首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Waste-grown microalgae are a potentially important biomass for wastewater treatment. The lipid accumulated in microalgae could be utilized as feedstocks for biodiesel production. The algal residues, as major by-products derived from lipid extraction, mainly consist of carbohydrate and protein, making anaerobic digestion an efficient way to recover energy. The conversion of lipid-extracted algal residues into methane plays dual role in renewable energy production and sustainable development of microalgal biodiesel industry. Therefore, an anaerobic fermentation process for investigation of the methane production potential of algal residues was conducted in this paper. The effect of inoculum to substrate ratios (ISRs) on the methane production by anaerobic digestion of Chlorella sp. residue in a single stage was evaluated. The maximum methane yield of 195.6 ml CH4/g volatile solid (VS) was obtained at an ISR of 1:1. The stability and progress of the reaction from algal residues to methane were monitored by measuring the pH, volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), and methane volume. Based on the results of one-stage experiments, two-stage technology was proposed and was found to be more suitable for high organic load. The optimum conditions for acidogenesis and methanogenesis are indicated in this paper.  相似文献   

2.
Modeling anaerobic digestion of microalgae using ADM1   总被引:1,自引:0,他引:1  
The coupling between a microalgal pond and an anaerobic digester is a promising alternative for sustainable energy production by transforming carbon dioxide into methane using solar energy. In this paper, we demonstrate the ability of the original ADM1 model and a modified version (based on Contois kinetics for the hydrolysis steps) to represent microalgae anaerobic digestion. Simulations were compared to experimental data of an anaerobic digester fed with Chlorella vulgaris. The modified ADM1 fits adequately the data for the considered 140 day experiment encompassing a variety of influent load and flow rates. It turns out to be a reliable predictive tool for optimising the coupling of microalgae with anaerobic digestion processes.  相似文献   

3.
Integration of algae production with livestock waste management has the potential to recover energy and nutrients from animal manure, while reducing discharges of organic matter, pathogens, and nutrients to the environment. In this study, microalgae Chlorella sp. were grown on centrate from anaerobically digested swine manure. The algae were harvested for mesophilic anaerobic digestion (AD) with swine manure for bioenergy production. Low biogas yields were observed in batch AD studies with algae alone, or when algae were co-digested with swine manure at ≥43 % algae (based on volatile solids [VS]). However, co-digestion of 6–16 % algae with swine manure produced similar biogas yields as digestion of swine manure alone. An average methane yield of 190 mL/g VSfed was achieved in long-term semi-continuous co-digestion studies with 10?±?3 % algae with swine manure. Data from the experimental studies were used in an energy analysis assuming the process was scaled up to a concentrated animal feeding operation (CAFO) with 7000 pigs with integrated algae-based treatment of centrate and co-digestion of manure and the harvested algae. The average net energy production for the system was estimated at 1027 kWh per day. A mass balance indicated that 58 % of nitrogen (N) and 98 % of phosphorus (P) in the system were removed in the biosolids. A major advantage of the proposed process is the reduction in nutrient discharges compared with AD of swine waste without algae production.  相似文献   

4.
The production of methane (CH4) via the anaerobic digestion of microalgae biomass residues from the biodiesel production process has the potential to meet some of the energy requirements of the primary biomass to fuel conversion process. This paper investigates the practical CH4 yields achievable from the anaerobic conversion of the microalgae residues (as well as codigestion with glycerol) after biodiesel production using both the conventional and in situ transesterification methods. Results demonstrate that the type of lipid extraction solvent utilized in the conventional transesterification process could inhibit subsequent CH4 production. On the basis of actual CH4 production, a recoverable energy of 8.7–10.5 MJ kg?1 of dry microalgae biomass residue was obtained using the lipid extracted and transesterified microalgae samples. On codigesting the microalgae residues with glycerol, a 4–7% increase in CH4 production was observed.  相似文献   

