首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

2.
Linoleic acid is an important essential fatty acids of leukocyte cell membrane phospholipids from some animals, e.g. from pigs and rabbits, and is a known substrate for lipoxygenase(s), especially in plant systems. Lipoxygenase activity has also been well documented in leukocytes using arachidonic acid as a substrate. These findings and our own interest in the fate of linoleic acid have prompted us to investigate the biotransformation of this essential fatty acids in leukocytes.Porcine leukocytes were isolated from whole blood by dextrane precipitation of the erythrocytes and by centrifugation. Broken cells were incubated with exogenous linoleic acid and four major biotransformation products, X1, X2, X3 and X4, were formed. Following isolation by silicagel column chromatography and thin layer chromatography, the products were derivatized and characterized by GC/MS. Derivatization included hydrogenation, methyl ester formation, n-butyl boronate formation and trimethylsilylation, and various types of derivatives were made in order to facilitate the structure elucidation. The major product X1, which represented 60.5% of the total metabolites formed, was identified as 13-hydroxy-9,11-octadecadienoic acid. Product X2 (16.2%) was shown to be 11-hydroxy-12,13-epoxy-9-octadecenoic acid. Products X3 and X4 (respectively 5.2 and 7.5%) resulted in identical thermore, each of the products X3 and X4 was shown to be a mixture of two positional isomers, i.e. of 9,12,13-trihydroxy-10-octadecenoic acid (70%) and 9,10,13-trihydroxy-12-octadecenoic acid (30%). With regard to the structure elucidation of the latter isomers, the mixed hydrogenated, n-butylboronate, methyl ester, TMS-ether derivatives were shown to be of particular value for the determination of the vicinal diol position.The metabolism of linoleic acid in porcine leukocytes is analogous to that by cereal lipoxygenases. A major difference however is that porcine leukocyte lipoxygenase predominantly yields products, which arise through 13-lipoxygenation, whereas, in cereals, transformation products of 9-hydroperoxy-10,12-octadecadienoic acid are formed to the same extent as metabolites of 13-hydroperoxy-9,11-octadecadienoic acid.  相似文献   

3.
Linoleic acid oxidation catalyzed by lipoxygenase (lipoxidase) activity in extracts of defatted corn germ does not terminate in the product, linoleic acid hydroperoxide, unless the lipoxygenase is first partially purified. If purification is not attempted, the hydroperoxide product exists only as a barely detectable intermediate in the synthesis of three products. One of these was identified as 9-hydroxy-10-oxo-cis-12-octadecenoic acid formed from the hydroperoxide by the enzyme, linoleate hydroperoxide isomerase. Another product, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, is believed to be formed by an isomerase also. The third product was the linoleate ester of one of the hydroxy-oxo-fatty acids, 9-(cis-9,cis-12-octadecadienoyl)-10-oxo-cis-12-octadecenoic acid. It is not known if the synthesis of the ester is enzyme-catalyzed. When a mixture of 13-hydroperoxy-cis-9,trans-11-octa-decadienoic acid and 9-hydroperoxy-trans-10,cis-12-octa-decadienoic acid from soybean lipoxygenase oxidation of linoleic acid was used as a substrate, 13-hydroxy-12-oxo-cis-9-octadecenoic acid and 9-hydroxy-12-oxo-trans-10-octadecenoic acid were formed as the major products of catalysis by linoleate hydroperoxide isomerase(s) from corn. Smaller quantities of 9-hydroxy-10-oxo-cis-12-octadecenoic acid and 13-hydroxy-10-oxo-trans-11-octadecenoic acid were also formed.  相似文献   

