首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shahin AA  Ata AT 《Folia biologica》2004,52(1-2):25-31
The C-banding karyotype of the jerboas Allactaga tetradactyla, Jaculus jaculus jaculus, and Jaculus orientalis was described and interspecific relationships were discussed. Despite the conservation of a relatively small amount of C-heterochromatin located at the centromeric region of some chromosomes in all karyotypes, a striking loss of C-heterochromatin was clearly observed in J. orientalis. C-bands were totally absent in 33 of the 48 chromosomes of J. orientalis, compared to only 7 for J.j.jaculus and 11 for A. tetradactyla. The differences in C-banding amongst karyotypes of the three species were attributed either to transformation of heterochromatin into euchromatin or vice versa, deletion of heterochromatic segments resulting from pericentric inversions, or to variation of euchromatin content and its correlation with the chromosome size and arrangement of heterochromatin. The present findings are consistent with the main hypotheses derived from morphological, chromosomal, and biochemical data that the genera Allactaga and Jaculus have independently developed from a common ancestral form and that J. jaculus and J. orientalis are both distinct congeneric species, but revealed that the C-banding karyotypes of both J.j.jaculus and J. orientalis are distantly related to each other. Therefore, it is concluded that the karyotype of J.j.jaculus may be ancestral and that of J. orientalis may have derived from it.  相似文献   

2.
The karyotypes of the lesser Egyptian jerboa Jaculus jaculus and the greater Egyptian jerboa Jaculus orientalis from Tunisia are described and compared with available data particularly from Egypt. The species examined have a similar karyotype consisting of 2n = 48 chromosomes and a fundamental number of autosomes (NFa) varying from 88 to 90 in J. jaculus and from 84 to 88 in J. orientalis. The X chromosome is submetacentric in both species, while the Y is submetacentric in J. orientalis and acrocentric in J. jaculus. Most of the autosomes are meta/submetacentric but the small pairs 22 - 23 in J. jaculus and 20-23 in J. orientalis are frequently acrocentric, yielding considerable differences in the NFa within and among species. Morphological variation in these small pairs of autosomes and/or in the Y chromosome in J. orientalis may distinguish populations of the two species from Egypt and Tunisia. The differences observed either between Egypt and Tunisia or between the Tunisian Jaculus species are probably associated with chromosomal rearrangements such as pericentric inversions or heterochromatin variation. They appear of lesser magnitude than other changes (especially molecular) that have occurred during the evolution of this genus.  相似文献   

3.
运用16种酶蛋白编码的23个遗传座位对突尼斯非洲跳鼠(Jaculus jaculus)和埃及跳鼠(J.orientalis)自然群体的遗传变异和分化进行了电泳分析.结果表明,与其他啮齿动物等哺乳动物的相关数据比较,发现这两个种群体的遗传变异水平较低.非洲跳鼠群体的观测杂合度(Hobs)为0.08-0.19,多态座位百分比(P)为26.2%-45.2%,每个座何的平均等位基因数(A)为1.1-1.4;埃及跳鼠的Hobs为0.10-0.15,P为29.3%-44.1%,A为1.1-1.7.两个种群体各自的遗传分化程度较低(非洲跳鼠和埃及跳鼠的Fst分别为0.0017和0.0019).而两个种群体间的Fst为0.607(P<0.05),表明两个种之间高度的遗传分化.本研究支持这两个种分类地位的合法性,并强调了地理因素(环境类犁和生物气候阶段)对两个种遗传结构的影响.  相似文献   

4.
The courtship display and early development of the Sudanese jerboa, Jaculus jaculus butleri , is described. The young develop slowly except for the hindlimbs which reach 90% of adult length in 35 days; consequently the young can run as fast as adults as soon as they leave the nest. The bones of the posterior part of the skull are not ossified at birth, and development of the enlarged tympanic bullae occurs between the time of birth and emergence from the nest. The development of J. j. butleri is compared with that of J. orientalis and two other species of desert rodents.  相似文献   

