首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

VA7 is a neurotropic alphavirus vector based on an attenuated strain of Semliki Forest virus. We have previously shown that VA7 exhibits oncolytic activity against human melanoma xenografts in immunodeficient mice. The purpose of this study was to determine if intravenously administered VA7 would be effective against human glioma.

Methodology/Principal Findings

In vitro, U87, U251, and A172 human glioma cells were infected and killed by VA7-EGFP. In vivo, antiglioma activity of VA7 was tested in Balb/c nude mice using U87 cells stably expressing firefly luciferase in subcutaneous and orthotopic tumor models. Intravenously administered VA7-EGFP completely eradicated 100% of small and 50% of large subcutaneous U87Fluc tumors. A single intravenous injection of either VA7-EGFP or VA7 expressing Renilla luciferase (VA7-Rluc) into mice bearing orthotopic U87Fluc tumors caused a complete quenching of intracranial firefly bioluminescence and long-term survival in total 16 of 17 animals. In tumor-bearing mice injected with VA7-Rluc, transient intracranial and peripheral Renilla bioluminescence was observed. Virus was well tolerated and no damage to heart, liver, spleen, or brain was observed upon pathological assessment at three and ninety days post injection, despite detectable virus titers in these organs during the earlier time point.

Conclusion

VA7 vector is apathogenic and can enter and destroy brain tumors in nude mice when administered systemically. This study warrants further elucidation of the mechanism of tumor destruction and attenuation of the VA7 virus.  相似文献   

2.
研究下调骨桥蛋白(osteopontin,OPN)对人U251胶质瘤细胞在裸鼠体内生长的影响并探讨其对胶质瘤生长、侵袭的可能机制.应用RNA干扰技术,将OPN基因的慢病毒干扰载体LV-OPNshRNA感染U251细胞.将对照和试验组U251细胞分别接种裸鼠,建立裸鼠荷瘤模型.3周后测量肿瘤的体积、瘤重并做肿瘤组织病理切片分析;利用RT-PCR和免疫印迹法检测OPN、尿激酶型纤维蛋白酶原激活物(uPA)、基质金属蛋白酶(MMP-2、MMP-9)的mRNA和蛋白表达;免疫组化法检测肿瘤组织微血管密度和血管内皮生长因子(VEGF)表达情况. 经OPN的RNA干扰后,能显著降低肿瘤组织OPN mRNA水平及蛋白表达,有效抑制肿瘤细胞生长及侵袭能力, 肿瘤体积及重量的减小有统计学意义(P<0.05).感染组uPA、MMP-2和MMP-9的mRNA和蛋白表达明显减少, 肿瘤组织的MVD值和VEGF的表达均显著降低.上述结果表明,抑制OPN的表达能明显抑制人U251胶质瘤细胞在裸鼠体内的生长和侵袭,OPN可能通过激活uPA、MMP-2和MMP-9等蛋白酶降解细胞外基质和促进肿瘤血管生成,参与胶质瘤的生长.  相似文献   

3.
Special AT-rich sequence-binding protein-1 (SATB1) has been reported to be over-expressed in many human tumors and knockdown of SATB1 can inhibit tumor growth. The present study was designed to determine the role of SATB1 in the growth of human glioma U251 cells using the plasmid-based SATB1 short hairpin RNA (shRNA) delivered by hydroxyapatite nanoparticles in vitro and in vivo. The in vitro growth, invasion and angiogenesis assays of human glioma U251 cells were done. U251 cells tumor blocks were transplanted into the nude mice. CaCl2-modified hydroxyapatite nanoparticles carrying shRNA-SATB1 plasmids were injected into the tumors. The apoptosis of the tumor U251 cells was examined with TUNEL assay and flow cytometer (FCM). The tumor growth and immunohistochemistry were measured. The expression level of SATB1 mRNA was investigated by RT-PCR. The expression levels of SATB1, Cyclin D1, MMP-2, VEGF, Bax and Caspase-9 protein were determined by western blot analysis. The results showed that hydroxyapatite nanoparticles-delivered shRNA-SATB1 could significantly inhibit the growth, invasion and angiogenesis of U251 cells in vitro and the growth of U251 cells in vivo. FCM results showed that Nano HAP-shRNA-SATB1-induced apoptosis (up to 67.8 %). SATB1 expression was strongly down-regulated in the tumor U251 cells. Cyclin D1, MMP-2 and VEGF were also down-regulated in the tumor tissues that also displayed significant increased in Bax expression and Caspase-9 activity. These results show that Nano HAP-shRNA-SATB1 can inhibit the growth of human glioma U251 cells in vitro and in vivo, and hydroxyapatite nanoparticles can be used for the in vitro and in vivo delivery of plasmid-based shRNAs into U251 cells.  相似文献   