4.
We have carried out a study of the reaction of 13-hydroperoxy-9-cis,11-trans-octadecadienoic acid (linoleic acid hydroperoxide) with hematin. The major products are erythro-11-hydroxy-12,13-epoxy-9-octadecenoic acid, threo-11-hydroxy-12,13-epoxy-9-octadecenoic acid, 9,12,13-trihydroxy-10-octadecenoic acid, 13-keto-9,11-octadecadienoic acid, and 13-hydroxy-9,11-octadecadienoic acid. Several minor products have also been identified, including 9-hydroxy-12,13-epoxyoctadecenoic acid, 11-hydroxy-9,10-epoxy-12-octadecenoic acid, 9-hydroxy-10,12-octadecadienoic acid, and 9-keto-10,12-octadecadienoic acid. Oxygen labeling studies indicate that the observed products arise by at least two pathways. In the major pathway, hematin reduces 13-hydroperoxy-9,11-octadecadienoic acid by one electron to an alkoxyl radical that cyclizes to an adjacent double bond to form an epoxy allylic radical. The allylic radical either couples to the hydroxyl radical coordinated to hematin or diffuses from the solvent cage and couples to O2, forming a peroxyl radical. In the minor pathway, the hydroperoxide is oxidized by one electron to a 13-peroxyl radical that undergoes beta-scission to a pentadienyl radical and O2. Exchange of hydroperoxide-derived O2 for dissolved O2 occurs at this stage followed by coupling of O2 to either terminus of the pentadienyl radical. Both pathways of hydroperoxide metabolism generate significant quantities of peroxyl radicals that epoxidize the isolated double bonds of dihydroaromatic molecules. The products of hydroperoxide reaction with hematin and the oxygen labeling patterns are very similar to the products of unsaturated fatty acid hydroperoxide metabolism by platelets, aorta, and lung. Our results not only provide a mechanism for the formation of a series of mammalian metabolites of linoleic and arachidonic acids but also offer an estimate of the yield of peroxyl radicals generated during the process.  相似文献   

5.
The methanol extract of Ehretia dicksonii provided (10E, 12Z, 15Z)-9-hydroxy-10,12,15-octadecatrienoic acid methyl ester (1) which was isolated as an anti-inflammatory compound. Compound 1 suppressed 12-Otetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation on mouse ears at a dose of 500 microg (the inhibitory effect (IE) was 43%). Linolenic acid methyl ester did not inhibit this inflammation at the same dose. However, the related compounds of 1, (9Z,11E)-13hydroxy-9,11-octadecadienoic acid (5) and (9Z,llE)13-oxo-9,11-octadecadienoic acid (6), showed potent activity (IE500 microg of 63% and 79%, respectively). Compounds 1, 4 ((9Z, 12Z, 14E)-16-hydroxy-9,12,14-octadecatrienoic acid), 5 and 6 also showed inhibitory activity toward soybean lipoxygenase at a concentration of 10 microg/ml.  相似文献   

6.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

7.
Incubation of linoleic acid with the 105,000g particle fraction of the homogenate of the broad bean (Vicia faba L.) led to the formation of the following products: 13(S)-hydroxy-9(Z),11(E)-octadecadienoic acid, 9,10-epoxy-12(Z)-octadecenoic acid (9(R),10(S)/9(S)/10(R), 80/20), 12,13-epoxy-9(Z)-octadecenoic acid (12(S),13(R)/12(R)/13(S), 64/36), and 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid (9(S),10(R)/9(R),10(S), 91/9). Oleic acid incubated with the enzyme preparation in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid or cumene hydroperoxide was converted into 9,10-epoxyoctadecanoic acid (9(R),10(S)/9(S),10(R), 79/21). Two enzyme activities were involved in the formation of the products, an omega 6-lipoxygenase and a hydroperoxide-dependent epoxygenase. The lipoxygenase, but not the epoxygenase, was inhibited by low concentrations of 5,8,11,14-eicosatetraynoic acid and nordihydroguaiaretic acid. In contrast, the epoxygenase, but not the lipoxygenase, was readily inactivated in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid. Studies with 18O2-labeled 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid showed that the epoxide oxygens of 9,10-epoxyoctadecanoic acid and of 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid were derived from hydroperoxide and not from molecular oxygen.  相似文献   

