首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that removal of the apical ectodermal ridge of the third interdigital space of the chick leg bud at stages 28 and 29 is followed by the appearance of ectopic cartilage, which in the course of development gives rise to extra digits. These in vivo studies suggest that the pattern of skeletal morphogenesis in the limb depends on the inhibitory effect of the ectoderm. In the present study we tested whether zone polarizing activity (ZPA) exerted an effect on the pattern of experimental chondrogenesis in the interdigital space of the leg bud in stage 29 HH chick embryos. A small fragment of tissue from the ZPA in chick embryos in which ZPA activity was most intense was grafted onto the interdigital space in which chondrogenesis had previously been experimentally induced. No significant changes were observed in the course of differentiation of the recipient interdigital spaces with ZPA grafts, leading us to conclude that the graft failed to modify the morphogenetic fate of interdigital tissue.  相似文献   

2.
Larger fragments of prospective chondrogenic or myogenic limb bud mesenchyme of the 4-day chick embryo differentiated primarily into cartilage in organ culture. Muscle sometimes was present in the peripheral areas adjacent to the larger central masses of cartilage. When the individual fragments of limb bud mesenchyme were cut into four smaller pieces and grown in organ culture, cartilage did not differentiate but muscle was present.Autoradiographic experiments with labeled thymidine and quantitative experiments with 3H-adenosine revealed a marked stimulation of DNA and RNA synthesis in the smaller explants, compared to the larger masses of limb bud mesenchyme.  相似文献   

3.
4.
In the developing chick leg bud, massive programmed cell death occurs in the interdigital region. Previously, we reported the inhibition of cell death by separation of the interdigital region from neighboring digit cartilage. In this study, we examined the relationship between cell death and cartilaginous tissue in vitro. First, cell fate was observed with DiI that was used to examine cell movement in the distal tip of leg bud. Labeled cells in the prospective digital region were distributed only in the distal region as a narrow band, while cells in the prospective interdigital region expanded widely in the interdigit. In coculture of monolayer cells and a cell pellet tending to differentiate into cartilage, monolayer cells migrated into the cell pellet. These results suggested that digit cartilage tends to recruit neighboring cells into the cartilage during limb development. Next, we observed the relationship between cell death and chondrogenesis in monolayer culture. Apoptotic cell death that could be detected by TUNEL occurred in regions between cartilaginous nodules in mesenchymal cell culture. More apoptotic cell death was detected in the cell culture of leg bud mesenchyme of stage 25/26 than that of leg bud mesenchyme of stage 22 or that of stage 28. The most developed cartilaginous nodules were observed in the cell culture of stage 25/26. Finally, we observed Bmp expression in vitro and in vivo. Bmp-2, Bmp-4 and Bmp-7 were detected around the cartilage nodules. When the interdigit was separated from neighboring digit cartilage, Bmp-4 expression disappeared near the cut region but remained near the digit cartilage. This correlation between cell death and cartilaginous region suggests that cartilage tissue can induce apoptotic cell death in the developing chick limb bud due to cell migration accompanying chondrogenesis and Bmp expression.  相似文献   

5.
The formation of cartilage elements in the developing vertebrate limb, where they serve as primordia for the appendicular skeleton, is preceded by the appearance of discrete cellular condensations. Control of the size and spacing of these condensations is a key aspect of skeletal pattern formation. Limb bud cell cultures grown in the absence of ectoderm formed continuous sheet-like masses of cartilage. With the inclusion of ectoderm, these cultures produced one or more cartilage nodules surrounded by zones of noncartilaginous mesenchyme. Ectodermal fibroblast growth factors (FGF2 and FGF8), but not a mesodermal FGF (FGF7), substituted for ectoderm in inhibiting chondrogenic gene expression, with some combinations of the two ectodermal factors leading to well-spaced cartilage nodules of relatively uniform size. Treatment of cultures with SU5402, an inhibitor FGF receptor tyrosine kinase activity, rendered FGFs ineffective in inducing perinodular inhibition. Inhibition of production of FGF receptor 2 (FGFR2) by transfection of wing and leg cell cultures with antisense oligodeoxynucleotides blocked appearance of ectoderm- or FGF-induced zones of perinodular inhibition of chondrogenesis and, when introduced into the limb buds of developing embryos, led to shorter, thicker, and fused cartilage elements. Because FGFR2 is expressed mainly at sites of precartilage condensation during limb development in vivo and in vitro, these results suggest that activation of FGFR2 by FGFs during development elicits a lateral inhibitor of chondrogenesis that limits the expansion of developing skeletal elements.  相似文献   