4.
Glioma cell infiltration of brain tissue often occurs along the basement membrane (BM) of blood vessels. In the present study we have investigated the role of laminins, major structural components of BMs and strong promoters of cell migration. Immunohistochemical studies of glioma tumor tissue demonstrated expression of alpha2-, alpha3-, alpha4- and alpha5-, but not alpha1-, laminins by the tumor vasculature. In functional assays, alpha3 (Lm-332/laminin-5)- and alpha5 (Lm-511/laminin-10)-laminins strongly promoted migration of all glioma cell lines tested. alpha1-Laminin (Lm-111/laminin-1) displayed lower activity, whereas alpha2 (Lm-211/laminin-2)- and alpha4 (Lm-411/laminin-8)-laminins were practically inactive. Global integrin phenotyping identified alpha3beta1 as the most abundant integrin in all the glioma cell lines, and this laminin-binding integrin exclusively or largely mediate the cell migration. Moreover, pretreatment of U251 glioma cells with blocking antibodies to alpha3beta1 integrin followed by intracerebral injection into nude mice inhibited invasion of the tumor cells into the brain tissue. The cell lines secreted Lm-211, Lm-411 and Lm-511, at different ratios. The results indicate that glioma cells secrete alpha2-, alpha4- and alpha5-laminins and that alpha3- and alpha5-laminins, found in brain vasculature, selectively promote glioma cell migration. They identify alpha3beta1 as the predominant integrin and laminin receptor in glioma cells, and as a brain invasion-mediating integrin.  相似文献   

5.
Wang X  Duan X  Yang G  Zhang X  Deng L  Zheng H  Deng C  Wen J  Wang N  Peng C  Zhao X  Wei Y  Chen L 《PloS one》2011,6(4):e18490

Background

Gliosarcoma is one of the most common malignant brain tumors, and anti-angiogenesis is a promising approach for the treatment of gliosarcoma. However, chemotherapy is obstructed by the physical obstacle formed by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Honokiol has been known to possess potent activities in the central nervous system diseases, and anti-angiogenic and anti-tumor properties. Here, we hypothesized that honokiol could cross the BBB and BCSFB for the treatment of gliosarcoma.

Methodologies

We first evaluated the abilities of honokiol to cross the BBB and BCSFB by measuring the penetration of honokiol into brain and blood-cerebrospinal fluid, and compared the honokiol amount taken up by brain with that by other tissues. Then we investigated the effect of honokiol on the growth inhibition of rat 9L gliosarcoma cells and human U251 glioma cells in vitro. Finally we established rat 9L intracerebral gliosarcoma model in Fisher 344 rats and human U251 xenograft glioma model in nude mice to investigate the anti-tumor activity.