8.
The type II lipoxygenase (optimum pH 6.5) from soybeans was purified and separated into two fractions either by chromatography on DEAE-Sephadex or by isoelectric focusing. In the presence of linoleic acid and oxygen both fractions co-oxidise canthaxanthine or beta-carotene as effectively as a combination of these fractions. Oxygenation of linoleic acid and co-oxidation of canthaxanthine by type II lipoxygenase is stimulated by 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid but not by 13-hydroxy-cis-9,trans-11-octadecadienoic acid or 9-hydroperoxy-trans-10,cis-12-octadecadienoic acid.  相似文献   

9.
The metabolism of arachidonic and linoleic acids by VX2 carcinoma tissue was determined. Prostaglandin E2 was the major metabolic product of arachidonic acid in the neoplastic tissue. Minor products accounting for 3– 8% of arachidonic acid metabolism were 11-hydroxy-5, 8, 12, 14-eicosatetraenoic acid (11-HETE) and 15-hydroxy-5, 8, 11, 13-eicosatetraenoic acid (15-HETE). Linoleic acid was converted to a mixture of 9-hydroxy-10, 12-octadecadienoic acid (9-HODD) and 13-hydroxy-9, 11-octadecadienoic acid (13-HODD). The conversion of linoleic acid to monohydroxy C-18 fatty acids varied from 40–80% 9-HODD and 20–60% 13-HODD in tumor tissue harvested from different animals. The quantity of monohydroxy C-18 fatty acids biosynthesized by VX2 carcinoma tissue from endogenous linoleic acid equals or exceeds that of prostaglandin E2 biosynthesis from endogenous arachidonic acid. The presence of a hydroxyl group adjacent to a conjugated diene suggest that the monohydroxy C-18 and monohydroxy C-20 fatty acids were formed via the action of lipoxygenase-like enzymes. These lipoxygenase-like reactions are inhibited by indomethacin in a concentration-dependent fashion similar to the inhibition of prostaglandin E2 biosynthesis. The enzymes catalyzing the lipoxygenase-like reactions of linoleic and arachidonic acids are localized in the microsomal fraction of VX2 carcinoma tissue. These data suggest that the lipoxygenase-like reactions are catalyzed by fatty acid cyclooxygenase and that there are two major pathways of fatty acid cyclooxygenase metabolism of polyenoic fatty acids in the neoplastic tissue. One pathway involves the formation of prostaglandin E2 via cyclic endoperoxy intermediates. The second pathway involves the formation of monohydroxy C-18 fatty acids from linoleic acid via lipoxygenase-like reactions.  相似文献   

10.
Soybean lipoxygenase-1 produces a preponderance of two chiral products from linoleic acid, (13S)-(9Z,11E)-13-hydroperoxy-9,11-octadecadienoic acid and (9S)-(10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid. The former of these hydroperoxides was generated at all pH values, but in the presence of Tween 20, the latter product did not form at pH values above 8.5. As the pH decreased below 8.5, the proportion of (9S)-hydroperoxide increased linearly until at pH 6 it constituted about 25% of the chiral products attributed to enzymic action. Below pH 6, lipoxygenase activity was barely measurable, and the hydroperoxide product arose mainly from autoxidation and possibly non-enzymic oxygenation of the pentadienyl radical formed by the enzyme. The change in percent enzymically formed 9-hydroperoxide between pH 6.0 and 8.5 paralleled the pH plot of a sodium linoleate/linoleic acid titration. It was concluded that the (9S)-hydroperoxide is formed only from the nonionized carboxylic acid form of linoleic acid. Methyl esterification of linoleic acid blocked the formation of the (9S)-hydroperoxide by lipoxygenase-1, but not the (13S)-hydroperoxide. Since the hydroperoxydiene moieties of the (9S)- and (13S)-hydroperoxides are spatially identical when the molecules are arranged head to tail in opposite orientations, it is suggested that the carboxylic acid form of the substrate can arrange itself at the active site in either orientation, but the carboxylate anion can be positioned only in one orientation. These observations, as well as others in the literature, suggest and active-site model for soybean lipoxygenase-1.  相似文献   