6.
In the 3- to 4-day embryonic avian limb bud, a unique zone of mesodermal tissue is located posteriorly at the junction of bud and body wall. Appropriately grafted to a host limb bud, it induces the formation of a supernumerary limb outgrowth from preaxial tissue and determines that its posterior side will face the graft. It is called the zone of polarizing activity (ZPA).When limb-bud mesoderm is isolated, dissociated, reaggregated centrifugally, jacketed in the mesoderm-free hull of another limb bud, and grown as a graft on a host embryo, the recombinant frequently forms a limb-like structure terminating in digits that fail to show differentiation with respect to the anteroposterior axis. When, however, a bit of ZPA tissue is implanted in the recombinant subjacent to the anterior or posterior margin of the ectoderm, the resulting outgrowth shows a characteristic anteroposterior order of digits that corresponds to the placement of the implant, regardless of its relationship with the anteroposterior axis of the ectoderm or of the host embryo.Dorsoventral differentials have been recognized only in limbs formed from reaggregated leg-bud mesoderm. The direction of the dorsoventral axis always corresponds to the original axis of the ectodermal jacket regardless of the orientation of the recombinant on the host.  相似文献   

7.
8.
The ventro-medial wall of a somite gives rise to the sclerotome and then to cartilaginous axial skeleton, while the dorso-lateral wall differentiates into the dermomyotome to form dermal mesenchyme and muscle. Although previous studies suggested pluri-potency of somite cell differentiation, apparent pluri-potency may be the result of migration of predetermined cells. To investigate whether the developmental fate of any region is determined, I isolated fragments of a region of a quail somite and transplanted them into chick embryos. When a fragment of the ventral wall of a quail somite, the prospective sclerotome, was transplanted into a chick embryo between the ectoderm and a newly formed somite, the transplanted quail cells were shown to form myotome and mesenchyme in 4-day chimera embryos and to form muscle and dermal tissue in 9-day chimeras. On the other hand, when a fragment of the dorsal wall of a quail somite, the prospective dermomyotome, was transplanted into a chick embryo between the neural tube and a newly formed somite, the graft gave rise to mesenchyme around the neural tube and notochord and then to vertebral cartilage. Thus the developmental fate of a region of a somite was shown not to be determined at the time of somite segmentation, confirming previous observations.  相似文献   

9.
Removal of the posterior half of the chick wing bud between stages 17-22 results in failure of the anterior distal tissue to survive and differentiate. This observation has been interpreted in terms of a requirement by the anterior half of a factor supplied by the posterior half of the limb containing the zone of polarizing activity (ZPA). This relationship has been tested by grafting ZPA tissue to the posterior surface of the anterior half after posterior half removal. Grafts made proximally on the cut surface did not significantly improve survival and development, nor did the ZPA prevent the expansion of the cell death in the ANZ beyond its normal boundaries into the distal mesenchyme. However, when grafted distally the ZPA inhibited cell death in the apical mesenchyme and caused the anterior mesenchyme to change its normal prospective fate (radius and digit 2). In all these cases, in addition to digit 2, digit 3 and frequently also digit 4 differentiated. The anterior half went on to develop a full set of digits and zeugopod parts in almost 50% of cases, although no skeleton resulting from this regulation of the anterior half had totally size regulated. These results demonstrate a developmental 'rescue' effect by the ZPA, and further support the view that the ZPA has a central and unique function in normal limb bud development, controlling survival and differentiation of the mesenchyme along the anteroposterior axis.  相似文献   

10.
In developing chick leg buds, large-scale cell death occurs in the interdigital zone, which is responsible for the separation of digits from each other. Ectopic cartilage formation is known to occur upon removal of the chondrogenic digit tissue of the leg bud. To examine the mechanisms of ectopic cartilage formation in the interdigital cell death region, we performed the following operations on stage 28–29 leg buds: (i) removal of the digit-forming area; (ii) incision between the interdigital zone and digit region; (iii) insertion of an aluminum barrier into the interdigital zone; and (iv) insertion of a permeable Nuclepore filter into the interdigital zone. In all cases, the inhibition of cell death and/or the formation of ectopic cartilage in the interdigital zone were observed, although the frequency of the inhibition of cell death and the formation of ectopic cartilage varied, depending upon the position where the operations were performed. These results suggest that cell death and cell differentiation in the interdigital zone may be controlled by some factor(s) from digit cartilage.  相似文献   