Principal Findings

We showed for the first time that honokiol could effectively cross BBB and BCSFB. The ratios of brain/plasma concentration were respectively 1.29, 2.54, 2.56 and 2.72 at 5, 30, 60 and 120 min. And about 10% of honokiol in plasma crossed BCSFB into cerebrospinal fluid (CSF). In vitro, honokiol produced dose-dependent inhibition of the growth of rat 9L gliosarcoma cells and human U251 glioma cells with IC50 of 15.61 µg/mL and 16.38 µg/mL, respectively. In vivo, treatment with 20 mg/kg body weight of honokiol (honokiol was given twice per week for 3 weeks by intravenous injection) resulted in significant reduction of tumor volume (112.70±10.16 mm3) compared with vehicle group (238.63±19.69 mm3, P = 0.000), with 52.77% inhibiting rate in rat 9L intracerebral gliosarcoma model, and (1450.83±348.36 mm3) compared with vehicle group (2914.17±780.52 mm3, P = 0.002), with 50.21% inhibiting rate in human U251 xenograft glioma model. Honokiol also significantly improved the survival over vehicle group in the two models (P<0.05).

Conclusions/Significance

This study provided the first evidence that honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. It suggested a significant strategy for offering a potential new therapy for the treatment of gliosarcoma.  相似文献   

6.
Proteolipid protein 2 (PLP2) is an integral ion channel membrane protein of the endoplasmic reticulum. The protein has been shown to be highly expressed in many cancer types, but its importance in glioma progression is poorly understood. Using publicly available datasets (Rembrandt, TCGA and CGGA), we found that the expression of PLP2 was significantly higher in high-grade gliomas than in low-grade gliomas. We confirmed these results at the protein level through IHC staining of high-grade (n = 56) and low-grade glioma biopsies (n = 16). Kaplan-Meier analysis demonstrated that increased PLP2 expression was associated with poorer patient survival. In functional experiments, siRNA and shRNA PLP2 knockdown induced ER stress and increased apoptosis and autophagy in U87 and U251 glioma cell lines. Inhibition of autophagy with chloroquine augmented apoptotic cell death in U87- and U251-siPLP2 cells. Finally, intracranial xenografts derived from U87- and U251-shPLP2 cells revealed that loss of PLP2 reduced glioma growth in vivo. Our results therefore indicate that increased PLP2 expression promotes GBM growth and that PLP2 represents a potential future therapeutic target.  相似文献   

7.
Ras gene mutation or overexpression can lead to tumorigenesis in multiple kinds of cancer, including glioma. However, no drugs targeting Ras or its expression products have been approved for clinical application thus far. Adenoviral gene therapy is a promising method for the treatment of glioma. In this study, the human glioma cell line U251 was co-cultured with recombinant adenovirus KGHV500, and the anti-tumor effects of KGHV500 were determined by MTT, scratch test, Transwell invasion, and apoptosis assays. Then, KGHV500 was delivered via the intravenous injection of CIK cells into glioma xenografts. Tumor volume, ki67 proliferation index, apoptosis levels, and anti-p21Ras scFv expression were tested to evaluate targeting ability, anti-tumor efficacy, and safety. We found that the KGHV500 exhibited anti-tumor activity in U251 cells and increased the intracellular expression of anti-p21Ras scFv compared with that in the control groups. CIK cells delivered KGHV500 to U251 glioma cell xenografts and enhanced anti-tumor activity against glioma xenografts compared to that produced by the control treatment. In conclusion, targeting Ras is a useful therapeutic strategy for gliomas and other Ras-driven cancers, and the delivery of anti-p21Ras scFv by recombinant adenovirus and CIK cells may play an essential role in the therapy of Ras-driven cancers.  相似文献   

