首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Previously, the only anuran amphibians known to have the capacity to regenerate a lens after lentectomy were Xenopus laevis and Xenopus tropicalis. This regeneration process occurs during the larval life through transdifferentiation of the outer cornea promoted by inductive factors produced by the retina and accumulated inside the vitreous chamber. However, the capacity of X. tropicalis to regenerate a lens is much lower than that of X. laevis. This study demonstrates that Xenopus borealis, a species more closely related to X. laevis than to X. tropicalis, is not able to regenerate a lens after lentectomy. Nevertheless, some morphological modifications corresponding to the first stages of lens regeneration in X. laevis were observed in the outer cornea of X. borealis. This suggested that in X borealis the regeneration process was blocked at early stages. Results from histological analysis of X. borealis and X. laevis lentectomized eyes and from implantation of outer cornea fragments into the vitreous and anterior chambers demonstrated that: (i) in X. borealis eye, the lens-forming competence in the outer cornea and inductive factors in the vitreous chamber are both present, (ii) no inhibiting factors are present in the anterior chamber, the environment where lens regeneration begins, (iii) the inability of X. borealis to regenerate a lens after lentectomy is due to an inhibiting action exerted by the inner cornea on the spreading of the retinal factor from the vitreous chamber towards the outer cornea. This mechanical inhibition is assured by two distinctive features of X. borealis eye in comparison with X. laevis eye: (i) a weaker and slower response to the retinal inducer by the outer cornea; (ii) a stronger and faster healing of the inner cornea. Unlike X. tropicalis and similar to X. laevis, in X. borealis the competence to respond to the retinal factor is not restricted to the corneal epithelium but also extends to the pericorneal epidermis.  相似文献   

2.
After lentectomy through the pupillary hole, the outer cornea of larval Xenopus laevis can undergo transdifferentiation to regenerate a new lens. This process is elicited by inductive factor(s) produced by the neural retina and accumulated into the vitreous chamber. During embryogenesis, the outer cornea develops from the outer layer of the presumptive lens ectoderm (PLE) under the influence of the eye cup and the lens. In this study, we investigated whether the capacity of the outer cornea to regenerate a lens is the result of early inductive signals causing lens-forming bias and lens specification of the PLE, or late inductive signals causing cornea formation or both signals. Fragments of larval epidermis or cornea developed from ectoderm that had undergone only one kind of inductive signals, or both kinds of signals, or none of them, were implanted into the vitreous chamber of host larvae. The regeneration potential and the lens-forming transformations of the implants were tested using an antisense probe for pax6 as an earlier marker of lens formation and a monoclonal antibody anti-lens as a definitive indicator of lens cell differentiation. Results demonstrated that the capacity of the larval outer cornea to regenerate a lens is the result of both early and late inductive signals and that either early inductive signals alone or late inductive signals alone can elicit this capacity.  相似文献   

3.
Previously, the only anuran amphibian known to regenerate the lens of the eye was Xenopus laevis. This occurs during larval stages through transdifferentiation of the outer cornea epithelium under control of factors presumably secreted by the neural retina. This study demonstrates that a distantly related species, X. tropicalis, is also able to regenerate lenses through this process. A transgenic line of X. tropicalis was used to examine the process of cornea-lens transdifferentiation in which green fluorescent protein (GFP) is expressed in differentiated lens cells under the control of the Xenopus gamma1-crystallin promoter element. Unlike X. laevis, the process of cornea-lens transdifferentiation typically occurs at a very low frequency in X. tropicalis due to the rapid rate at which the inner cornea endothelium heals to recover the pupillary opening. The inner cornea endothelium serves as a key physical barrier that normally prevents retinal signals from reaching the outer cornea epithelium. If this barrier is circumvented by implanting outer cornea epithelium of transgenic tadpoles directly into the vitreous chamber of non-transgenic X. tropicalis larval eyes, a higher percentage of cases formed lenses expressing GFP. Lenses were also formed if these tissues were implanted into X. laevis larval eyes, suggesting the same or similar inducing factors are present in both species. When pericorneal ectoderm and posteriolateral flank ectoderm were implanted into the vitreous chamber, only in rare cases did pericorneal ectoderm form lens cells. Thus, unlike the case in X. laevis, competence to respond to the inducing factors is tightly restricted to the cornea epithelium in X. tropicalis. As controls, all these tissues were implanted into the space located between the inner and outer corneas. None of these implants, including outer cornea epithelium, exhibited GFP expression. Thus, the essential inductive factors are normally contained within the vitreous chamber. One explanation why this type of lens regeneration is not seen in some other anurans could be due to the rapid rate at which the inner cornea endothelium heals to recover the pupillary opening once the original lens is removed. These findings are discussed in terms of the evolution of this developmental process within the anurans.  相似文献   