5.
6.
With increasing concerns of microalgal-biodiesel, algal residues after lipid extraction are raising great attention for energy production. A batch test of 15 days under mesophilic condition was conducted to evaluate the effects of inoculum to substrate ratios (ISRs) on the methane production by anaerobic digestion of Chlorella sp. residue. The stability and progress of the reaction from algal residue to methane were monitored by measuring the pH, volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), methane volume on a daily basis. The results indicated that the values obtained were 26.6, 191.6, 195.6 and 210.6 ml CH4/g volatile solid (VS) for ISRs of 1:2, 1:1, 2:1 and 3:1. The methane production was significantly decreased as the ISR was lower than 1:1, which was resulting from the poor methanogenesis inhibited by NH4 +-N. It would be of great importance that determination of ISRs might provide useful information on how to initialize a batch digester with algal residue as material.  相似文献   

7.
Allelopathic effects of fresh tissue and dry powder of a nonsexual and a sexual strain of the macroalga Ulva pertusa on the growth of the microalgae Heterosigma akashiwo and Alexandium tamarense were evaluated using long-term coexistence culture systems in which several concentrations of macroalga fresh tissue and dry powder were used. The effects of macroalga culture medium filtrate on the two HAB algae were also investigated. Moreover, isolation co-culture systems were built to confirm the existence of allelochemicals and preclude the growth inhibition by direct contact. Short-term algicidal effect assays of macroalgae on H. akashiwo were carried out to measure the rate of algal cell lysis. The results of the coexistence assays showed that the growth of H. akashiwo and A. tamarense was strongly inhibited by fresh tissue and by dry powder of both strains of U. pertusa. The allelochemicals were lethal to H. akashiwo at relatively higher concentrations. The macroalga culture medium filtrate exhibited no apparent growth inhibitory effect on the two HAB algae under initial or semicontinuous filtrate addition, which suggested that continuous release of small quantities of rapidly degradable allelochemicals from the fresh tissue of both strains of U. pertusa was essential to effectively inhibit the growth of H. akashiwo and A. tamarense.  相似文献   

8.
The potential of microalgae as a source of biofuels and as a technological solution for CO2 fixation is subject to intense academic and industrial research. In the perspective of setting up massive cultures, the management of large quantities of residual biomass and the high amounts of fertilizers must be considered. Anaerobic digestion is a key process that can solve this waste issue as well as the economical and energetic balance of such a promising technology. Indeed, the conversion of algal biomass after lipid extraction into methane is a process that can recover more energy than the energy from the cell lipids. Three main bottlenecks are identified to digest microalgae. First, the biodegradability of microalgae can be low depending on both the biochemical composition and the nature of the cell wall. Then, the high cellular protein content results in ammonia release which can lead to potential toxicity. Finally, the presence of sodium for marine species can also affect the digester performance. Physico-chemical pretreatment, co-digestion, or control of gross composition are strategies that can significantly and efficiently increase the conversion yield of the algal organic matter into methane. When the cell lipid content does not exceed 40%, anaerobic digestion of the whole biomass appears to be the optimal strategy on an energy balance basis, for the energetic recovery of cell biomass. Lastly, the ability of these CO2 consuming microalgae to purify biogas and concentrate methane is discussed.  相似文献   

9.
Melis A 《Planta》2007,226(5):1075-1086
Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis–respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature’s most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.  相似文献   

10.
The metabolic flexibility of some photosynthetic microalgae enables them to survive periods of anaerobiosis in the light by developing a particular photofermentative metabolism. The latter entails compounds of the photosynthetic electron transfer chain and an oxygen-sensitive hydrogenase in order to reoxidize reducing equivalents and to generate ATP for maintaining basal metabolic function. This pathway results in the photo-evolution of hydrogen gas by the algae. A decade ago, Melis and coworkers managed to reproduce such a condition in a laboratory context by depletion of sulfur in the algal culture media, making the photo-evolution by the algae sustainable for several days (Melis et al. in Plant Physiol 122:127–136, 2000). This observation boosted research in algal H2 evolution. A feature, which due to its transient nature was long time considered as a curiosity of algal photosynthesis suddenly became a phenomenon with biotechnological potential. Although the Melis procedure has not been developed into a biotechnological process of renewable H2 generation so far, it has been a useful tool for studying microalgal metabolic and photosynthetic flexibility and a possible step stone for future H2 production procedures. Ten years later most of the critical steps and limitations of H2 production by this protocol have been studied from different angles particularly with the model organism Chlamydomonas reinhardtii, by introducing various changes in culture conditions and making use of mutants issued from different screens or by reverse genomic approaches. A synthesis of these observations with the most important conclusions driven from recent studies will be presented in this review.  相似文献   