8.
14-3-3 protein has emerged as critical regulators of diverse cellular responses. Previous studies found that strong 14-3-3 protein expression was observed and associated with tumor genesis and progression in glioma. Here, we further elucidated the role of 14-3-3 protein in apoptosis of human glioma U251 and U87 cells by global inhibition of 14-3-3 functions with a general 14-3-3 antagonist, difopein. In vitro, morphological observation and DNA laddering assay showed that difopein-treated glioma cells displayed outstanding apoptosis characteristics, such as nuclear fragmentation, appearance of membrane-enclosed apoptotic bodies and DNA laddering fragment. Moreover, flow cytometric detection of phosphatidylserine externalization indicated that difopein-induced apoptosis occurred in a time-dependent manner. Interestingly, inhibiting 14-3-3 with small interfere RNA also induce apoptosis of human glioma U251 cells. Furthermore, RT-PCR and western blot assay further substantiated that difopein had strong effects to induce glioma cell apoptosis through down-regulating Bcl-2, up-regulating Bax and activating caspase-9 and caspase-3. In vivo, retroviral vector was constructed and retroviral-mediated transfer of difopein to glioma was implanted in nude mice. Difopein effectively hindered proliferation and triggered apoptosis of tumor cells implanted into nude mice. This work not only reveals a critical role of 14-3-3 in apoptosis suppression in glioma cells, but also identifies and validates 14-3-3 as a potential molecular target for anticancer therapeutic development.  相似文献   

9.
为了研究EphA2对神经胶质瘤细胞系U251在增殖、凋亡、迁移和侵袭方面所起的作用,用RT-PCR方法检测正常脑组织标本与两种恶性胶质瘤细胞系中EphA2 mRNA表达水平,然后用化学合成的针对EphA2基因的小干扰RNA(siRNA)下调该基因的表达,以检测其在U251中的生物学功能.证实了EphA2基因在正常脑组织标本中的表达水平远低于两种恶性胶质瘤细胞系.把体外化学合成针对EphA2基因的小干扰RNA(siRNA- EphA2)转染入U251细胞后,Western blot, 实时定量 RT-PCR检测到U251细胞中EphA2蛋白及mRNA表达水平都明显降低,并且细胞增殖受到显著抑制,同时出现了明显的细胞凋亡.伤口愈合实验(检测细胞迁移能力),Transwell小室实验(检测细胞侵袭能力)均表明,下调EphA2的表达后,细胞的迁移和侵袭能力较阴性对照组显著减弱.上述结果表明,在神经胶质瘤U251细胞中,EphA2与其恶性增殖及高度侵染性相关,可作为分子治疗的有效靶点.  相似文献   

10.
We investigated the immunological responses induced by human interferon β (IFNβ) gene transfer in human gliomas produced in the brains of nude mice. A suspension of human glioma U251-SP cells was injected into the brains of nude mice. The IFNβ gene was transferred by intratumoral injection with cationic liposomes or cationic liposomes associated with anti-glioma monoclonal antibody (immunoliposomes). When intratumoral injection of liposomes or immunoliposomes containing the human IFNβ gene was performed every second day for a total of six injections, starting 7 days after tumor transplantation, complete disappearance of the tumor was observed in six of seven mice that had received liposomes and in all seven mice receiving immunoliposomes. In addition, experimental gliomas injected with immunoliposomes were much smaller than those injected with ordinary liposomes following delayed injections beginning 14 days after transplantation. An immunohistochemical study of the treated nude mouse brains revealed a remarkable induction of natural killer (NK) cells expressing asialoGM1 antigen. To investigate the significance of NK cells in the antitumor effect, we injected liposomes or immunoliposomes containing the human IFNβ gene into tumors in nude mice depleted of NK cells by irradiation and anti-asialoGM1 antibody administration. The antitumor effect of the liposomes or immunoliposomes was abolished. Subsequent subcutaneous glioma challenge of the nude mice after intracerebral tumor implantation and gene transfer resulted in no subcutaneous tumor growth. These results suggest that the induction of NK cells is important in the cytocidal effect of liposomes or immunoliposomes containing the human IFNβ gene upon experimental gliomas. Received: 10 February 1998 / Accepted: 1 September 1998  相似文献   

