首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We examined the functional response and foraging behavior of young moose (Alces alces) and white-tailed deer (Odocoileus virginianus) relative to animal size and the size and distribution of browse patches. The animals were offered one, three, or nine stems of dormant red maple (Acer rubrum) in hand-assembled patches spaced 2.33, 7, 14, or 21 m apart along a runway. Moose took larger twig diameters and bites and had greater dry matter and digestible energy intake rates than did deer, but had lower cropping rates. Moose and deer travelled at similar velocities between patches and took similar numbers of bites per stem. We found that a model of intake rate, based on the mechanics of cropping, chewing, and encountering bites, effectively described the intake rate of moose and deer feeding in heterogeneous distributions of browses. As patch size and density declined, the animals walked faster between patches, cropped larger bites, and cropped more bites per stem, and hence, dry matter intake rates remained relatively constant. As is characteristic of many hardwood browse stems, however, potential digestible energy concentration of the red maple stems declined as the size and number of bites removed (i.e., stem diameter at point of clipping) by the animals increased. Therefore, the digestible energy content of the diet declined with decreasing patch size and density. Time spent foraging within a patch increased as patch size increased and as distance between patches increased, which qualitatively supported the marginal-value theorem. However, actual patch residence times for deer and moose exceeded those predicted by the marginal-value theorem (MVT) by approximately 250%. The difference between actual and predicted residence time may have been a result of (1) an unknown or complex gain function, (2) the artificial conditions of the experiments, or (3) assumptions of MVT that do not apply to herbivores.  相似文献   

2.
Recent findings suggest that herbivores select feeding sites of intermediate biomass in order to maximise their digestible nutrient intake as the result of the trade-off between forage quality and quantity ('forage maturation hypothesis'). We propose a reformulation of this hypothesis which recognises this trade-off, but also underlines that constraints due to body mass (i.e. metabolism and digestive constraints, size of the feeding apparatus) can lead to variations in grazing patterns. We tested this latter hypothesis experimentally in three species of herbivorous Anatidae of different body mass: the wigeon Anas penelope (in our study c. 620 g), the barnacle goose Branta leucopsis (c. 2000 g), and the greylag goose Anser anser (c. 3500 g). Each species was tested separately from 0600 to 0930 hours, in an enclosure with a mosaic of patches of grass of three different heights: short, medium and tall. The behaviour, and the location (i.e. patch) of each individual were recorded every 5 minutes. Our results show important interspecific differences in intake rates resulting in different feeding site selection: wigeon and barnacle goose fed fastest on the shortest swards, and selected short grass which was also of higher quality. Tall grass provided the highest dry matter intake rate and digestible protein intake for greylag geese, and they preferred these swards. These choices allowed the birds to maximise their digestible nitrogen intake rate rather than dry matter intake rate and our results thus underline the importance of nitrogen as a major currency for foraging decisions in herbivorous Anatidae. Since the birds selected the two extreme sward heights (instead of the medium one), the results give support to our hypothesis and underline the role of body size as an important cause of variations in patch selection in herbivorous Anatidae.  相似文献   

3.
The technique of grazing cut sods was used in combination with sound and video recording to examine the feasibility of using small-scale depletion curves derived from stall trials to estimate forage intake of cattle at the pasture. Setaria lutescens sods were grazed for a variable number of bites to generate patch depletion curves. Depletion curves characterize forage intake as a function of the number of bites taken at a single feeding station. Thus, the method agrees with a hierarchical approach to foraging and it could be used as a basis for scaling up food intake measurements to larger spatial scales. Two sod experiments were carried out, with the second experiment as a validation for predictions of intake. A field experiment was carried out to validate the predictions from the sod experiments with respect to both the amount and the rate of intake. Bite weight was largely determined by initial sward height and depletion level. Cumulative dry matter intake from the sods was well described by a rectangular hyperbola including the variables of number of bites and sward height. Bulk density added little to the explained variation, but was an important factor to account for the dry matter intake on short, dense sods from the second experiment. Feeding time could be explained to a great extent by the number of bites and chews taken, both in the sod and in the field experiments. However, the animals were substantially faster when grazing in the field than on the sods due to a relatively smaller chewing effort. The estimate of bite weight in the field based on the sod depletion curves was validated by an independent estimate derived from the chew to bite ratio. Bite weight estimates that ignored feeding station depletion were significantly greater than the independent estimates. We conclude that the sod grazing technique is an adequate tool to investigate food intake and forage depletion by grazing. It shows promise as a tool to explicitly scale up of foraging behaviour from the level of the feeding station to that of larger patches.  相似文献   