4.
Corneal fragments of larval Xenopus laevis at stage 48 (according to Nieuwkoop and Faber, '56), were implanted into sham denervated unamputated hindlimbs, denervated unamputated hindlimbs, amputated and sham denervated hindlimbs, and amputated and denervated hindlimbs of larvae at stages 52 and 57. The results show that unamputated limbs at stage 52, either innervated or denervated, manifest a weak capacity to promote the first lens-forming transformations of the outer cornea. This capacity is absent in both limb types at stage 57. After amputation, limbs of both early and late stages form a regenerative blastema and support lens formation from the outer cornea. Denervation of early stage limbs has no appreciable effect on blastema formation and lens-forming transformation of corneal implants. However, denervation of late stage limbs inhibits both processes. These results indicate that the limb tissues of the early stage limbs contain non-neural inductive factors at a low level and that after limb amputation and blastema formation the level of these factors becomes high enough to promote lens formation from implanted cornea, even after denervation. In contrast, the limb tissues of late stage limbs do not contain a suitable level of non-neural inductive factors.  相似文献   

5.
The lentectomized eye of larval Xenopus laevis can regenerate a lens by a process of lens-transdifferentiation of the cornea and pericorneal epidermis. These tissues can form the lens only when they become in direct communication with the environment of the vitreous chamber (neural retina) indicating that the eye cup plays a fundamental role in this process.
In this work the role of the eye cup in the maintainance of the lens-forming capacity of the cornea and pericorneal epidermis was studied by allowing these tissues to cover the enucleated orbit for different periods, and then implanting them into the vitreous chamber of the contralateral eye. Under these experimental conditions the maintainance of the lens-forming capacity of the cornea and pericorneal epidermis showed no significant correlation with the time from enucleation to implantation.  相似文献   

6.
Transdifferentiation of ocular tissues in larval Xenopus laevis   总被引:4,自引:0,他引:4  
Transdifferentiation phenomena offer a useful opportunity to study experimentally the mechanisms on which cell phenotypic stability depends. The capacities of vertebrate eye tissues to reprogram cell differentiation are well known in avian and mammalian embryos, and in larval and adult newt. From research into the capacity of anuran eye tissues to reprogram differentiation into a new pathway, considerable data have accumulated concerning the transdifferentiative capacities of eye tissues in larval Xenopus laevis. This work reviews the data concerning the transdifferentiative phenomena of eye tissues in that species and, based on these, aims to establish the extent of our knowledge about the mechanism controlling these processes. In larval Xenopus laevis the outer cornea can regenerate a lens by a lens-transdifferentiation process triggered and substained by a factor(s), probably of a protein nature, produced by the neural retina. In a normal eye phenotypic stability of the outer cornea is guaranteed by the presence of the inner cornea and lens, which prevent the spread of retinal factor(s). The stimulus for lens transdifferentiation of the outer cornea can be supplied by other tissues as well, but this capacity is not widely distributed. The iris and retinal pigmented epithelium can transdifferentiate into neural retina if isolated from the surrounding tissues and implanted in the vitreous chamber. As for lens transdifferentiation of the outer cornea, retinal transdifferentiation of the iris can be stimulated by certain nonocular tissues as well.  相似文献   

