首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virions of the type 1 human immunodeficiency virus (HIV-1) can enter target cells by fusion or endocytosis, with sharply different functional consequences. Fusion promotes productive infection of the target cell, while endocytosis generally leads to virion inactivation in acidified endosomes or degradation in lysosomes. Virion fusion and endocytosis occur equally in T cells, but these pathways have been regarded as independent because endocytosis of HIV virions requires neither CD4 nor CCR5/CXCR4 engagement in HeLa-CD4 cells. Using flow cytometric techniques to assess the binding and entry of green fluorescent protein (GFP)-Vpr-labeled HIV virions into primary peripheral blood mononuclear cells, we have found that HIV fusion and endocytosis are restricted to the CD4-expressing subset of cells and that both pathways commonly require the initial binding of HIV virions to surface CD4 receptors. Blockade of CXCR4-tropic HIV virion fusion with AMD3100, a CXCR4-specific entry inhibitor, increased virion entry via the endocytic pathway. Similarly, inhibition of endosome acidification with bafilomycin A1, concanamycin A, or NH(4)Cl enhanced entry via the fusion pathway. Although fusion remained dependent on CD4 and chemokine receptor binding, the endosome inhibitors did not alter surface expression of CD4 and CXCR4. These results suggest that fusion in the presence of the endosome inhibitors likely occurs within nonacidified endosomes. However, the ability of these inhibitors to impair vesicle trafficking from early to late endosomes in some cells could also increase the recycling of these virion-containing endosomes to the cell surface, where fusion occurs. In summary, our results reveal an unexpected, CD4-mediated reciprocal relationship between the pathways governing HIV virion fusion and endocytosis.  相似文献   

2.
Cell-free human immunodeficiency virus type 1 (HIV-1) can initiate infections, but contact between infected and uninfected T cells can enhance viral spread through intercellular structures called virological synapses (VS). The relative contribution of VS to cell-free viral transfer has not been carefully measured. Using an ultrasensitive, fluorescent virus transfer assay, we estimate that when VS between HIV-expressing Jurkat T cells and primary CD4(+) T cells are formed, cell-associated transfer of virus is 18,000-fold more efficient than uptake of cell-free virus. Furthermore, in contrast to cell-free virus uptake, the VS deposits virus rapidly into focal, trypsin-resistant compartments in target T cells. This massive virus internalization requires Env-CD4 receptor interactions but is resistant to inhibition by patient-derived neutralizing antisera that inhibit homologous cell-free virus. Deleting the Env cytoplasmic tail does not abrogate VS-mediated transfer, but it renders the VS sensitive to neutralizing antibodies, suggesting that the tail limits exposure of VS-neutralizing epitopes on the surface of infected cells. Dynamic live imaging of the VS reveals that HIV-expressing cells are polarized and make sustained, Env-dependent contacts with target cells through uropod-like structures. The polarized T-cell morphology, Env-CD4 coordinated adhesion, and viral transfer from HIV-infected to uninfected cells suggest that VS allows HIV-1 to evade antibody neutralization and to disseminate efficiently. Future studies will discern to what extent this massive viral transfer contributes to productive infection or viral dissemination through the migration of virus-carrying T cells.  相似文献   

3.
Human T-lymphotropic virus 1 (HTLV-1) is transmitted directly between cells via an organized cell-cell contact called a virological synapse (VS). The VS has been studied by light microscopy, but the ultrastructure of the VS and the nature of the transmitted viral particle have remained unknown. Cell-free enveloped virions of HTLV-1 are undetectable in the serum of individuals infected with the human T-lymphotropic virus 1 (HTLV-1) and during in vitro culture of naturally infected lymphocytes. However, the viral envelope protein is required for infectivity of HTLV-1, suggesting that complete, enveloped HTLV-1 virions are transferred across the synapse. Here, we use electron tomography combined with immunostaining of viral protein to demonstrate the presence of enveloped HTLV-1 particles within the VS formed between naturally infected lymphocytes. We show in 3D that HTLV-1 particles can be detected in multiple synaptic clefts at different locations simultaneously within the same VS. The synaptic clefts are surrounded by the tightly apposed plasma membranes of the two cells. HTLV-1 virions can contact the recipient cell membrane before detaching from the infected cell. The results show that the HTLV-1 virological synapse that forms spontaneously between lymphocytes of HTLV-1 infected individuals allows direct cell-cell transmission of the virus by triggered, directional release of enveloped HTLV-1 particles into confined intercellular spaces.  相似文献   