11.
The fungus Gaeumannomyces graminis metabolized linoleic acid extensively to (8R)-hydroperoxylinoleic acid, (8R)-hydroxylinoleic acid, and threo-(7S,8S)-dihydroxylinoleic acid. When G. graminis was incubated with linoleic acid under an atmosphere of oxygen-18, the isotope was incorporated into (8R)-hydroxylinoleic acid and 7,8-dihydroxylinoleic acid. The two hydroxyls of the latter contained either two oxygen-18 or two oxygen-16 atoms, whereas a molecular species that contained both oxygen isotopes was formed in negligible amounts. Glutathione peroxidase inhibited the biosynthesis of 7,8-dihydroxylinoleic acid. These findings demonstrated that the diol was formed from (8R)-hydroperoxylinoleic acid by intramolecular hydroxylation at carbon 7, catalyzed by a hydroperoxide isomerase. The (8R)-dioxygenase appeared to metabolize substrates with a saturated carboxylic side chain and a 9Z-double bond. G. graminis also formed omega 2- and omega 3-hydroxy metabolites of the fatty acids. In addition, linoleic acid was converted to small amounts of nearly (65% R) racemic 10-hydroxy-8,12-octadecadienoic acid by incorporation of atmospheric oxygen. An unstable metabolite, 11-hydroxylinoleic acid, could also be isolated as well as (13R,13S)-hydroxy-(9E,9Z), (11E)-octadecadienoic acids and (9R,9S)-hydroxy-(10E), (12E,12Z)-octadecadienoic acids. In summary, G. graminis contains a prominent linoleic acid (8R)-dioxygenase, which differs from the lipoxygenase family of dioxygenases by catalyzing the formation of a hydroperoxide without affecting the double bonds of the substrate.  相似文献   

12.
  • 1.1. The effect of 13-hydroperoxy-9,11-octadecadienoic acid (13-HPODE) on the formation of thromboxane (TX) B2, 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) from exogenous arachidonic acid in washed rabbit platelets was examined.
  • 2.2. 13-HPODE inhibited TXB2 and HHT formation without affecting 12-HETE production.
  • 3.3. 13-Hydroxy-9,11-octadecadienoic acid which was produced rapidly from 13-HPODE, did not suppress the formation of TXB2 and HHT, indicating the requirement of the hydroperoxy moiety for the inhibitory effect of 13-HPODE on TXB2 and HHT formation.
  • 4.4. Experiments utilizing mannitol and dimethyl sulfoxide (hydroxy radical scavengers) revealed that the action of 13-HPODE is not due to hydroxy radicals which are expected to be formed from 13-HPODE.
  • 5.5. These results suggest that 13-HPODE is a selective inhibitor of platelet cyclo-oxygenase and may have functional effects within platelets.
  相似文献   

13.
The new route of the plant lipoxygenase pathway, directed specifically towards the ketodiene formation, was detected during in vitro experiments with Jerusalem artichoke (Helianthus tuberosus) tubers. Through this pathway (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid (13-HPOD) is reduced to corresponding 13-hydroxy acid (13-HOD), which is in turn dehydrogenated into ketodiene (9Z,11E,13S)-13-oxo-9,11-octadecadienoic acid (13-KOD). Dehydrogenation of 13-HOD into 13-KOD was not dependent on the presence of either NAD or NADP, but was strongly dependent on the presence of oxygen. Under anoxic conditions, 13-HOD dehydrogenation was blocked, but addition of 2,6-dichlorophenolindophenol restored it. Sulfite addition fully suppressed the aerobic dehydrogenation of 13-HOD. Hydrogen peroxide is a by-product formed by the enzyme along with 13-KOD. These data suggest that the ketodiene biosynthesis in H. tuberosus tubers is catalyzed by flavin dehydrogenase. (9S,10E,12Z)-9-Hydroxy-10,12-octadecadienoic acid (9-HOD) is dehydrogenated by this enzyme as effectively as 13-HOD, while alpha-ketol, (9Z)-12-oxo-13-hydroxy-9-octadecenoic acid, and ricinoleic acid did not act as substrates for dehydrogenase. The enzyme was soluble and possessed a pH optimum at pH 7.0-9.0. The only 13-HOD dehydrogenase known so far was detected in rat colon. However, unlike the H. tuberosus enzyme, the rat dehydrogenase is NAD-dependent.  相似文献   