11.
The response of human peripheral blood mononuclear cells (PBMC) to cloned human HLA-A2+ U251 glioma cells (U251-2F11/TK) expressing membrane macrophage colony stimulating factor (mM-CSF) was investigated in vitro and in vivo. Enriched human monocytes derived from cancer patients produced a respiratory burst following 20min of interaction with mM-CSF expressing U251 glioma cells. This respiratory burst response was not observed in the enriched human monocytes following similar exposure to the viral vector control U251 (U251-VV) cells. Reactive oxygen species such as H(2)O(2) and HOCl produced death of the U251 cells. The U251-2F11/TK cells failed to grow in severely compromised combined immunodeficient (NIH-bg-nu-xidBR) mice that were depleted of murine monocyte/macrophages then reconstituted with human HLA-A2+ PBMC. Reactive oxygen species (ROS) were produced by PBMC, both in vitro and in vivo in response tomM-CSF expressing U251 cells. U251-2F11/TK cells failed to form subcutaneous tumors in macrophage depleted mice reconstituted with human PBMC; whereas, progressive growth of such tumors was observed with the U251-VV cells. U251-2F11/TK tumors formed if the initial inoculums of PBMC were depleted of monocytes. From this work it can be concluded that mM-CSF transduced U251-2F11/TK glioma cells can safely stimulate human innate immune responses in vivo.  相似文献   

12.

Background

Neuropilin (NRP) receptors are overexpressed in glioma tumor tissue, and therefore may be a potential target for imaging markers. We investigated whether labelled tLyP-1, an NRP targeting peptide, could be used as the targeting ligand for developing reagents for imaging glioma tumors.

Methods

The tLyP-1 peptide (CGNKRTR) was labeled with 5-carboxyfluorescein (FAM) or 18F-fluoride. A control peptide (MAQKTSH) was also labeled with FAM. The in vitro binding between FAM-tLyP-1 and U87MG cells and in vivo biodistribution of FAM-tLyP-1 in a U87MG glioblastoma xenograft model (nude mouse) were determined. The in vivo biodistribution of 18F-tLyP-1 was also determined by microPET/CT.

Results

In vitro, FAM-tLyP-1 was strongly taken up by U87MG cells at very low concentrations (1μM). In vivo, FAM-tLyP-1 accumulated in glioma (U87MG) tumors, but uptake was minimal in the normal brain tissue 1 h after administration. The distribution of FAM-tLyP-1 in the tumor tissue was consistent with expression of NRP1. The tumor/brain fluorescence intensity ratio in mice treated with FAM-tLyP-1 was significantly higher than the control FAM-labeled peptide 1 h after administration (3.44 ± 0.83 vs. 1.32 ± 0.15; t = 5.547, P = 0.001). Uptake of FAM-tLyP-1 in glioma tumors could be blocked by administering an excess of non-conjugated tLyP-1 peptide. [Lys4] tLyP-1 was labeled with 18F to synthesis a PET (18F-tLyP-1). MicroPET/CT imaging showed the tumor was visualized clearly with a high tumor/brain radiolabel ratio at 60 min (2.69 ± 0.52) and 120 min (3.11±0.25).

Conclusion

Taken together, our results suggest that tLyP-1 could be developed as a novel fluorescent or radio labelled tracer for imaging glioma.  相似文献   

13.
S Wang  X Tan  B Yang  B Yin  J Yuan  B Qiang  X Peng 《BMB reports》2012,45(8):470-475
Protein arginine methyltransferase 1 (PRMT1), a type-I arginine methyltransferase, has been implicated in diverse cellular events. We have focused on the role of PRMT1 in gliomagenesis. In this study, we showed that PRMT1 expression was up-regulated in glioma tissues and cell lines compared with normal brain tissues. The knock-down of PRMT1 resulted in an arrest in the G1-S phase of the cell cycle, proliferation inhibition and apoptosis induction in four glioma cell lines (T98G, U87MG, U251, and A172). Moreover, an in vivo study confirmed that the tumor growth in nude mouse xenografts was significantly decreased in the RNAi-PRMT1 group. Additionally, we found that the level of the asymmetric dimethylated modification of H4R3, a substrate of PRMT1, was higher in glioma cells than in normal brain tissues and decreased after PRMT1 knock-down. Our data suggest a potential role for PRMT1 as a novel biomarker of and therapeutic target in gliomas. [BMB Reports 2012; 45(8): 470-475].  相似文献   