11.
Studies to examine the microbial fermentation of coal gasification products (CO2, H2 and CO) to methane have been done with a mixed culture of anaerobic bacteria selected from an anaerobic sewage digestor. The specific rate of methane production at 37°C reached 25 mmol/g cell hr. The stoichiometry for methane production was 4 mmol H2/mol CO2. Cell recycle was used to increase the cell concentration from 2.5 to 8.3 g/liter; the volumetric rate of methane production ran from 1.3 to 4 liter/liter hr. The biogasification was also examined at elevated pressure (450 psi) and temperature to facilitate interfacing with a coal gasifier. At 60°C, the specific rate of methane production reached 50 mmol/g cell hr. Carbon monoxide utilization by the mixed culture of anaerobes and by a Rhodopseudomonas species was examined. Both cultures are able to carry out the shift conversion of CO and water to CO2 and hydrogen.  相似文献   

12.
This study demonstrates the production of algal biodiesel from Dunaliella tertiolecta, Nannochloropsis oculata, wild freshwater microalgae, and macroalgae lipids using a highly efficient continuous catalytic process. The heterogeneous catalytic process uses supercritical methanol and porous titania microspheres in a fixed bed reactor to catalyze the simultaneous transesterification and esterification of triacylglycerides and free fatty acids, respectively, to fatty acid methyl esters (biodiesel). Triacylglycerides and free fatty acids were converted to alkyl esters with up to 85% efficiency as measured by 300 MHz 1H NMR spectroscopy. The lipid composition of the different algae was studied gravimetrically and by gas chromatography. The analysis showed that even though total lipids comprised upwards of 19% of algal dry weight the saponifiable lipids, and resulting biodiesel, comprised only 1% of dry weight. Thus highlighting the need to determine the triacylglyceride and free fatty acid content when considering microalgae for biodiesel production.  相似文献   

13.
A two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production was studied, wherein high density heterotrophic cultures of Chlorellasorokiniana serve as seed for subsequent phototrophic growth. The data showed growth rate, cell density and productivity of heterotrophic C.sorokiniana were 3.0, 3.3 and 7.4 times higher than phototrophic counterpart, respectively. Hetero- and phototrophic algal seeds had similar biomass/lipid production and fatty acid profile when inoculated into phototrophic culture system. To expand the application, food waste and wastewater were tested as feedstock for heterotrophic growth, and supported cell growth successfully. These results demonstrated the advantages of using heterotrophic algae cells as seeds for open algae culture system. Additionally, high inoculation rate of heterotrophic algal seed can be utilized as an effective method for contamination control. This two-stage heterotrophic phototrophic process is promising to provide a more efficient way for large scale production of algal biomass and biofuels.  相似文献   