5.
Genetic differentiation among 14 populations representing all Egyptian dipodid (jerboa) species and subspecies was examined at 25 structural loci and interspecific relationships are discussed. Of the 25 loci, only 3 were monomorphic, with the same allele fixed in all taxa, 9 loci were monomorphic, but demonstrated intertaxon variation, and only 13 loci were polymorphic. The overall mean number of alleles per locus (A) was 1.23 ± 0.02 and the average percentage of polymorphic loci per taxon (P) was 23%. The overall mean of observed heterozygosity (H o) was found significantly higher than that of expected heterozygosity (He); the overall means per taxon were 0.25 ± 0.017 and 0.085 ± 0.007. Mean levels of genetic identity (I) were 0.970 ± 0.003 among geographic populations, 0.718 ± 0.022 between subspecies, 0.590 ± 0.030 between congeneric species, and 0.368 ± 0.020 between genera. Phenetic analysis of genetic distance matrix produced a phenogram indicating a close association ofJaculus orientalis Erxleben, 1777 toJaculus jaculus (Linnaeus, 1758), particularly to its subspeciesJaculus jaculus butleri (Thomas, 1922), and indicating a distinct affinity between these latter two species andAllactaga tetradactyla (Lichtenstein, 1823). Estimates of genetic divergence demonstrated that J. orientalis appears to have shared a more recent common ancestor withJ. jaculus thanA. tetradactyla. Divergence of these species would have occurred by Miocene (ca 9.6 to 18.7 million years ago). The pattern of relationships of the dipodid species indicated in this study was closely consistent with the hypotheses derived from morphological and chromosomal data.  相似文献   

6.
7.
A study of the jerboa, Jaculus jaculus butleri , was made in the desert near Khartoum, Sudan. The species, habitat and method of capture are described. Information is given on the population and reproduction, and a "pattern of generations" is suggested. Details are given on the behavioural attitudes and activities of the jerboa, moulting, vocal noises, ectoparasites and predators.  相似文献   

8.
A study of the jerboa, Jaculus jaculus butleri , was made in the desert near Khartoum, Sudan. The species, habitat and method of capture are described. Information is given on the population and reproduction, and a "pattern of generations" is suggested. Details are given on the behavioural attitudes and activities of the jerboa, moulting, vocal noises, ectoparasites and predators.  相似文献   

9.
Chemical analysis of kidney tissue from jerboa (Jaculus orientalis) during hibernation shows that the cortico-papillary gradient of Na+ ions is strongly reduced, whereas that of urea is completely suppressed. During the spontaneous rise in body temperature which occurs as the animal comes out of hibernation, the accumulation of Na+ in the papilla then in the medullary zones begins to increase from 25-30 degrees C body temperature, before the appearance of a urea gradient. This confirms the hypothesis that urea accumulation in the kidney medulla is coupled to active transport of sodium. This active transport may be partially dependent upon circulating ADH, circulating levels of which increase with increasing body temperature. Glomerular filtration in normothermic jaculus orientalis is 696 +/- 155 microliter . min-1 and urinary flow is relatively low in this desert species at 1.12 +/- 0.18 microliter . min-1. During hibernation at a body temperature between 7 and 8 degrees C glomerular filtration and urinary flow are not measurable. Glomerular filtration appears (51 microliter . min-1 at 26 degrees C) and increases at a temperature range where systemic blood pressure has already attained a normal level. This indicates that the reestablishment of glomerular filtration may be linked to intra-renal vasomotor events as is suggested by measurement of plasma renin activity during the coming out of hibernation.  相似文献   

10.
The meiotic behavior of a special maize trisome was quantitatively observed at pachytene, metaphase I, anaphase I, prophase II, metaphase II and anaphase II. The data obtained are consistent with (but do not prove) the model that sister chromatid cohesiveness at anaphase I may be established during pachytene synapsis of the chromosome regions involved. The data suggest, however, that the normal prophase II maintenance of dyad integrity by cohesiveness of sister chromatid centromere regions does not depend upon prior synapsis of these regions, although monads separated from each other on the anaphase I spindle may be delivered to the same prophase II daughter nucleus. — The strands which some of the time connect sister chromatids which are separating equationally at anaphase I show a positive Feulgen staining reaction.  相似文献   