14.
The effects of protein deficiency on the biosynthesis of metabolites of arachidonic acid by rat pleural polymorphonuclear leukocytes stimulated with calcium ionophore were investigated. The major products of metabolism by lipoxygenase in these cells were leukotriene B4 and 5-hydroxy-6,8,11,14-eicosatetraenoic acid, whereas the major cyclooxygenase products were thromboxane B2 and 12-hydroxy-5,8,10-heptadecatrienoic acid. At high substrate concentrations (100 microM), the formation of all products by polymorphonuclear leukocytes was lower for protein-deficient rats than for controls. Similar results were obtained when products synthesized from endogenous substrate were measured, except that there was no change in the amount of 5-hydroxy-6,8,11,14-eicosatetraenoic acid formed. The biosynthesis of prostaglandins E2 and F2 alpha by homogenates of rat kidney medulla was reduced as a result of protein deficiency. Acetylsalicylic acid inhibited the formation of cyclooxygenase products and stimulated the formation of lipoxygenase products by polymorphonuclear leukocytes. Protein deficiency did not alter the effects of acetylsalicylic acid on the biosynthesis of these products, although at any given concentration the amounts of products formed were less with protein-deficient rats than with rats fed control diets.  相似文献   

15.
MOLT-4 lymphocytes metabolize 13-hydroxy-9,11-octadecadienoic acid, via the beta-oxidation pathway with retention of the omega 6 hydroxyl group and the conjugated diene system. The products which accumulate include 11-hydroxy-7,9-hexadecadienoic acid and 9-hydroxy-5,7-tetradecadienoic acid. In addition, it was possible to isolate two beta-hydroxy acids which were shown to be 3,13-dihydroxy-9,11-octadecadienoic acid and 3,11-dihydroxy-7,9-hexadecadienoic acid. The odd chain aldehyde, 12-hydroxy-8,10-heptadecadien-1-al, also was detected. However, neither the pathway nor the immediate precursor for the synthesis of this compound was established.  相似文献   

16.
Leaves of Glechoma hederacea L. and other Labiatae contain (9S,10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid, (10E,12Z,15Z)-9-oxo-10,12,15-octadecatrienoic acid, (9S,10E,12Z)-9-hydroxy-10,12-octadecadienoic acid and (10E,12Z)-9-oxo-10,12-octadecadienoic acid in a ratio of 71/14/12/3 (by mass), predominantly esterified in the membrane ester lipids. The leaves contain the highest level of these products, whereas only small amounts were found in the stalk and the roots. The chemical structures of these compounds were established by ultraviolet and infrared spectroscopy, by co-chromatography with authentic standards on various types of HPLC columns including chiral-phase HPLC and gas chromatography/mass spectrometry. The stereochemical specificity indicates the enzymatic origin of the products, most probably via a lipoxygenase reaction. Freshly harvested specimens of G. hederacea L. contain only small amounts of hydroxy-polyenoic fatty acids. Air-drying causes a strong increase in the content of free and esterified (9S,10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid. Up to 80% of the hydroxy fatty acids of the total lipid extracts were esterified in the cellular lipids. The data presented indicate that lipoxygenase products occur in the cellular ester lipids of G. hederacea L. and other Labiatae. The results are discussed in the light of a possible involvement of the lipoxygenase pathway in the natural senescence of leaves.  相似文献   

17.
The methanol extract of Ehretia dicksonii provided (10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid methyl ester (1) which was isolated as an anti-inflammatory compound. Compound 1 suppressed 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation on mouse ears at a dose of 500 μg (the inhibitory effect (IE) was 43%). Linolenic acid methyl ester did not inhibit this inflammation at the same dose. However, the related compounds of 1, (9Z,11E)-13-hydroxy-9,11-octadecadienoic acid (5) and (9Z,11E)- 13-oxo-9,11-octadecadienoic acid (6), showed potent activity (IE500 μg of 63% and 79%, respectively). Compounds 1, 4 ((9Z,12Z,14E)-16-hydroxy-9,12,14-octadecatrienoic acid), 5 and 6 also showed inhibitory activity toward soybean lipoxygenase at a concentration of 10 μg/ml.  相似文献   