4.
The C-type lectin DC-SIGN expressed on immature dendritic cells (DCs) captures human immunodeficiency virus (HIV) particles and enhances the infection of CD4+ T cells. This process, known as trans-enhancement of T-cell infection, has been related to HIV endocytosis. It has been proposed that DC-SIGN targets HIV to a nondegradative compartment within DCs and DC-SIGN-expressing cells, allowing incoming virus to persist for several days before infecting target cells. In this study, we provide several lines of evidence suggesting that intracellular storage of intact virions does not contribute to HIV transmission. We show that endocytosis-defective DC-SIGN molecules enhance T-cell infection as efficiently as their wild-type counterparts, indicating that DC-SIGN-mediated HIV internalization is dispensable for trans-enhancement. Furthermore, using immature DCs that are genetically resistant to infection, we demonstrate that several days after viral uptake, HIV transfer from DCs to T cells requires viral fusion and occurs exclusively through DC infection and transmission of newly synthesized viral particles. Importantly, our results suggest that DC-SIGN participates in this process by cooperating with the HIV entry receptors to facilitate cis-infection of immature DCs and subsequent viral transfer to T cells. We suggest that such a mechanism, rather than intracellular storage of incoming virus, accounts for the long-term transfer of HIV to CD4+ T cells and may contribute to the spread of infection by DCs.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) infection of CD4(+) T cells leads to the production of new virions that assemble at the plasma membrane. Gag and Env accumulate in the context of lipid rafts at the inner and outer leaflets of the plasma membrane, respectively, forming polarized domains from which HIV-1 buds. HIV-1 budding can result in either release of cell-free virions or direct cell-cell spread via a virological synapse (VS). The recruitment of Gag and Env to these plasma membrane caps in T cells is poorly understood but may require elements of the T-cell secretory apparatus coordinated by the cytoskeleton. Using fixed-cell immunofluorescence labeling and confocal microscopy, we observed a high percentage of HIV-1-infected T cells with polarized Env and Gag in capped, lipid raft-like assembly domains. Treatment of infected T cells with inhibitors of actin or tubulin remodeling disrupted Gag and Env compartmentalization within the polarized raft-like domains. Depolymerization of the actin cytoskeleton reduced Gag release and viral infectivity, and actin and tubulin inhibitors reduced Env incorporation into virions. Live- and fixed-cell confocal imaging and assay of de novo DNA synthesis by real-time PCR allowed quantification of HIV-1 cell-cell transfer. Inhibition of actin and tubulin remodeling in infected cells interfered with cell-cell spread across a VS and reduced new viral DNA synthesis. Based on these data, we propose that HIV-1 requires both actin and tubulin components of the T-cell cytoskeleton to direct its assembly and budding and to elaborate a functional VS.  相似文献   

6.
A method has been developed to follow fusion of individual pseudotyped virus expressing HIV-1 Env to cells by time-resolved fluorescence microscopy. Viral envelopes were labeled with a fluorescent lipid dye (DiD) and virus content was rendered visible by incorporating a Gag-GFP chimera. The Gag-GFP is naturally cleaved to the much smaller NC-GFP fragment in the mature virions. NC-GFP was readily released upon permeabilization of the viral envelope, whereas the capsid was retained. The NC-GFP thus provides a relatively small and mobile aqueous marker to follow viral content transfer. In fusion experiments, virions were bound to cells at low temperature, and fusion was synchronously triggered by a temperature jump. DiD transferred from virions to cells without a significant lag after the temperature jump. Some virions released DiD but retained NC-GFP. Surprisingly, the fraction of lipid mixing events yielding NC-GFP transfer was dependent on the type of target cell: of three infectable cell lines, only one permitted NC-GFP transfer within minutes of raising temperature. NC-GFP release did not correlate with the level of CD4 or coreceptor expression in the target cells. The data indicate that fusion pores formed by HIV-1 Env can remain small for a relatively long time before they enlarge.  相似文献   