4.
Langvatn and Hanley (1993) recently reported that patch use by red deer (Cervus elaphus) was more strongly correlated with short term rates of intake of digestible protein than dry matter. Such short term measures overlook effects of gut filling, which may constrain intake by ruminants over longer time scales (i.e., daily rates of gain). We reanalyzed Langvatn and Hanley's data using an energy intake model incorporating such a processing constraint, to determine whether their conclusions are robust. We found that the use of patches by red deer was just as strongly correlated with an estimate of the daily rate of intake of digestible energy as one of digestible protein during four out of seven trials, but slightly lower in three out of seven trials. In all cases, daily intake of digestible energy was a much better predictor of patch preference by red deer than was the intake of dry matter. Our reanalysis suggests that the daily intake of energy was highly correlated with that of protein in these trials, as may often be the case for herbivores feeding on graminoids. Hence the observed pattern of patch use by red deer could simultaneously enhance rates of both protein and energy intake.  相似文献   

5.
1. In this paper the results are presented of two experiments designed to examine the relationship between sward structure variables and the nature of patch depression experienced by a large grazing herbivore, Bos taurus, grazing from small patches of forage. In experiment 1 the spatial distribution of leaves within patches was varied. In experiment 2 the role of reproductive stems of different lengths as potential intake rate inhibitors was examined.
2. Both experiments were conducted by offering cattle hand-constructed swards of Orchardgrass ( Dactylis glomerata ) leaves attached to plywood boards. Each of three experimental animals was allowed to take 10, 20, 30, 45 or 60 bites from a patch and intake was estimated on the basis of pregrazing and postgrazing dry-matter. All trials were videotaped and the trial length in seconds was determined from playback of the tapes.
3. In both experiments patch depression (reduction in instantaneous intake rate) was due to decreases in bite mass concomitant with patch depletion. Handling time per bite was unaffected by depletion level. In experiment 1, different spatial configurations resulted in markedly different gain functions ranging from linear to sigmoid. In experiment 2, the presence in the sward of long (15 cm) reproductive stems slowed cumulative gains by restricting bite mass and by increasing the per-bite handling time relative to patches with shorter (5 cm) or no stems.
4. The study of patch depression mechanisms now needs to be generalized over a range of herbivore body sizes and feeding styles.  相似文献   

6.
The allometry of patch selection in ruminants   总被引:3,自引:0,他引:3  
An axiomatic feature of food consumption by animals is that intake rate and prey abundance are positively related. While this has been demonstrated rigorously for large herbivores, it is apparent from patch selection trials that grazers paradoxically tend to prefer short, sparse swards to tall, dense swards. Indeed, migratory herbivores often shift from areas of high to low sward biomass during the growing season. As nutritional quality is an inverse function of grass abundance, herbivores appear to sacrifice short-term intake for nutritional gains obtainable by eating sparse forage of higher quality. Explicit models of this trade-off suggest that individual ruminants maximize daily rates of energy gain by choosing immature swards of intermediate biomass. As body mass is related positively to both ruminant cropping rates and digestibility, there should be an allometric link between grass abundance and energy maximization, providing a tool for predicting patterns of herbivore habitat selection. We used previously published studies to develop a synthetic model of trade-offs between forage abundance and quality predicting that optimal sward biomass should scale allometrically with body size. The model predicts size-related variation in habitat selection observed in a guild of grazing ungulates in the Serengeti ecosystem.  相似文献   

7.
The importance of scale of patchiness for selectivity in grazing herbivores   总被引:7,自引:0,他引:7  
The notion that spatial scale is an important determinant of foraging selectivity and habitat utilization has only recently been recognized. We predicted and tested the effects of scale of patchiness on movements and selectivity of a large grazer in a controlled field experiment. We created random mosaics of short/high-quality and tall/low-quality grass patches in equal proportion at grid sizes of 2×2 m and 5×5 m. Subsequently, we monitored the foraging behaviour of four steers in 16 20×40 m plots over 30-min periods. As predicted on the basis of nutrient intake maximization, the animals selected the short patches, both by walking in a non-random manner and by additional selectivity for feeding stations. The tortuosity of foraging paths was similar at both scales of patchiness but selectivity was more pronounced in large patches than in small ones. In contrast, the number of bites per feeding station was not affected by patch size, suggesting that selection between and within feeding stations are essentially different processes. Mean residence time at individual feeding stations could not be successfully predicted on the basis of the marginal-value theorem: the animals stayed longer than expected, especially in the less profitable patch type. The distribution of the number of bites per feeding station suggests a constant probability to stay to feed or to move on to the next feeding station. This implies that the animals do not treat larger patches as discrete feeding stations but rather as a continuous resource. Our results have important implications for the application of optimal foraging theory in patchy environments. We conclude that selectivity in grazers is facilitated by large-scale heterogeneity, particularly by enhancing discrimination between feeding stations and larger selection units. Received: 1 March 1999 / Accepted: 14 July 1999  相似文献   