7.
Larval Xenopus laevis at stage 56 (Nieuwkoop and Faber, '56) were subjected to various types of lentectomy: (1) simple lentectomy, from the pupillary space after incision of outer and inner cornea; (2) lentectomy from the dorsal region of the eye; (3) lentectomy from the dorsal region of the eye and simultaneous incision of the outer cornea; (4) lentectomy from the dorsal region of the eye and simultaneous incision of the outer and inner cornea. The results obtained show that the outer cornea underwent lens-forming transformations only when the inner cornea had been incised, thus permitting outer cornea (Experiments I-IV). No lens regeneration occurred when the inner cornea was left intact (Experiments II, III). It was concluded that the factor(s) allowing the lens-forming transformations of the outer cornea is not an aspecific nutritional factor(s) but a more specific factor(s) that cannot reach the outer cornea when the inner cornea is intact. Therefore, the absence of the lens and sufficient nutrient available to the outer cornea are not enough to allow lens regeneration from the outer cornea. When lens removal was carried out through the dorsal part of the eye (Experiments III-IV) the lens regenerated from the pericorneal epidermis of this region in a large number of cases.  相似文献   

8.
In larval X. laevis the capacity to regenerate a lens under the influence of inductive factors present in the vitreous chamber is restricted to the outer cornea and pericorneal epidermis (Lentogenic Area, LA). However, in early embryos, the whole ectoderm is capable of responding to inductive factors of the larval eye forming lens cells. In a previous paper, Cannata et al. (2003) demonstrated that the persistence of lens-forming competence in the LA is the result of early signals causing lens-forming bias in the presumptive LA and of late signals from the eye causing cornea development. This paper analyzes 1) the decrease of the lens-forming capacity in ectodermal regions both near LA (head epidermis) and far from LA (flank epidermis) during development, 2) the capacity of the head epidermis and flank epidermis to respond to lens-competence promoting factors released by an eye transplanted below these epidermal regions, and 3) the eye components responsible for the promoting effect of the transplanted eye. Results were obtained by implanting fragments of ectoderm or epidermis into the vitreous chamber of host tadpoles and by evaluating the percentage of implants positive to a monoclonal antibody anti-lens. These results demonstrated that the lens-forming competence in the flank region is lost at the embryonic stage 30/31 and is weakly restored by eye transplantation; however, lens-forming competence in the head region is lost at the larval stage 48 and is strongly restored by eye transplantation. The authors hypothesize that during development the head ectoderm outside the LA is attained by low levels of the same signals that attain the LA and that these signals are responsible for the maintenance of lens-forming competence in the cornea and pericorneal epidermis of the larva. In this hypothesis, low levels of these signals slacken the decrease of the lens-forming competence in the head ectoderm and make the head epidermis much more responsive than the flank epidermis to the effect of promoting factors released by a transplanted eye. Results obtained after transplantation of eyes deprived of some components indicate that the lens and the retina are the main source of these promoting factors. The immunohistochemical detection of the FGFR-2 (bek variant) protein in the epidermis of stage 53 larvae submitted to eye transplantation at stage 46 showed that the eye transplantation increased the level of FGFR-2 protein in the head epidermis but not in the flank epidermis, indicating that the lens-forming competence in X. laevis epidermis could be related to the presence of an activated FGF receptor system in the responding tissue.  相似文献   