7.
Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression.  相似文献   

8.
In vitro, dendritic cells (DCs) bind and transfer intact, infectious HIV to CD4 T cells without first becoming infected, a process known as trans-infection. trans-infection is accomplished by recruitment of HIV and its receptors to the site of DC-T cell contact and transfer of virions at a structure known as the infectious synapse. In this study, we used fluorescent microscopy to track individual HIV particles trafficking in DCs during virus uptake and trans-infection. Mature DCs rapidly concentrated HIV into an apparently intracellular compartment that lacked markers characteristic of early endosomes, lysosomes, or antigen-processing vesicles. Live cell microscopy demonstrated that the HIV-containing compartment was rapidly polarized toward the infectious synapse after contact with a T cell; however, the bulk of the concentrated virus remained in the DCs after T cell engagement. Individual virions were observed emerging from the compartment and fusing with the T cell membrane at the infectious synapse. The compartmentalized HIV, although engulfed by the cytoplasm, was fully accessible to HIV envelope-specific inhibitors and other membrane-impermeable probes that were delivered to the cell surface. These results demonstrate that HIV resides in an invaginated domain within DCs that is both contiguous with the plasma membrane and distinct from endocytic vesicles. We conclude that HIV virions are routed through this specialized compartment, which allows individual particles to be delivered to T cells during trans-infection.  相似文献   

9.
Mori K  Haruyama T  Nagata K 《PloS one》2011,6(11):e28178
The infection of viruses to a neighboring cell is considered to be beneficial in terms of evasion from host anti-virus defense systems. There are two pathways for viral infection to "right next door": one is the virus transmission through cell-cell fusion by forming syncytium without production of progeny virions, and the other is mediated by virions without virus diffusion, generally designated cell-to-cell transmission. Influenza viruses are believed to be transmitted as cell-free virus from infected cells to uninfected cells. Here, we demonstrated that influenza virus can utilize cell-to-cell transmission pathway through apical membranes, by handover of virions on the surface of an infected cell to adjacent host cells. Live cell imaging techniques showed that a recombinant influenza virus, in which the neuraminidase gene was replaced with the green fluorescence protein gene, spreads from an infected cell to adjacent cells forming infected cell clusters. This type of virus spreading requires HA activation by protease treatment. The cell-to-cell transmission was also blocked by amantadine, which inhibits the acidification of endosomes required for uncoating of influenza virus particles in endosomes, indicating that functional hemagglutinin and endosome acidification by M2 ion channel were essential for the cell-to-cell influenza virus transmission. Furthermore, in the cell-to-cell transmission of influenza virus, progeny virions could remain associated with the surface of infected cell even after budding, for the progeny virions to be passed on to adjacent uninfected cells. The evidence that cell-to-cell transmission occurs in influenza virus lead to the caution that local infection proceeds even when treated with neuraminidase inhibitors.  相似文献   

10.
Nef, a HIV-1 pathogenesis factor, elevates virus replication in vivo and thus progression to AIDS by incompletely defined mechanisms. As one of its biological properties, Nef enhances the infectivity of cell-free HIV-1 particles in single round infections, however it fails to provide a significant and amplifying growth advantage for HIV-1 on such virus producing cells. A major difference between HIV-1 cell-free single round infections and virus replication kinetics on T lymphocytes consists in the predominant role of cell-associated virus transmission rather than cell-free infection during multiple round virus replication. HIV-1 cell-to-cell transmission occurs across close cell contacts also referred to as virological synapse (VS) and involves polarization of the F-actin cytoskeleton, formation of F-actin rich membrane bridges as well as virus budding to cell-cell contacts. Since Nef potently interferes with triggered actin remodelling in several cell systems to reduce e.g. cell motility and signal transduction, we set out here to address whether Nef also affects organization and possibly function of the T lymphocyte VS. We find that in addition to increasing infectivity of cell-free virions, Nef can also moderately enhance single rounds of HIV-1 cell-cell transmission between Jurkat T lymphocytes. This occurs without affecting cell conjugation efficiencies or polarization of F-actin and HIV-1 p24Gag at the VS, identifying actin remodelling at the VS as an example of Nef-insensitive host cell actin rearrangements. However, Nef-mediated enhancement of single round cell-free infection or cell-to-cell transmission does not potentiate over multiple rounds of infection. These results suggest that Nef affects cell-free and cell-associated HIV-1 infection by the same mechanism acting on the intrinsic infectivity of HIV-1 particles. They further indicate that the high efficacy of cell-to-cell transmission can compensate such infectivity defects. Nef therefore selectively interferes with actin remodelling processes involved in antiviral host cell defense while actin driven processes that promote virus propagation remain unaltered.  相似文献   