8.
The primary goal of foraging herbivores is to maximise the net rate of intake of digestible energy (or of a limiting nutrient). However, foraging strategies of herbivores are also sensitive to other selective forces (e.g. predation, parasites), which may modify their choice of feeding patches. Horses feed in spatially complex swards, and allocate their time among patches which vary both in terms of their nutritional benefits, and the risk of parasitism. It has long been suggested that horses allocate time among patches principally in relation to the risk of parasitism, though the nutritional costs and benefits of different foraging choices must play some role too. In this study, we investigated the roles of nutritional and anti-parasite factors in foraging decisions by horses. Six naturally parasitized and six unparasitized two-year-old geldings were allowed to graze from pairs of trays (112×72 cm) with swards at two heights (tall: 52 cm, medium: 15 cm) and two levels of contamination (280 g m−2 of faeces, no faeces) in a latin square, pair-wise design with six different choices. In nutritional terms the differences between the swards were slight: the tall sward provided larger bite sizes and higher intake rates (+36%). Feeding motivation was not high, and the faecal stimulus was strong. The horses selected uncontaminated swards when the nutritional benefits were identical, and tall swards in virtually all circumstances. Contamination of the preferred tall sward (i.e. a test of the tradeoff between anti-parasite and nutritional strategies) had little effect on its selection by the horses. Their parasite status also had little effect: both groups selected the tall sward in the tradeoff (though this was only a trend for the non-parasitised group in one analysis). We conclude that patch selection by horses in these particular conditions was driven principally by their nutritional strategy.  相似文献   

9.
Accurate measurement of herbage intake rate is critical to advance knowledge of the ecology of grazing ruminants. This experiment tested the integration of behavioral and acoustic measurements of chewing and biting to estimate herbage dry matter intake (DMI) in dairy cows offered micro-swards of contrasting plant structure. Micro-swards constructed with plastic pots were offered to three lactating Holstein cows (608±24.9 kg of BW) in individual grazing sessions (n=48). Treatments were a factorial combination of two forage species (alfalfa and fescue) and two plant heights (tall=25±3.8 cm and short=12±1.9 cm) and were offered on a gradient of increasing herbage mass (10 to 30 pots) and number of bites (~10 to 40 bites). During each grazing session, sounds of biting and chewing were recorded with a wireless microphone placed on the cows’ foreheads and a digital video camera to allow synchronized audio and video recordings. Dry matter intake rate was higher in tall alfalfa than in the other three treatments (32±1.6 v. 19±1.2 g/min). A high proportion of jaw movements in every grazing session (23 to 36%) were compound jaw movements (chew-bites) that appeared to be a key component of chewing and biting efficiency and of the ability of cows to regulate intake rate. Dry matter intake was accurately predicted based on easily observable behavioral and acoustic variables. Chewing sound energy measured as energy flux density (EFD) was linearly related to DMI, with 74% of EFD variation explained by DMI. Total chewing EFD, number of chew-bites and plant height (tall v. short) were the most important predictors of DMI. The best model explained 91% of the variation in DMI with a coefficient of variation of 17%. Ingestive sounds integrate valuable information to remotely monitor feeding behavior and predict DMI in grazing cows.  相似文献   

10.
Summary We studied factors which may shape giving-up decisions of wapiti grazing grassland patches (area where a wapiti initiates and terminates a feeding sequence) and feeding stations (area within a patch that a wapiti can reach without moving its forelegs). In grassland patches, cropping rate decreased after a critical period, whereas at feeding stations cropping rate increased with cumulative bites consumed. The number of feeding stations grazed, number of bites taken and grazing time did not dictate the termination of grazing in a patch. Wapiti gave up a patch only after the cropping rate at a feeding station dropped below the seasonal expectation during trials on lush pasture in May, but gave up after the cropping rate dropped below the seasonal expectation at two consecutive feeding stations in March/April and August when foraging conditions were less favourable. This confirmed a prediction of the marginal value theorem. Wapiti did not give up a feeding station according to bites taken, grazing time or cropping rate, but they left feeding stations when their lateral neck angle reached a critical point suggesting a biokinetic explanation. Leaving feeding stations when ungrazed forage can no longer be reached and patches when intake rate drops both appeared to be rules used by wapiti grazing grasslands of the boreal mixed wood forest.  相似文献   