14.
Yoldia hyperborea (Lovén) is a protobranch bivalve of circumboreal distribution and an important bioturbator of muddy sediments of cold-water embayments in Newfoundland, Canada, where it is exposed to a strong seasonal input of sinking phytoplankton during spring, sporadic events of sediment resuspension, and sediment of low nutritional value during winter. To explain field-observed patterns of population dynamics, we quantified the behavioural response of Y. hyperborea to pulses of settling algae and sediment resuspension events, and hypothesised that Y. hyperborea behaviour is modified during settling of nutrient-rich organic matter. Yoldia hyperborea responded rapidly to the arrival of settling microalgae by extending its siphons into the water column. Once the pulse of algal material reached the sediment the animals partially emerged, extended the palp proboscides over the sediment surface and maintained close contact with the area of highest algal concentration. In contrast, the activity of animals not exposed to settling algae or to resuspended sediment was primarily restricted to strata below the sediment surface. Thus the predominant subsurface feeding behaviour of Yoldia hyperborea is switched to surface deposit-feeding as a response to cues contained in microalgae. Results suggest active suspension-feeding during algal sedimentation events, although deposit-feeding resumes once the algae are no longer in suspension, and suspension-feeding is probably of little nutritional significance. The rapid behavioural response of Y. hyperborea to the influx of high quality food, such as fresh microalgae, is probably an adaptive foraging strategy to a food-limited environment and suggests higher bioturbation rates of surface sediments during spring, a key role being played by the protobranch in redistribution of labile phytodetritus within the benthos.  相似文献   

15.
This study shows results of nitrogen and phosphorus removal by microalgae (tertiary treatment) in a prototype of tubular photobioreactor tested under controlled and uncontrolled conditions. The wastewater was the supernatant coming from a secondary settler of a municipal wastewater activated sludge treatment plant without nitrification and denitrification units. The algal biomass was directly selected from the supernatant and it was principally composed of genus Scenedesmus (autochthonous algae). All the experiments evaluated both nitrogen and phosphorus removal and biomass and lipid production. A satisfactory nutrients removal - about 99.9% for the nitrogen and phosphorus - and a specific biomass productivity of 0.25 g/l d have been obtained in the indoor photobioreactor; less satisfactory results have been reached in the outdoor photobioreactor because of ambient condition instability and limiting nutrients concentration.  相似文献   

16.
We conducted a series of biodegradation studies using microalgae (Arthrospira maxima and Nannochloropsis sp.) and macroalgae (Gelidium corneum and Cladophora glomerata) to elucidate algal biodegradability in wastewater sludge under anaerobic conditions. Algal biodegradability was evaluated according to ASTM D5210-92. The results indicate that A. maxima biodegraded to a greater extent (70 %) than Nannochloropsis sp. (40 %). The low level of mineralization for Nannochloropsis sp. is due to the presence of high level of lipids (37 %). For macroalgal samples, red algae fiber pulped from G. corneum biodegraded comparably to cellulose controls. However, C. glomerata biodegradation is about 46 %. A sample compositional analysis revealed that it contained about 24.5 % ash, which is directly accountable for an observed low degree of biodegradation. Algal anaerobic biodegradability is important to facilitate sludge digester design and performance evaluation. It is particularly useful when waste residual materials from algal biofuel processing are used for energy production.  相似文献   

17.
Biogas produced from anaerobic digestion is a versatile and environment friendly fuel which traditionally utilizes cattle dung as the substrate. In the recent years, owing to its high content of biodegradable compounds, algal biomass has emerged as a potential feedstock for biogas production. Moreover, the ability of algae to treat wastewater and fix CO2 from waste gas streams makes it an environmental friendly and economically feasible feedstock. The present review focuses on the possibility of utilizing wastewater as the nutrient and waste gases as the CO2 source for algal biomass production and subsequent biogas generation. Studies describing the various harvesting methods of algal biomass as well as its anaerobic digestion have been compiled and discussed. Studies targeting the most recent advancements on biogas enrichment by algae have been discussed. Apart from highlighting the various advantages of utilizing algal biomass for biogas production, limitations of the process such as cell wall resistivity towards digestion and inhibitions caused due to ammonia toxicity and the possible strategies for overcoming the same have been reviewed. The studies compiled in the present review indicate that if the challenges posed in translating the lab scale studies on phycoremediation and biogas production to pilot scale are overcome, algal biogas could become the sustainable and economically feasible source of renewable energy.  相似文献   