11.
Fully grown oocytes of most laboratory mice progress without interruption from the germinal vesicle (GV) stage to metaphase II, where meiosis is arrested until fertilization. In contrast, many oocytes of strain LT mice arrest precociously at metaphase I and often undergo subsequent spontaneous parthenogenetic activation. Cytostatic factor (CSF), which prevents the degradation of cyclin B and maintains high maturation-promoting factor (MPF) activity, is required for maintenance of metaphase I-arrest in LT oocytes, similar to its requirement for maintaining metaphase II-arrest in normal oocytes. However, CSF does not instigate metaphase I-arrest since a temporary metaphase I-arrest occurs in MOS-null LT oocytes. This paper addresses the mechanism(s) that may instigate metaphase I-arrest and tests the hypothesis that there may be one or more defects in LT oocytes that delay their acquisition of competence to trigger the cascade of processes that normally drive entry into and progression through anaphase I. To test this hypothesis, MPF activity was artificially abrogated by treating oocytes with a general protein kinase inhibitor, 6-DMAP, at various times during the progression of meiosis I. This allowed a comparison of the time at which LT and normal oocytes become competent to undergo the metaphase I/anaphase transition even if oocytes were arrested at metaphase I when 6-DMAP-treatment was begun. There were no differences between LT and control oocytes in the kinetics of MPF suppression by 6-DMAP. However, it was found that LT oocytes do not acquire competence to undergo the metaphase I/anaphase transition in response to 6-DMAP until 50-60 min after normal oocytes. A similar delay was observed in strain CX8-4 oocytes, which also have a high incidence of metaphase I-arrest, but not in strain CX8-11 oocytes, which exhibit a low incidence of metaphase I-arrest. MOS-null LT oocytes also exhibit a delay in acquisition of competence to undergo the metaphase I/anaphase transition. Thus, a delay in competence to undergo the metaphase I/anaphase transition in response to 6-DMAP-treatment correlates with metaphase I-arrest. It is therefore hypothesized that the observed delay in acquisition of competence to enter anaphase I may instigate the sustained metaphase I-arrest in LT oocytes by allowing CSF activity to rise to a level that prevents cyclin B degradation and maintains high MPF activity before anaphase can be initiated by normal triggering mechanisms.  相似文献   

12.
玉兰减数分裂观察及染色体构型分析   总被引:2,自引:1,他引:1  
采用去壁低渗方法,观察研究了玉兰Magnolia denudata有丝分裂和减数分裂的细胞学特征。实验结果证实玉兰存在两种染色体倍性,即2n=4x=76和2n=6x=114。通常,在木兰属甚至整个木兰科每个物种只具有一种染色体数目。玉兰有丝分裂间期核为复杂染色中心型,其中期染色体较小。玉兰在减数分裂中期I的构型表现出多样性,其中最主要的特点是比同源多倍体预期的二价体出现的频率更高些,其次是在减数分裂中期I可以观察到1或2个环状和(或)链状六价体。这些特征与同源异源六倍体或部分的异源六倍体种北美红杉Sequ  相似文献   

13.
Individual bivalents or chromosomes have been identified in Drosophila melanogaster spermatocytes at metaphase I, anaphase I, metaphase II and anaphase II in electron micrographs of serial sections. Identification was based on a combination of chromosome volume analysis, bivalent topology, and kinetochore position. — Kinetochore microtubule numbers have been obtained for the identified chromosomes at all four meiotic stages. Average numbers in D. melanogaster are relatively low compared to reported numbers of other higher eukaryotes. There are no differences in kinetochore microtubule numbers within a stage despite a large (approximately tenfold) difference in chromosome volume between the largest and the smallest chromosome. A comparison between the two meiotic metaphases (metaphase I and metaphase II) reveals that metaphase I kinetochores possess twice as many microtubules as metaphase II kinetochores. — Other microtubules in addition to those that end on or penetrate the kinetochore are found in the vicinity of the kinetochore. These microtubules penetrate the chromosome rather than the kinetochore proper and are more numerous at metaphase I than at the other division stages.  相似文献   

