detected among the natural populations (θ p = 0.301), a strong differentiation caused by limited gene flow, and suggesting that human interference in spreading and/or stimulating plantings might have had a smaller effect than expected. The approximate location of the T. grandiflorum center of diversity could not be confirmed by analyzing natural populations from the putative region.  相似文献   

20.
In South America, native maize germplasm has been extensively studied particularly for the Andean region. However, relatively few genetic diversity studies include materials from the eastern region of the continent. Herein we present a genetic diversity characterization of four Popcorn maize landraces, maintained in indigenous settlements, from Northeastern Argentina (NEA). In addition, one Popcorn landrace from Northwestern Argentina (NWA) was incorporated for comparison. We characterized these landraces using ten microsatellite markers. For the whole data set, a total of 65 alleles were found, with an average of 7.22 alleles per locus. The average gene diversity was 0.370. Global fit to Hardy–Weinberg proportions was observed in all landraces. Global estimates of F ST revealed a significant differentiation among the populations. Individual Neighbor-joining clustering and Bayesian analyses allowed the recognition of most populations studied. Two main groups were distinguished by the Neighbor-joining clustering of populations. This grouping pattern would be consistent with a hypothesis of successive introductions of Popcorn in South America. The results presented will be useful to design strategies that maximize the utility of maize genetic resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号