18.
Microalgae feedstock production can be integrated with wastewater and industrial sources of carbon dioxide. This study reviews the literature on algae grown on wastewater and includes a preliminary analysis of algal production based on anaerobic digestion sludge centrate from the Howard F. Curren Advanced Wastewater Treatment Plant (HFC AWTP) in Tampa, Florida and secondary effluent from the City of Lakeland wastewater treatment facilities in Lakeland, Florida. It was demonstrated that a mixed culture of wild algae species could successfully be grown on wastewater nutrients and potentially scaled to commercial production. Algae have demonstrated the ability to naturally colonize low-nutrient effluent water in a wetland treatment system utilized by the City of Lakeland. The results from these experiments show that the algae grown in high strength wastewater from the HFC AWTP are light-limited when cultivated indoor since more than 50% of the outdoor illumination is attenuated in the greenhouse. An analysis was performed to determine the mass of algae that can be supported by the wastewater nutrients (mainly nitrogen and phosphorous) available from the two Florida cities. The study was guided by the growth and productivity data obtained for algal growth in the photobioreactors in operation at the University of South Florida. In the analysis, nutrients and light are assumed to be limited, while CO2 is abundantly available. There is some limitation on land, especially since the HFC AWTP is located at the Port of Tampa. The temperature range in Tampa is assumed to be suitable for algal growth year round. Assuming that the numerous technical challenges to achieving commercial-scale algal production can be met, the results presented suggest that an excess of 71 metric tons per hectare per year of algal biomass can be produced. Two energy production options were considered; liquid biofuels from feedstock with high lipid content, and biogas generation from anaerobic digestion of algae biomass. The total potential oil volume was determined to be approximately 337,500 gallons per year, which may result in the annual production of 270,000 gallons of biodiesel when 80% conversion efficiency is assumed. This production level would be able to sustain approximately 450 cars per year on average. Potential biogas production was estimated to be above 415,000 kg/yr, the equivalent of powering close to 500 homes for a year.  相似文献   

19.
Marine algae have unique defense strategies against microbial infection. However, their mechanisms of immunity remain to be elucidated and little is known about the similarity of the immune systems of marine algae and terrestrial higher plants. Here, we suggest a possible mechanism underlying algal immunity, which involves hexose oxidase (HOX)-dependent production of hydrogen peroxide (H2O2). We examined crude extracts from five different red algal species for their ability to prevent bacterial growth. The extract from one of these algae, Ptilophora subcostata, was particularly active and prevented the growth of gram-positive and -negative bacteria, which was completely inhibited by treatment with catalase. The extract did not affect the growth of either a yeast or a filamentous fungus. We partially purified from P. subcostata an enzyme involved in its antibacterial activity, which shared 50% homology with the HOX of red seaweed Chondrus crispus. In-gel carbohydrate oxidase assays revealed that P. subcostata extract had the ability to produce H2O2 in a hexose-dependent manner and this activity was highest in the presence of galactose. In addition, Bacillus subtilis growth was strongly suppressed near P. subcostata algal fronds on GYP agar plates. These results suggest that HOX plays a role in P. subcostata resistance to bacterial attack by mediating H2O2 production in the marine environment.  相似文献   

20.
Many green microalgae significantly increased their cellular neutral lipid content when cultured in nitrogen limited or high light conditions. Due to their lipid production potential, these algae have been suggested as promising feedstocks for biofuel production. However, no models for algal lipid synthesis with respect to nutrient and light have been developed to predict lipid production and to help improve the production process. A mathematical model is derived describing the growth dynamics and neutral lipid production of green microalgae grown in batch cultures. The model assumed that as the nitrogen was depleted, photosynthesis became uncoupled from growth, resulting in the synthesis and accumulation of neutral lipids. Simulation results were compared with experimental data for the green microalgae Pseudochlorococcum sp. For growth media with low nitrogen concentration, the model agreed closely with the data; however, with high nitrogen concentration the model overestimated the biomass. It is likely that additional limiting factors besides nitrogen could be responsible for this discrepancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号