9.
Abstract. Lensectomized Xenopus laevis larvae are capable of regenerating a lens from the cells of the outer cornea. Unlike the outer cornea, the iris of larval Xenopus exhibits a high degree of phenotypic stability, even when it has been damaged to various degrees in order to stimulate its latent transdifferentiative competence. However, when isolated from its surrounding tissues and implanted in an appropriate site, the dorsal iris of larval Xenopus is capable of following a differentiative pathway different to that normally followed in situ. Our results show that, when such an implant is placed in the vitreous chamber of a lensectomized eye, the pigmented epithelial cells of the iris transdifferentiate into neural retina regardless of whether the iris stroma is present or not. Unlike the vitreous chamber, the environment of the anterior chamber of a lensectomized eye does not promote the transdifferentiative process of the iris. We suggest the existence of eye factors that promote retina-forming transformation of the iris and that are distributed in a gradient in lensectomized eyes.  相似文献   

10.
After lentectomy of larval Xenopus laevis , the outer cornea undergoes tissue transformation resulting in formation of a new lens. This lens regeneration is triggered and sustained by neural retina. In the present study, lens-forming transformation of the outer cornea was completed in vitro when the outer cornea was cultured within the lentectomized eye-cup. Well-differentiated lens fiber cells, which showed positive immunofluorescence for total crystallins, were also formed when the outer cornea was cultivated with the retina. No lens tissue was formed when the cornea was cultured alone. Lens-forming transformation, originating from the cornea three and five days after lentectomy, completely regressed when the tissue was isolated in vitro . Fom the present and previous findings, we concluded that, the interaction of corneal cells with the retina plays a decisive role in lens regeneration in situ .  相似文献   

11.
The capacity of amputated early and late limbs of larval Xenopus laevis to promote lens-forming transformations of corneal implants in the absence of a limb regeneration blastema has been tested by implanting outer cornea fragments from donor larvae at stage 48 (according to Nieuwkoop and Faber 1956), into limb stumps of larvae at stage 52 and 57. Blastema formation has been prevented either by covering the amputation surface with the skin or by reconnecting the amputated part to the limb stump. Results show that stage 52 non-regenerating limbs could promote lens formation from corneal implants not only when innervated but also when denervated. A similar result was observed in stage 57 limbs where blastema formation was prevented by reconnecting the amputated part to the stump. In this case, relevant tissue dedifferentiation was observed in the boundary region between the stump and the autografted part of the limb. However, stage 57 limbs, where blastema formation was prevented by covering the amputation surface with skin, could promote lens formation from the outer cornea only when innervated. In this case, no relevant dedifferentiation of the stump tissues was observed. These results indicate that blastema formation is not a prerequisite for lens-forming transformations of corneal fragments implanted into amputated hindlimbs of larval X. laevis and that lens formation can be promoted by factors delivered by the nerve fibres or produced by populations of undifferentiated or dedifferentiated limb cells.  相似文献   

12.
This study examines the retinal transdifferentiation (TD) of retinal pigmented epithelium (RPE) fragments dissected from Xenopus laevis larvae and implanted into the vitreous chamber of non-lentectomized host eyes. In these experimental conditions, most RPE implants transformed into polarized vesicles in which the side adjacent to the lens maintained the RPE phenotype, while the side adjacent to the host retina transformed into a laminar retina with the photoreceptor layer facing the cavity of the vesicle and with the ganglionar cell layer facing the host retina. The formation of a new retina with a laminar organization is the result of depigmentation, proliferation and differentiation of progenitor cells under the influence of inductive factors from the host retina. The phases of the TD process were followed using BrdU labelling as a marker of the proliferation phase and using a monoclonal antibody (mAbHP1) as a definitive indicator of retina formation. Pigmented RPE cells do not express Pax6. In the early phase of RPE to retinal TD, all depigmented and proliferating progenitor cells expressed Pax6. Changes in the Pax6 expression pattern became apparent in the early phase of differentiation, when Pax6 expression decreased in the presumptive outer nuclear layer (ONL) of the new-forming retina. Finally, during the late differentiation phase, the ONL, which contains photoreceptors, no longer expressed Pax6, Pax6 expression being confined to the ganglion cell layer and the inner nuclear layer. These results indicate that Pax6 may have different roles during the different phases of RPE to retinal TD, acting as an early retinal determinant and later directing progenitor cell fate.  相似文献   