14.
濒危植物巴东木莲花粉母细胞减数分裂观察   总被引:3,自引:0,他引:3  
对巴东木莲Manglietia patungensis及其近缘种乳源木莲M. yuyuanensis的花粉母细胞减数分裂过程的基本特征进行了比较研究。乳源木莲与巴东木莲的染色体数目和核型相同,但不经任何人为因素诱导,它们之间在减数分裂过程中的染色体行为上有明显差异。(1)巴东木莲减数分裂中期I构型为0.30IV+18.33II+0.15I,与乳源木莲构型19II不同,巴东木莲可能存在同臂内倒位杂合子,染色体结构存在一定的杂合性。(2)后期I和后期II染色体行为异常现象发生频率明显不同。以后期II为例,乳源木莲减数分裂相中有迟滞染色体的细胞占8.8%,迟滞染色体不超过2个;巴东木莲有迟滞染色体等异常现象的细胞占29.2%,迟滞染色体最高达11个,还出现染色体碎裂成断片现象。巴东木莲减数分裂过程中染色体组表现出染色体结构杂合变异和迟滞染色体与染色体的断裂频率很高的异常现象在一定程度上可能影响了雄配子体的发育。  相似文献   

15.
Harald Fuge 《Chromosoma》1973,43(2):109-143
One metaphase I spindle, seven anaphase I spindles of different stages, and one metaphase II spindle were sectioned in series. The ultrastructure of chromosomes was examined and microtubules (MTs) were counted. The main results of the study are summarized as follows: 1. The autosomes move at the periphery of the continuous MTs during anaphase while the sex chromosomes move more or less within this group of MTs. 2. In metaphase the antosomes have few coarse surface projections, in anaphase many, but more delicate projections of irregular shape which seem to transform into regular radial lamellae at the end of movement. 3. In metaphase continuous MTs have no contact with the chromosomal surface, while during anaphase movement continuous MTs lie closer to the chromosomes, and finally arrange themselves between the radial surface lamellae. There they show lateral filamentous connections with the chromosomal surface. 4. The MT distribution profiles of metaphase and anaphase are different. While the highest density of MTs is observed in the middle region of the spindle in metaphase, there are two density zones during autosomal movement, each in one half spindle in front of the autosomes. After the autosomes have reached the poles the distribution profile is again similar to the metaphase condition. The MT distribution in metaphase II is the same as in metaphase I. Possible explanations for these observations are discussed in detail. 5. There is an overall decrease in MT content during anaphase. 6. With the onset of anaphase MTs are seen within the spindle mantle, closely associated with mitochondria. — Several theoretical aspects of anaphase mechanism are briefly discussed.  相似文献   

16.
Sister chromatid separation and cyclin degradation in mitosis depend on the association of the anaphase-promoting complex (APC) with the Fizzy protein (Cdc20), leading to the metaphase/anaphase transition and exit from mitosis [1--3]. In Xenopus, after metaphase of the first meiotic division, only partial cyclin degradation occurs, and chromosome segregation during anaphase I proceeds without sister chromatid separation [4--7]. We investigated the role of xFizzy during meiosis using an antisense depletion approach. xFizzy accumulates to high levels in Meiosis I, and injection of antisense oligonucleotides to xFizzy blocks nearly all APC-mediated cyclin B degradation and Cdc2/cyclin B (MPF) inactivation between Meiosis I and II. However, even without APC activation, xFizzy-ablated oocytes progress to Meiosis II as shown by cyclin E synthesis, further accumulation of cyclin B, and evolution of the metaphase I spindle to a metaphase II spindle via a disc-shaped aggregate of microtubules known to follow anaphase I [8]. Inhibition of the MAPK pathway by U0126 in antisense-injected oocytes prevents cyclin B accumulation beyond the level that is present at metaphase I. Full synthesis and accumulation can be restored in the presence of U0126 by the expression of a constitutively active form of the MAPK target, p90(Rsk). Thus, p90(Rsk) is sufficient not only to partially inhibit APC activity [7], but also to stimulate cyclin B synthesis in Meiosis II.  相似文献   