11.
A feeding station is the area of forage a grazing animal can reach without moving its forefeet. Grazing behavior can be divided into residence within feeding stations (with bites as benefits) and movement between feeding stations (with steps as costs). However, relatively little information has been reported on how grazing animals modify their feeding station behavior seasonally and interannually in response to varying environmental conditions. The feeding station behavior of beef cows (Japanese Black) stocked on a tropical grass pasture (bahiagrass dominant) was monitored for 4 years (2010 to 2013) in order to investigate the association of feeding station behavior with meteorological and sward conditions across the seasons and years. Mean air temperature during stocking often exceeded 30°C during summer months. A severe summer drought in 2013 decreased herbage mass and sward height of the pasture and increased nitrogen concentration of herbage from summer to autumn. A markedly high feeding station number per unit foraging time, low bite numbers per feeding station and a low bite rate were observed in summer 2013 compared with the other seasons and years. Bite number per feeding station was explained by a multiple regression equation, where sward height and dry matter digestibility of herbage had a positive effect, whereas air temperature during stocking had a negative effect (R2=0.658, P<0.01). Feeding station number per minute was negatively correlated with bite number per feeding station (r=–0.838, P<0.001). It was interpreted that cows modified bite number per feeding station in response to the sward and meteorological conditions, and this largely determined the number of feeding stations the animals visited per minute. The results indicate potential value of bite number per feeding station as an indicator of daily intake in grazing animals, and an opportunity for livestock and pasture managers to control feeding station behavior of animals through managements (e.g. fertilizer application, manipulation of stocking intensity and stocking time within the day).  相似文献   

12.
We investigated how free-ranging mares of two species of equids (donkeys and Shetland ponies) modify their foraging behaviour to meet the increased nutritional requirements induced by lactation. We initially hypothesised that lactating mares would graze for a longer time and/or graze faster than non-lactating (dry) mares. The grazing behaviour of free-ranging animals, foraging in two low-productive dune areas, was recorded during 1 year. Results show that in both species lactating animals did not spend more time grazing than non-lactating mares. However, lactating animals took more bites, and therefore achieved a higher bite rate than dry mares. Several factors affected the differences between lactating and non-lactating animals. Lactating mares took more bites only in grassy and rough vegetations and they did this only in patches with a short sward height. In addition, lactating mares took more bites of grasses only and not of forbs or woody plants. We conclude that the extra grazing effort of the lactating animals was not distributed randomly. Lactating mares invested their extra grazing effort principally towards those items that are the most grazed by the equids in general. We propose some hypotheses to explain why lactating mares increase their bite rate instead of augmenting the time spent grazing.  相似文献   

13.
Lisa A. Shipley 《Oikos》2007,116(12):1964-1974
Organisms respond to their heterogeneous environment in complex ways at many temporal and spatial scales. Here, I examine how the smallest scale process in foraging by mammalian herbivores, taking a bite, influences plants and herbivores over larger scales. First, because cropping bites competes with chewing them, bite size influences short-term intake rate of herbivores within plant patches. On the other hand, herbivores can chew bites while searching for new ones, thus influencing the time spent vigilant and intake rate as animals move among food patches. Therefore, bite size affects how much time herbivores must spend foraging each day. Because acquiring energy is necessary for fitness, herbivores recognize the importance of bite size and select bites, patches and diets based on tradeoffs between harvesting rates, digestion, and sheering forces. In turn, induced structural defenses of plants, such as thorns, allow plants to respond immediately to herbivory by reducing bite size and thus tissue loss. Over evolutionary time, herbivores have adapted mouth morphology that allows them to maximize bite size on their primary forage plant, whereas plants faced with large mammalian herbivores have adapted structures such as divarication that minimize bite size and protect themselves from herbivory. Finally, bite size available among plant communities can drive habitat segregation and migration of larger herbivores across landscapes.  相似文献   