11.
Transmission of measles virus (MV) to T cells by its early CD150(+) target cells is considered to be crucial for viral dissemination within the hematopoietic compartment. Using cocultures involving monocyte-derived dendritic cells (DCs) and T cells, we now show that T cells acquire MV most efficiently from cis-infected DCs rather than DCs having trapped MV (trans-infection). Transmission involves interactions of the viral glycoprotein H with its receptor CD150 and is therefore more efficient to preactivated T cells. In addition to rare association with actin-rich filopodial structures, the formation of contact interfaces consistent with that of virological synapses (VS) was observed where viral proteins accumulated and CD150 was redistributed in an actin-dependent manner. In addition to these molecules, activated LFA-1, DC-SIGN, CD81, and phosphorylated ezrin-radixin-moesin proteins, which also mark the HIV VS, redistributed toward the MV VS. Most interestingly, moesin and substance P receptor, both implicated earlier in assisting MV entry or cell-to-cell transmission, also partitioned to the transmission structure. Altogether, the MV VS shares important similarities to the HIV VS in concentrating cellular components potentially regulating actin dynamics, conjugate stability, and membrane fusion as required for efficient entry of MV into target T cells.  相似文献   

12.
During cell-to-cell transmission of human immunodeficiency virus type 1 (HIV-1), many viral particles can be simultaneously transferred from infected to uninfected CD4 T cells through structures called virological synapses (VS). Here we directly examine how cell-free and cell-to-cell infections differ from infections initiated with cell-free virus in the number of genetic copies that are transmitted from one generation to the next, i.e., the genetic inheritance. Following exposure to HIV-1-expressing cells, we show that target cells with high viral uptake are much more likely to become infected. Using T cells that coexpress distinct fluorescent HIV-1 variants, we show that multiple copies of HIV-1 can be cotransmitted across a single VS. In contrast to cell-free HIV-1 infection, which titrates with Poisson statistics, the titration of cell-associated HIV-1 to low rates of overall infection generates a constant fraction of the newly infected cells that are cofluorescent. Triple infection was also readily detected when cells expressing three fluorescent viruses were used as donor cells. A computational model and a statistical model are presented to estimate the degree to which cofluorescence underestimates coinfection frequency. Lastly, direct detection of HIV-1 proviruses using fluorescence in situ hybridization confirmed that significantly more HIV-1 DNA copies are found in primary T cells infected with cell-associated virus than in those infected with cell-free virus. Together, the data suggest that multiploid inheritance is common during cell-to-cell HIV-1 infection. From this study, we suggest that cell-to-cell infection may explain the high copy numbers of proviruses found in infected cells in vivo and may provide a mechanism through which HIV preserves sequence heterogeneity in viral quasispecies through genetic complementation.  相似文献   

13.
The progressive loss of CD4+ T cells during HIV infection of lymphoid tissues involves both the apoptotic death of activated and productively infected CD4 T cells and the pyroptotic death of large numbers of resting and abortively infected bystander CD4 T cells. HIV spreads both through cellular release of virions and cell-to-cell transmission involving the formation of virological synapses. Cell-to-cell transmission results in high-level transfer of large quantities of virions to the target cell exceeding that achieved with cell-free virions. Broadly neutralizing anti-HIV antibodies (bNAbs) binding to HIV envelope protein capably block cell-free virus spread, and when added at higher concentrations can also interdict cell-to-cell transmission. Exploiting these distinct dose–response differences, we now show that four different bNAbs block the pyroptotic death of bystander cells, but only when added at concentrations sufficient to block cell-to-cell transmission. These findings further support the conclusion that HIV killing of abortively infected bystander CD4 T cells requires cell-to-cell transfer of virions. As bNAbs attract more interest as potential therapeutics, it will be important to consider the higher concentrations of these antibodies required to block the inflammatory death of bystander CD4 T cells.  相似文献   