18.
The rate of peroxidation of linoleic acid by soybean type-1 lipoxygenase was studied under conditions which assured that the substrate was present as a monomolecular solution and that the first 5% of the reaction was observed. In order to achieve this, the kinetics were carried out at pH 10.0 in borate buffer using linoleic acid and enzyme concentrations of less than 75 μM and 0.2 nM respectively. The initial rate was increased by the presence of added product (13-hydroperoxy-9(Z),11(E)-octadecadienoic acid) in the substrate solutions in a concentration dependent and saturatable fashion. Product analogues lacking the hydroperoxide group (13-hydroxy-9(Z),11(E)-octadecadienoic acid and 13-methoxy-9(Z),11(E)-octadecadienoic acid) did not evoke this rate enhancing effect. These compounds reduced the initial rate when preincubated with enzyme prior to mixing with substrate. The results indicated that the chemical reactivity of the product was a necessary requirement for its activating effect on the enzyme.  相似文献   

19.
Incubation of linoleic acid with an enzyme preparation from leaves of flax (Linum usitatissimum L.) led to the formation of a divinyl ether fatty acid, i.e. (9Z,11E,1'Z)-12-(1'-hexenyloxy)-9,11-dodecadienoic [(omega5Z)-etheroleic] acid, as well as smaller amounts of 13-hydroxy-9(Z),11(E)-octadecadienoic acid. The 13-hydroperoxide of linoleic acid afforded the same set of products, whereas incubations of alpha-linolenic acid and its 13-hydroperoxide afforded the divinyl ether (9Z,11E,1'Z,3'Z)-12-(1',3'-hexadienyloxy)-9,11-dodecadienoic [(omega5Z)-etherolenic] as the main product. Identification of both divinyl ethers was substantiated by their UV, mass-, (1)H NMR and COSY spectral data. In addition to the 13-lipoxygenase and divinyl ether synthase activities demonstrated by these results, flax leaves also contained allene oxide synthase activity as judged by the presence of endogenously formed (15Z)-cis-12-oxo-10,15-phytodienoic acid in all incubations.  相似文献   

20.
Enzyme-bound pentadienyl and peroxyl radicals in purple lipoxygenase   总被引:1,自引:0,他引:1  
M J Nelson  S P Seitz  R A Cowling 《Biochemistry》1990,29(29):6897-6903
Samples of purple lipoxygenase prepared by addition of either 13-hydroperoxy-9,11-octadecadienoic acid or linoleic acid and oxygen to ferric lipoxygenase contain pentadienyl and/or peroxyl radicals. The radicals are identified by the g values and hyperfine splitting parameters of natural abundance and isotopically enriched samples. The line shapes of their EPR spectra suggest the radicals are conformationally constrained when compared to spectra of the same radicals generated in frozen linoleic acid. Further, the EPR spectra are unusually difficult to saturate. The radicals are stable in buffered aqueous solution at 4 degrees C for several minutes. All of this implies that these species are bound to the enzyme, possibly in proximity to the iron. Only peroxyl radical is seen when the purple enzyme is generated with either hydroperoxide or linoleic acid in O2-saturated solutions. Addition of natural abundance hydroperoxide under 17O-enriched O2 leads to the 17O-enriched peroxyl radical, while the opposite labeling results in the natural abundance peroxyl radical, demonstrating the exchange of oxygen. Both radicals are detected in samples of purple lipoxygenase prepared with either linoleic acid or hydroperoxide under air. Addition of the hydroperoxide in the absence of oxygen favors the pentadienyl radical. We propose that addition of either linoleic acid or hydroperoxide to ferric lipoxygenase leads to multiple mechanistically connected enzyme complexes, including those with (hydro)peroxide, peroxide, peroxyl radical, pentadienyl radical, and linoleic acid bound. This hypothesis is essentially identical with the proposed radical mechanism of oxygenation of polyunsaturated fatty acids by lipoxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号