17.
Cytological characterization of BRA005568 accession of Brachiaria ruziziensis (2n = 2x = 18) showed a totally unexpected high frequency of abnormal meiotic products, from triads to hexads, and also tetrads with micro nuclei or microcytes. Meiosis I had a low frequency of abnormalities, mainly related to the chiasma terminalization process. In meiosis II, however, frequency of abnormalities increased exceptionally. Early prophase II was normal with the chromosome set enclosed by the nuclear envelope. However, in late prophase II, owing to the breakdown of the nuclear envelope, the chromosomes were scattered in the cytoplasm. Some chromosomes did not reach the metaphase II plate and remained scattered. The behavior of sister cells was inconsistent. While in one cell the chromosomes were totally aligned at the metaphase II plate, in the other they could be found completely scattered, leading to an asynchronous cell division. Cells with scattered chromosomes were unable to progress in meiosis. Thus, anaphase II failed to occur and sister chromatids were not released. Cells with non-aligned chromosomes in the metaphase II plate did not receive the "go ahead" sign to initiate anaphase II. Consequently, the scattered chromosomes produced telophase II nuclei of different sizes in situ. The asynchronous behavior led to the formation of a wide range of meiotic products. Results suggest that the present accession contains a mutation affecting the spindle checkpoint that arrests the second meiotic division.  相似文献   

18.
At metaphase I of meiosis in spermatocytes of Mesostoma ehrenbergii ehrenbergii [2n=10] three bivalents and four univalents form. The same two chromosome pairs always form the univalents. Analysis of metaphase I, anaphase I and metaphase II configurations in fixed testis material suggested that the distribution of the four univalents is not a random process but the correct segregation of one member of each pair to each pole is actively achieved before the end of metaphase I. In live preparations of testis material univalents were observed to move between the poles of metaphase I cells, eventually reaching the correct segregation. All cells observed to enter anaphase I had the correct segregation of univalents. It is proposed that the univalent movement during metaphase I is directed towards obtaining the correct segregation of univalents before the cells enter anaphase.  相似文献   

19.
Hemipteran chromosomes are holocentric and show regular, special behavior at meiosis. While the autosomes pair at pachytene, have synaptonemal complexes (SCs) and recombination nodules (RNs) and segregate at anaphase I, the sex chromosomes do not form an SC or RNs, divide equationally at anaphase I, and their chromatids segregate at anaphase II. Here we show that this behavior is shared by the X and Y chromosomes of Triatoma infestans and the X(1)X(2)Y chromosomes of Triatoma pallidipennis. As Rec8p is a widely occurring component of meiotic cohesin, involved in meiotic homolog segregation, we used an antibody against Rec8p of Caenorhabditis elegans for immunolocalization in these triatomines. We show that while Rec8p is colocalized with SCs in the autosomes, no Rec8p can be found by immunolabeling in the sex chromosomes at any stage of meiosis. Furthermore, Rec8p labeling is lost from autosomal bivalents prior to metaphase I. In both triatomine species the sex chromosomes conjoin with each other during prophase I, and lack any SC, but they form "fuzzy cores", which are observed with silver staining and with light and electron microscopy during pachytene. Thin, serial sectioning and electron microscopy of spermatocytes at metaphases I and II reveals differential behavior of the sex chromosomes. At metaphase I the sex chromosomes form separate entities, each surrounded by a membranous sheath. On the other hand, at metaphase II the sex chromatids are closely tied and surrounded by a shared membranous sheath. The peculiar features of meiosis in these hemipterans suggest that they depart from the standard meiotic mechanisms proposed for other organisms.  相似文献   

20.
Polar body formation in oocytes is an extreme form of asymmetric cell division, but what regulates the asymmetric spindle positioning and cytokinesis is poorly understood. During mouse oocyte maturation, the metaphase I spindle forms at the center but then moves to the cortex prior to anaphase I and first polar body emission. We show here that treating denuded mouse oocytes with brefeldin A, an inhibitor of Golgi-based membrane fusion, abolished the asymmetric positioning of the metaphase I spindle and resulted in the formation of two half-size metaphase II eggs, instead of a full-sized egg and a polar body. The normal metaphase II spindle is similarly asymmetrically positioned in the mature egg, where the spindle lies with its axis parallel to the cortex but becomes perpendicular before anaphase II and emission of the second polar body. When ovulated eggs were activated with strontium in the presence of brefeldin A, the metaphase II spindle failed to assume perpendicular position, and the chromosomes separated without the extrusion of the second polar body. Remarkably, symmetric cytokinesis began following a 3 h delay, forming two half-size eggs each containing a pronucleus. BFA-sensitive intracellular vesicular transport is therefore required for spindle positioning in both MI and MII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号