14.
The protein tyrosine phosphatase zeta/receptor-type protein tyrosine phosphatase beta (PTPzeta/RPTPbeta) and its ligand pleiotrophin (PTN) are overexpressed in human glioblastomas. Both molecules are involved in neuronal cell migration during CNS development. In addition, PTN can induce glioma cell migration which is at least in part mediated through binding to PTPzeta/RPTPbeta. To study the relevance of this ligand-receptor pair for glioma growth in vitro and in vivo, we transfected the human glioblastoma cell line U251-MG with small interfering RNA (siRNA) directed against PTPzeta/RPTPbeta. Stable siRNA transfection resulted in strong down-regulation of PTPzeta/RPTPbeta expression. When injected subcutaneously into nude mice, clones that expressed normal levels of PTPzeta/RPTPbeta (PTPzeta + clones) formed exponentially growing tumours, whereas tumour growth was almost completely abrogated for clones that expressed reduced PTPzeta/RPTPbeta levels (PTPzeta - clones). Similar results were obtained using an orthotopic intracerebral model. Proliferation of PTPzeta - cells in vitro was significantly reduced compared with that of control clones. Matrix-immobilized PTN stimulated the proliferation of PTPzeta + cells but not of PTPzeta - cells. Haptotactic migration induced by PTN was reduced for PTPzeta - clones compared with control clones. Our findings suggest that antagonization of PTPzeta/RPTPbeta expression can inhibit glioma growth in vivo and may thus represent a potentially promising treatment strategy.  相似文献   

15.
Caudatin as one species of C-21 steroidal from Cynanchum bungei decne displays potential anticancer activity. However, the underlying mechanisms remain elusive. In the present study, the growth suppressive effect and mechanism of caudatin on human glioma U251 and U87 cells were evaluated in vitro. The results indicated that caudatin significantly inhibited U251 and U87 cell growth in both a time- and dose-dependent manner. Flow cytometry analysis revealed that caudatin-induced cell growth inhibition was achieved by induction of cell apoptosis, as convinced by the increase of Sub-G1 peak, PARP cleavage and activation of caspase-3, caspase-7 and caspase-9. Caudatin treatment also resulted in mitochondrial dysfunction which correlated with an imbalance of Bcl-2 family members. Further investigation revealed that caudatin triggered U251 cell apoptosis by inducing reactive oxygen species (ROS) generation through disturbing the redox homeostasis. Moreover, pretreatment of caspase inhibitors apparently weakens caudatin-induced cell killing, PARP cleavage and caspase activation and eventually reverses caudatin-mediated apoptosis. Importantly, caudatin significantly inhibited U251 tumour xenografts in vivo through induction of cell apoptosis involving the inhibition of cell proliferation and angiogenesis, which further validate its value in combating human glioma in vivo. Taken together, the results described above all suggest that caudatin inhibited human glioma cell growth by induction of caspase-dependent apoptosis with involvement of mitochondrial dysfunction and ROS generation.  相似文献   

16.
17.
Migration and invasion are often recognized as the main reasons for the high recurrence and death rates of glioma and limit the efficacy of surgery and other antitumor therapies. In this study, we found over activation of heat shock cognate protein 70 (Hsc70) in human glioma specimens, which was closely related to glioma grade. We investigated whether Hsc70 induced the migration and invasion of glioma cells. Wound healing and transwell migration assay were used to determine the migration and invasion ability of human glioma U251 and U87 cells, in which the expression of Hsc70 was knocked down by small interfering RNA. Western blot analysis was performed to determine the expression of FAK-Src signaling in malignant glioma cells. The results showed that Hsc70 deficiency significantly retarded migration and invasion and reduced the phosphorylation of FAK, Src, and Pyk2 in U251 and U87 cells. Overall, our results indicate that the migration and invasion capacity of human brain glioma cells is at least partly induced by Hsc70-dependent activation of FAK-Src signaling.  相似文献   