11.
12.
When a mouse zone of polarizing activity (ZPA) at the posterior margin of the limb bud was grafted into the anterior margin of the chick limb bud, the expressions of the chick homeobox genes HoxD12 and D13 were induced prior to the formation of chick extra digits. This induction was observed in a restricted domain close to both the grafted mouse ZPA and the chick apical ectodermal ridge (AER). When the posterior half of the AER was removed, the normal expression was diminished in the distaloposterior region. Thus, it is likely that at least two distinct factors, one from the ZPA and the other from the AER, act cooperatively to provide positional information to induce the sequential expression of the HoxD genes.  相似文献   

13.
The recombinant limb is a model system that has proved fruitful for analyzing epithelial-mesenchymal interactions and understanding the functional properties of the components of the limb bud. Here we present an overview of some of the insights obtained through the use of this technique. Among these are the understanding that fore or hind limb identity is inherent to the limb bud mesoderm, that the apical ectodermal ridge (AER) is a permissive signaling center and that the limb bud ectoderm plays a central role in the control of dorsoventral polarity. Recombinant limb studies have also allowed the identification of the affected tissue component in several limb mutants. More recently this model has been applied to the study of regulation of gene expressions related to patterning. In this report we use recombinant limbs to analyze pattering of the Pax3 expressing limb muscle cell lineage in the early stages of limb development. In recombinant limbs made without the zone of polarizing activity (ZPA), myoblasts appear intermingled with other mesodermal cells at the beginning of the recombinant limb development. Rapidly thereafter, the muscle precursors segregate and organize around the central forming chondrogenic core of the recombinant. Although this segregation is reminiscent of that occurring during normal development, the myoblasts in the recombinant fail to proliferate appropriately and also fail to migrate distally. Consequently, the muscle pattern in the recombinant limb is defective indicating that normal patterning cues are absent. However, recombinant limbs polarized with a ZPA exhibited a larger mass of muscle cells and a more normal morphogenesis, supporting a role for this signaling center in limb muscle development. Finally, we have ruled out host somite contributions to recombinant limbs by grafting chick recombinant limbs to quail hosts. This initial report demonstrates the value of the recombinant limb model system for dissecting the environmental cues required for normal muscle limb patterning. Received: 31 August 1998 / Accepted: 29 September 1998  相似文献   

14.
We have manipulated the chick limb bud by dorsoventrally inverting the ectoderm, by grafting the AER to the dorsal or ventral ectoderm and by insertion of an FGF-4 soaked heparin bead to the mesoderm. After dorso-ventral reversal of the ectoderm, Wnt-7a expression is autonomous from an early stage of limb development in the original dorsal ectoderm. Exogenous FGF-4 causes ectopic Wnt-7a expression and induces ectopic Shh. In addition, exogenous FGF-4 increases the thickness of cartilages and also shortens them, and both Bmp-2 and Bmp-4 may mediate this effect. The ectoderm outside the AER can regulate not only the dorso-ventral polarity of the underlying mesenchyme cells but also the cartilage formation, and both Bmp-2 and Bmp-4 may mediate this control.  相似文献   

15.
Monoclonal antibodies (MAbs) were used as probes for molecular differences in the surfaces of nonterminally differentiated cells of the developing chick limb. The specificity of the MAbs was determined by immunofluorescent localization performed on cultured breast muscle and limb bud cells and cryosections of a variety of embryonic (stages 15-37) and neonatal tissues. Subpopulations of MAb-positive and -negative cells were isolated by fluorescence-activated cell sorting and their developmental potential was assessed in vitro. Cells of the compacted somite, lateral plate mesoderm, and early limb bud were labeled with the CSAT MAb. Myogenic precursors of the dermatome and limb bud were labeled with the CSAT and L4 MAbs. Chondrogenic precursors of the sclerotome and limb bud were labeled with the CSAT, L4, and C5 MAbs. These precursors were distinguished from fibroblasts which were labeled with the CSAT and C1 MAbs. The differentiation and maturation of muscle and cartilage were accompanied by alterations in the labeling patterns of the MAbs. These results indicate that combinations of these MAbs can be used to distinguish mesenchymal, myogenic, and chondrogenic precursors, identify their site of origin during development, and isolate subpopulations of embryonic cells.  相似文献   