13.
The process of lens cell determination in amphibians is currently viewed as one involving a series of inductive interactions. On the basis of previous investigations, these interactions are thought to begin during gastrulation when the presumptive foregut endoderm and then the heart mesoderm come into contact with the presumptive lens ectoderm. This earlier period of induction is followed by the later interaction of the optic vesicle with the lens-forming ectoderm. Transplantation experiments were performed to determine the relative significance of the early and later periods of induction in the process of lens cell determination in the anuran Xenopus laevis. Various ectodermal tissues were transplanted either into the lens-forming region of open neural plate stage host embryos or over the newly formed optic vesicle of later neurula stage embryos. All transplanted tissues were labeled with the intracellular marker horseradish peroxidase to assess the exact origins of any induced lens structures. The results indicate that all nonneural ectodermal tissues have some lens-forming potential early during gastrulation; however, this potential is restricted to the lens-forming region, and perhaps nearby regions, later in development during the time of neurulation. Furthermore, the results show that the optic vesicle is not a substantial inductor of the lens in tissues that have not been previously exposed to the earlier series of inductive interactions that take place during gastrulation and neurulation. Since the optic vesicle does not appear to be a sufficient inductor of the lens, these earlier inductive interactions are, therefore, essential in the process of lens cell determination in Xenopus. These earlier inductive interactions lead to a steady increase in what may be called a lens-forming bias in the presumptive lens ectoderm during this period of development. The eventual loss in the ability of nonlens ventral ectoderm to respond to these lens inductors is presumably the result of other determinative processes that occur in this tissue.  相似文献   

14.
15.
We have isolated a new Wnt receptor frizzled family member from Xenopus laevis, Xenopus frizzled-5 (Xfz5), a likely ortholog of human frizzled-5. Based on Northern and whole-mount in situ hybridization data, Xfz5 is first detected at the late neurula stage in retinal primordia. Throughout the tailbud stage Xfz5 is expressed exclusively in the neural retina within the optic vesicles. During tadpole stage Xfz5 expression becomes restricted to the ciliary marginal zone. This highly restrictive expression pattern makes Xfz5 an excellent marker for neural retinal tissue.  相似文献   

16.
17.
The assembly of photoreceptor outer segments into stacked discs is a complicated process, the precise regulation of which remains a mystery. It is known that the integrity of the outer segment is heavily dependent upon surrounding cell types including the retinal pigment epithelium and Müller cells; however the role played by Müller cells within this photoreceptor-specific process has not been fully explored. Using an RPE-deprived but otherwise intact Xenopus laevis eye rudiment preparation, we reveal that Müller cell involvement in outer segment assembly is dependent upon the stimulus provided to the retina. Pigment epithelium-derived factor is able to support proper membrane folding after inhibition of Müller cell metabolism by alpha-aminoadipic acid, while isopropyl beta-D-thiogalactoside, a permissive glycan, requires intact Müller cell function. These results demonstrate that both intrinsic and extrinsic redundant mechanisms exist to support the ability of photoreceptors to properly assemble their outer segments. Our study further suggests that the receptor for pigment epithelium-derived factor resides in photoreceptors themselves while that for permissive glycans is likely localized to Müller cells, which in turn communicate with photoreceptors to promote proper membrane assembly.  相似文献   