18.
It has been recently reported that cannabidiol (CBD), a non-psychoactive cannabinoid, is able to kill glioma cells, both in vivo and in vitro , independently of cannabinoid receptor stimulation. However, the underlying biochemical mechanisms were not clarified. In the present study, we performed biochemical analysis of the effect of CBD both in vivo , by using glioma tumor tissues excised from nude mice, and in vitro , by using U87 glioma cells. In vivo exposure of tumor tissues to CBD significantly decreased the activity and content of 5-lipoxygenase (LOX, by ∼ 40%), and of its end product leukotriene B4 (∼ 25%). In contrast cyclooxygenase (COX)-2 activity and content, and the amount of its end product prostaglandin E2, were not affected by CBD. In addition, in vivo treatment with CBD markedly stimulated (∼ 175%) the activity of fatty acid amide hydrolase (FAAH), the main anandamide-degrading enzyme, while decreasing anandamide content (∼ 30%) and binding to CB1 cannabinoid receptors (∼ 25%). In vitro pre-treatment of U87 glioma cells with MK-886, a specific 5-LOX inhibitor, significantly enhanced the antimitotic effect of CBD, whereas the pre-treatment with indomethacin (pan-COX inhibitor) or celecoxib (COX-2 inhibitor), did not alter CBD effect. The study of the endocannabinoid system revealed that CBD was able to induce a concentration-dependent increase of FAAH activity in U87 cells. Moreover, a significantly reduced growth rate was observed in FAAH-over-expressing U87 cells, compared to wild-type controls. In conclusion, the present investigation indicates that CBD exerts its antitumoral effects through modulation of the LOX pathway and of the endocannabinoid system, suggesting a possible interaction of these routes in the control of tumor growth.  相似文献   

19.
Liposomes, modified with monoclonal antibodies, are suitable carriers for targeted delivery of chemotherapeutic drugs into brain tumors. Here, we investigate the therapeutic efficacy of monoclonal anticancer antibody 2C5-modified long-circulating liposomes (LCL) loaded with doxorubicin (2C5-DoxLCL) for the treatment of U-87 MG human brain tumors in an intracranial model in nude mice. In vitro, 2C5-DoxLCL is significantly more effective in killing the U-87 MG tumor cells than Doxil (commercial doxorubicin-loaded PEGylated LCL) or DoxLCL modified with a non-specific IgG. 2C5-immunoliposomes also demonstrate a significantly higher accumulation in U-87 MG tumors compared to all controls in a subcutaneous model. The treatment of intracranial U-87 MG brain tumors in nude mice with 2C5-DoxLCL provides a significant therapeutic benefit over control formulations, substantially reducing the tumor size and almost doubling the survival time. Thus, monoclonal antibody 2C5-modified LCL can specifically target the anticancer drugs to brain tumors, leading to improved therapeutic treatment of brain tumor in an intracranial model, in vivo.  相似文献   

20.
The grafting of human tumor cells into the brain of immunosuppressed mice is an established method for the study of brain cancers including glioblastoma (glioma) and medulloblastoma. The widely used stereotactic approach only allows for the injection of a single animal at a time, is labor intensive and requires highly specialized equipment. The guide screw method, initially developed by Lal et al.,1 was developed to eliminate cumbersome stereotactic procedures. We now describe a modified guide screw approach that is rapid and exceptionally safe; both of which are critical ethical considerations. Notably, our procedure now incorporates an infusion pump that allows up to 10 animals to be simultaneously injected with tumor cells.To demonstrate the utility of this procedure, we established human U87MG glioma cells as intracranial xenografts in mice, which were then treated with AMG102; a fully human antibody directed to HGF/scatter factor currently undergoing clinical evaluation2-5. Systemic injection of AMG102 significantly prolonged the survival of all mice with intracranial U87MG xenografts and resulted in a number of complete cures. This study demonstrates that the guide screw method is an inexpensive, highly reproducible approach for establishing intracranial xenografts. Furthermore, it provides a relevant physiological model for validating novel therapeutic strategies for the treatment of brain cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号