16.
AV-1 protein is a molecule which shows position-specific expression during chick limb development, and is expected to have some important roles in limb pattern formation. In this study, to examine whether the ZPA (Zone of polarizing activity) effects the expression of the AV-1 protein, we have removed or grafted the ZPA in chick limb buds and observed AV-1 expression. Anterior halves of the limb buds which lack a ZPA were used as hosts. In such anterior halves, AV-1 expression was initially observed in distal mesodermal cells including the cut surface. These anterior halves were combined with ZPA fragments, anterior fragments, posterior half limb buds, or left to develop alone, and the distribution of AV-1 expression was examined. The results of these experiments show that AV-1 expression requires the ZPA, and that expression occurs in the distal mesodermal cells certain distance from the ZPA.  相似文献   

17.
The development of the chick face involves outgrowth of buds of tissue, accompanied by the differentiation of cartilage and bone in spatially defined patterns. To investigate the role of epithelial-mesenchymal interactions in facial morphogenesis, small fragments of facial tissue have been grafted to host chick wing buds to continue their development in isolation. Fragments of the frontonasal mass give rise to typical upper-beak-like structures: a long central rod of cartilage, the prenasal cartilage and an egg tooth. Meckel's cartilage, characteristic of the lower beak, develops from fragments of the mandible. Removal of the ectoderm prior to grafting leads to truncated development. In fragments of frontonasal mass mesenchyme only a small spur of cartilage differentiates and there is no outgrowth. The mandible is less affected; a rod of cartilage still forms but the amount of outgrowth is reduced. Retinoid treatment of chick embryos specifically affects the development of the upper beak and outgrowth and cartilage differentiation in the frontonasal mass are inhibited. The mandibles, however, are unaffected and develop normally. In order to investigate whether the epithelium or the mesenchyme of the frontonasal mass is the target of retinoid action, recombinations of retinoid-treated and untreated facial tissue have been grafted to host wing buds. Recombinations of retinoid-treated frontonasal mass ectoderm with untreated mesenchyme develop normally whereas recombinations of untreated ectoderm with retinoid-treated mesenchyme lead to truncations. The amount of outgrowth in fragments of mandibular tissue is slightly reduced when either the ectoderm or the mesenchyme has been treated with retinoids. These recombination experiments demonstrate that the mesenchyme of the frontonasal mass is the target of retinoid action. This suggests that retinoids interfere with the reciprocal epithelial-mesenchymal interactions necessary for outgrowth and normal upper beak development.  相似文献   

18.
19.
20.
It has been suggested that the ectoderm on the dorsal and ventral faces of the limb bud plays a part in controlling the pattern of cartilage differentiation. To test this, the dorsal wing bud ectoderm in the chick embryo was destroyed by irradiation with ultraviolet light at stage 17-19, at the very beginning of limb bud development, but the apical ectodermal ridge was spared. The irradiated ectoderm disappeared within 24 hr (by stage 23-24) and did not regenerate thereafter; thus the dorsal surface of the limb bud was kept denuded throughout most of the period of skeletal pattern formation. By 6 or 7 days after the irradiation (stage 35), when the rudiments of all the adult skeletal elements are normally present in recognizable form, the irradiated wings could be placed into two categories, those that were approximately normal in shape and those that had curled dorsally. All of these limbs were reduced in size, to varying degrees, when compared to their controls and lacked dorsal soft tissues. The limbs that were normal in shape, however, even though sometimes denuded over practically the whole extent of their dorsal surface, almost always had a complete and normally proportioned cartilage pattern, suggesting that ectoderm (other than the apical ectodermal ridge) does not exert any direct control over the development of the limb cartilage pattern. However, many of those limbs that had curled as a result of the irradiation did have major pattern deformities, suggesting that the topology of cartilage differentiation does depend on the shape of the limb bud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号