14.
Cellular contacts between HIV-1-infected donor cells and uninfected primary CD4(+) T lymphocytes lead to virus transfer into endosomes. Recent evidence suggests that HIV particles may fuse with endosomal membranes to initiate a productive infection. To explore the role of endocytosis in the entry and replication of HIV, we evaluated the infectivity of transferred HIV particles in a cell-to-cell culture model of virus transmission. Endocytosed virus led to productive infection of cells, except when cells were cultured in the presence of the anti-gp120 mAb IgGb12, an agent that blocks virus attachment to CD4, suggesting that endocytosed virus was recycled to the outer cell surface. Confocal microscopy confirmed the colocalization of internalized virus antigen and the endosomal marker dynamin. Additionally, virus transfer, fusion, or productive infection was not blocked by dynasore, dynamin-dependent endosome-scission inhibitor, at subtoxic concentrations, suggesting that the early capture of virus into intracellular compartments did not depend on endosomal maturation. Our results suggest that endocytosis is not a mechanism of infection of primary CD4 T cells, but may serve as a reservoir capable of inducing trans-infection of cells after the release of HIV particles to the extracellular environment.  相似文献   

15.
Topical antimicrobicides hold great promise in reducing human immunodeficiency virus (HIV) transmission. Amphibian skin provides a rich source of broad-spectrum antimicrobial peptides including some that have antiviral activity. We tested 14 peptides derived from diverse amphibian species for the capacity to inhibit HIV infection. Three peptides (caerin 1.1, caerin 1.9, and maculatin 1.1) completely inhibited HIV infection of T cells within minutes of exposure to virus at concentrations that were not toxic to target cells. These peptides also suppressed infection by murine leukemia virus but not by reovirus, a structurally unrelated nonenveloped virus. Preincubation with peptides prevented viral fusion to target cells and disrupted the HIV envelope. Remarkably, these amphibian peptides also were highly effective in inhibiting the transfer of HIV by dendritic cells (DCs) to T cells, even when DCs were transiently exposed to peptides 8 h after virus capture. These data suggest that amphibian-derived peptides can access DC-sequestered HIV and destroy the virus before it can be transferred to T cells. Thus, amphibian-derived antimicrobial peptides show promise as topical inhibitors of mucosal HIV transmission and provide novel tools to understand the complex biology of HIV capture by DCs.  相似文献   

16.
Studies with many viruses have revealed that viral specific protein synthesis is an obligatory step in generating antigens on target cells for antiviral cytotoxic T lymphocytes. This has been most clearly demonstrated with DI particles, virions that are structurally complete but lack infectious RNA. Adsorption of such particles onto target cell membranes does not render these cells susceptible to lytic attack by antiviral effector cells, unless some viral protein synthesis transpires. However, some viruses, such as Sendai virus, circumvent the requirement for viral protein synthesis via fusion of the viral envelope with the target cell membrane, a process mediated by a specialized fusion protein. Once inserted into the lipid bilayer, it is likely that viral components and self H-2 noncovalently associate so that the complex can be recognized by antiviral cytotoxic T cells. This idea is supported by the demonstration that viral proteins and H-2 containing membrane proteins, incorporated into reconstituted membrane vesicles or liposomes are recognized by cytotoxic T cells. These data further show that native rather than altered viral and H-2 molecules are the moieties recognized. Associations between antigen and H-2 have been detected by a variety of techniques and in some cases are not random but selective; that is, viral antigens perferentially associate with some H-2 alleles and not others. In summary, these findings indicate that although viral antigens are present in the mature virions, these components are not recognized by antiviral killer cells until integrated into the plasma membrane. This may be achieved either through direct fusion of the viral envelope with the target cell or following viral protein synthesis and insertion of viral antigens into the plasma membrane.  相似文献   