14.
Sexual segregation in Soay sheep (Ovis aries) was investigated using an experimental approach in order to test the sexual dimorphism-body size hypothesis. Two corollaries of the sexual dimorphism-body size hypothesis were tested: (1) in dimorphic species males, the larger sex, have relatively smaller bite sizes on short swards because of the scaling of incisor arcade with body weight, and (2) they move off earlier to feed on taller but poorer-quality swards when such swards are patchily distributed on a scale which enables the spatial segregation of individuals. Patch choice between sexes was estimated using a matrix of grass patches which differed in both quality and biomass of grass on offer (HQ: high-quality-low-biomass; LQ: low-quality-high-biomass). Sex differences in patch choice and grazing behaviour were tested in short-term preference trials. Incisor breadth showed no significant difference between sexes. On the other hand, muzzle width was dimorphic, with females having a narrower muzzle than males. Bite size was significantly different between the sexes, being smaller in females than in males, although it was not significantly different between sward types. Females had a higher bite rate than males and the bite rate was higher in the HQ sward type than the LQ sward type. When the effect of body mass was removed, no sex differences in muzzle size, bite size or bite rate were found. The intake rate did not differ between the sexes or between sward types. Whilst both sexes preferred the HQ sward type, females spent a significantly longer time feeding on the LQ sward type than did males. The difference detected between the sexes in patch choice was not consistent directly with the sexual dimorphism-body size hypothesis. Alternative explanations based on sex differences in foraging behaviour in relation to body mass sexual dimorphism are discussed to explain the result. Received: 1 February 1999 / Accepted: 12 May 1999  相似文献   

15.
Although stocking rate is a key management variable influencing the structure and composition of pastures, only few studies have simultaneously analysed the seasonal patterns of pasture use by cattle, and the adjustments the animals make to maintain intake of a high-quality diet over the grazing season. Therefore, over a 3-year study, we recorded diet selection, plot use and impact of heifers on sward structure and quality under three different stocking rates (0.6, 1.0 and 1.4 livestock units (LU) per ha) in a species-rich mountain pasture of central France. Measurements were made on three occasions between early June and the end of September each year. Overall, heifers selected for bites dominated by legumes or forbs, and against reproductive grass, whatever the stocking rate or season. Selection for tall mixed (P < 0.05), short mixed (P < 0.05) and short pure grass bites (P < 0.01) was more pronounced in plots grazed at the lowest stocking rate. Although heifers' selection for short patches decreased at the end of the season (P < 0.001), they continued to graze previously grazed areas, thus exhibiting a typical 'patch grazing' pattern, with the animals that grazed at the lowest stocking rate tending to better maintain their selection for short patches in September (treatment × period: P = 0.078). Neither diet quality nor individual animal performance were affected by the different stocking rate treatments despite high variability in the quantity and quality of herbage offered and differences in diet selection. However, at the 1.4 LU per ha stocking rate, the quantity of forage available per animal at the end of the season, 0.79 t dry matter (DM) per ha of green leaves with the median of sward height at 4.6 cm, approached levels limiting cattle's ability to compensate for the effects of increasing stocking rate. In plots grazed at 0.6 LU per ha, the total herbage biomass remained higher than 3 t DM per ha with more than 30% of plot area still covered by reproductive grass patches at the end of the grazing season, which in the medium term should affect the botanical composition of these pastures. Sward heterogeneity was high in plots grazed at 1.0 LU per ha, with sufficient herbage availability (1.1 t DM per ha of green leaves) to maintain animal performance, and more than 15% of plot area was kept at a reproductive stage at the end of the grazing season. Hence, it could represent the optimal balance to satisfy both livestock production and conservation management objectives.  相似文献   

16.
Relationships between the height of grass swards and herbage intake have been established for a number of large herbivores and sward height plays a major role in determining the selection of herbivore diets. However, tall grass swards also represent a more stable damp microclimate for gastrointestinal parasite larvae and tall swards contain generally greater numbers of parasites than short swards. Herbivores may then trade-off the need to maximise nutrient intake through the selection of tall swards with the need to avoid parasite ingestion. Stratified sward sampling techniques were used to determine the distribution of nutrients and parasites in a heterogeneous sward structure on the island of Hirta, St Kilda, which is grazed by a population of feral Soay sheep. The disparity between the short gap vegetation and the tall tussock vegetation was greatest in spring, when gap vegetation was some three-fold shorter than tussock vegetation; this led to tussocks offering greater nutrient and energy intake rate when compared to gap vegetation in spring. Parasites were concentrated in tussocks in spring, thus creating trade-offs. Such trade-offs were not present in summer when parasites were more evenly distributed across the gap/tussock sward structure and the nutritional advantages associated with grazing tussocks were diminished. The diet selection of the resident population of sheep was determined by recording the number of bites taken from gap and tussock vegetation by randomly selected focal animals over repeated 5-min grazing periods. Overall, all animals avoided grazing tussocks, which were most strongly avoided in the spring, and older animals avoided grazing tussocks to a greater extent. Overall, females with lambs and males avoided tussocks to a similar degree and both avoided them less than barren females. Faecal egg counts (FEC) of female sheep were negatively correlated with tussock selectivity and vice versa for male sheep. The interaction between the grazing behaviour of each sex and FEC is discussed in relation to the immunocompetence and nutrient requirements of the different sexes. The maximum disparity between the costs and benefits of the trade-off studied occurred in late winter/early spring which also represents the time of greatest nutrient demand in the Soay sheep, since many are close to starvation and/or are in the advanced stages of pregnancy. Grazing decisions of individuals at this time, determining relative nutrient and parasite intake, may then be related to subsequent fitness and survival.  相似文献   