18.
The retinotectal pathway of Xenopus laevis is a well-established experimental model for studying activity-dependent processes during visual system development. Such processes can be guided by stimulus-evoked activity patterns, which depend on the refractive characteristics of the eye. Previous work has shown that many animals are hyperopic at early developmental stages due to immature refractive properties. Whether this is also the case for Xenopus laevis is unknown. Here, we measure the focal length of the lens and the size of the eye of embryos at different stages and find that Xenopus laevis exhibits a similar shift from hyperopia to emmetropia. At early stages, immediately after innervation of the tectum by the optic nerve, Xenopus embryos are hyperopic. Soon afterwards the focal length of the lens decreases and the eye converges to a state of emmetropia. Despite being hyperopic we find that some visuospatial information is available to the young circuit. Calculations based on the optical properties of the eye show that even when the animals are hyperopic the blurred retinal image provides a crude spatial resolution. Furthermore, using whole-cell recordings in the optic tectum combined with visual stimulation through the intact eye, we show that tectal neurons in hyperopic embryos have spatially restricted glutamatergic receptive fields. Our data demonstrate that Xenopus laevis eyes undergo a process of developmental emmetropization, and suggest that despite an initial stage of suboptimal image formation there is potentially enough information to guide activity-dependent refinements of the retinotectal pathway from the onset of vision.  相似文献   

19.
To study rhodopsin biosynthesis and transport in vivo, we engineered a fusion protein (rho-GFP) of bovine rhodopsin (rho) and green fluorescent protein (GFP). rho-GFP expressed in COS-1 cells bound 11-cis retinal, generating a pigment with spectral properties of rhodopsin (A(max) at 500 nm) and GFP (A(max) at 488 nm). rho-GFP activated transducin at 50% of the wild-type activity, whereas phosphorylation of rho-GFP by rhodopsin kinase was 10% of wild-type levels. We expressed rho-GFP in the rod photoreceptors of Xenopus laevis using the X. laevis principal opsin promoter. Like rhodopsin, rho-GFP localized to rod outer segments, indicating that rho-GFP was recognized by membrane transport mechanisms. In contrast, a rho-GFP variant lacking the C-terminal outer segment localization signal distributed to both outer and inner segment membranes. Confocal microscopy of transgenic retinas revealed that transgene expression levels varied between cells, an effect that is probably analogous to position-effect variegation. Furthermore, rho-GFP concentrations varied along the length of individual rods, indicating that expression levels varied within single cells on a daily or hourly basis. These results have implications for transgenic models of retinal degeneration and mechanisms of position-effect variegation and demonstrate the utility of rho-GFP as a probe for rhodopsin transport and temporal regulation of promoter function.  相似文献   

20.
The expression of the Ca2+-dependent epithelial cell adhesion molecule E-cadherin (also known as uvomorulin and L-CAM) in the early stages of embryonic development of Xenopus laevis was examined. E-Cadherin was identified in the Xenopus A6 epithelial cell line by antibody cross-reactivity and several biochemical characteristics. Four independent mAbs were generated against purified Xenopus E-cadherin. All four mAbs recognized the same polypeptides in A6 cells, adult epithelial tissues, and embryos. These mAbs inhibited the formation of cell contacts between A6 cells and stained the basolateral plasma membranes of A6 cells, hepatocytes, and alveolar epithelial cells. The time of E-cadherin expression in early Xenopus embryos was determined by immunoblotting. Unlike its expression in early mouse embryos, E-cadherin was not present in the eggs or early blastula of Xenopus laevis. These findings indicate that a different Ca2+-dependent cell adhesion molecule, perhaps another member of the cadherin gene family, is responsible for the Ca2+-dependent adhesion between cleavage stage Xenopus blastomeres. Detectable accumulation of E-cadherin started just before gastrulation at stage 9 1/2 and increased rapidly up to the end of gastrulation at stage 15. In stage 15 embryos, specific immunofluorescence staining of E-cadherin was discernible only in ectoderm, but not in mesoderm and endoderm. The ectoderm at this stage consists of two cell layers. The outer cell layer of ectoderm was stained intensely, and staining was localized to the basolateral plasma membrane of these cells. Lower levels of staining were observed in the inner cell layer of ectoderm. The coincidence of E-cadherin expression with the process of gastrulation and its restriction to the ectoderm indicate that it may play a role in the morphogenetic movements of gastrulation and resulting segregation of embryonic germ layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号