17.
Arenavirus entry into host cells occurs through a low pH-dependent fusion with late endosomes that is mediated by the viral glycoprotein complex (GPC). The mechanisms of GPC-mediated membrane fusion and of virus targeting to late endosomes are not well understood. To gain insights into arenavirus fusion, we examined cell-cell fusion induced by the Old World Lassa virus (LASV) GPC complex. LASV GPC-mediated cell fusion is more efficient and occurs at higher pH with target cells expressing human LAMP1 compared to cells lacking this cognate receptor. However, human LAMP1 is not absolutely required for cell-cell fusion or LASV entry. We found that GPC-induced fusion progresses through the same lipid intermediates as fusion mediated by other viral glycoproteins–a lipid curvature-sensitive intermediate upstream of hemifusion and a hemifusion intermediate downstream of acid-dependent steps that can be arrested in the cold. Importantly, GPC-mediated fusion and LASV pseudovirus entry are specifically augmented by an anionic lipid, bis(monoacylglycero)phosphate (BMP), which is highly enriched in late endosomes. This lipid also specifically promotes cell fusion mediated by Junin virus GPC, an unrelated New World arenavirus. We show that BMP promotes late steps of LASV fusion downstream of hemifusion–the formation and enlargement of fusion pores. The BMP-dependence of post-hemifusion stages of arenavirus fusion suggests that these viruses evolved to use this lipid as a cofactor to selectively fuse with late endosomes.  相似文献   

18.
19.
《Biophysical journal》2020,118(10):2426-2433
Host lipid composition influences many stages of the influenza A virus (IAV) entry process, including initial binding of IAV to sialylated glycans, fusion between the viral envelope and the host membrane, and the formation of a fusion pore through which the viral genome is transferred into a target cell. In particular, target membrane cholesterol has been shown to preferentially associate with virus receptors and alter physical properties of the membrane like fluidity and curvature. These properties affect both IAV binding and fusion, which makes it difficult to isolate the role of cholesterol in IAV fusion from receptor binding effects. Here, we develop a fusion assay that uses synthetic DNA-lipid conjugates as surrogate viral receptors to tether virions to target vesicles. To avoid the possibly perturbative effect of adding a self-quenched concentration of dye-labeled lipids to the viral membrane, we tether virions to lipid-labeled target vesicles and use fluorescence microscopy to detect individual, pH-triggered IAV membrane fusion events. Through this approach, we find that cholesterol in the target membrane enhances the efficiency of single-particle IAV lipid mixing, whereas the rate of lipid mixing is independent of cholesterol composition. We also find that the single-particle kinetics of influenza lipid mixing to target membranes with different cholesterol compositions is independent of receptor binding, suggesting that cholesterol-mediated spatial clustering of viral receptors within the target membrane does not significantly affect IAV hemifusion. These results are consistent with the hypothesis that target membrane cholesterol increases lipid mixing efficiency by altering host membrane curvature.  相似文献   

20.
Ebola viruses (EboV) are enveloped RNA viruses infecting cells by a pH-dependent process mediated by viral glycoproteins (GP) involving endocytosis of virions and their routing into acidic endosomes. As with well-characterized pH-dependent viral entry proteins, in particular influenza virus hemagglutinin, it is thought that EboV GP require activation by low pH in order to mediate fusion of the viral envelope with the membrane of endosomes. However, it has not yet been possible to confirm the direct role of EboV GP in membrane fusion and the requirement for low-pH activation. It was in particular not possible to induce formation of syncytia by exposing cells expressing EboV GP to acidic medium. Here, we have used an assay based on the induction of a beta-galactosidase (lacZ) reporter gene in target cells to detect cytoplasmic exchanges, indicating membrane fusion, with cells expressing EboV GP (Zaire species). Acidic activation of GP-expressing cells was required for efficient fusion with target cells. The direct role of EboV GP in this process is indicated by its inhibition by anti-GP antibodies and by the lack of activity of mutant GP normally expressed at the cell surface but defective for virus entry. Fusion was not observed when target cells underwent acidic treatment, for example, when they were placed in coculture with GP-expressing cells before the activation step. This unexpected feature, possibly related to the nature of the EboV receptor, could explain the impossibility of inducing formation of syncytia among GP-expressing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号