17.
Abstract Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south‐east Queensland. In these communities, small‐scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2 , changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2 , total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3 , fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.  相似文献   

18.
Questions: Does vegetation structure display any stability over the grazing season and in two successive years, and is there any correlation between the stability of these spatial patterns and local sward composition? Location: An upland grassland in the French Massif Central. Method: The mosaic of short and tall vegetation stands considered as grazed and ungrazed patches respectively is modeled as the realization of a Boolean process. This method does not require any arbitrarily set sward‐height thresholds to discriminate between grazed and ungrazed areas, or the use of additional variables such as defoliation indexes. The model was validated by comparing empirical and simulated sward‐height distributions and semi‐variograms. Results: The model discriminated between grazed and ungrazed patches at both a fine (1 m2) and a larger (500 m2) scale. Selective grazing on legumes and forbs and avoidance of reproductive grass could partly explain the stability of fine‐scale grazing patterns in lightly grazed plots. In these plots, the model revealed an inter‐annual stability of large‐scale grazing patterns at the time peak biomass occurred. At the end of the grazing season, lightly grazed plots showed fluctuating patch boundaries while heavily grazed plots showed a certain degree of patch stability. Conclusion: The model presented here reveals that selective grazing at the bite scale could lead to the creation of relatively stable patches within the pasture. Locally maintaining short cover heights would result in divergent within‐plot vegetation dynamics, and thus favor the functional diversity of vegetation.  相似文献   

19.
The effect of physiological state lactating vs. non-lactating (dry) on grazing behaviour and herbage intake by Holstein-Friesian cows was examined on grass pastures maintained at 5, 7 or 9 cm sward surface height (SSH), typical of those provided under continuous variable stocking management. Intake rates were estimated over periods of 1 h by weighing the animals before and after grazing, retaining the faeces and urine excreted, and applying a correction for insensible weight loss. Grazing behaviour during these periods and over 24 h was recorded automatically using sensors to measure jaw movements. Bite mass (BM) did not differ significantly between lactating and dry cows but decreased (P<0.001) from 0.42 to 0.30 g organic matter (OM) bite−1 as overall mean SSH decreased from 9 to 5 cm. An increase (P=0.040) in grazing jaw movement (GJM) rate, from 75.3 to 80.3 GJM min−1, as SSH decreased, did not compensate for reductions in bite mass, and intake rate declined linearly (P=0.006) from 24.6 to 18.9 g OM min−1. Lactating and dry cows compensated for the reduction in intake rate, by increasing total grazing time and total number of bites per day. As SSH decreased from 9 to 5 cm, lactating and dry cows increased total eating time (528 to 607 and 419 to 510 min), total GJM (40 400 to 49 300 and 31 300 to 40 600 GJM) and total bites (31 100 to 37 900 and 24 600 to 31 200 bites, respectively). As a result, there was no significant effect of SSH on daily intake of OM, although lactating cows had greater intakes than dry cows; 12.9 vs. 9.3 kg day−1, (P<0.001). The increased time spent grazing as SSH decreased was associated with a reduction in the time spent ruminating (P<0.001), despite similar levels of daily intake being achieved across SSH treatments. Although dry cows had much lower daily intakes, they spent only about 30 min less each day ruminating than the lactating cows (P=0.060), allowing them 120 to 160 min more idling (i.e., non-grazing, non-ruminating) behaviour (P=0.001).  相似文献   

20.
Summary When grassland is grazed by livestock, the structure of the sward changes in a patchy manner. With continuous selective grazing there is a mosaic of short and tall patches but as grazing intensifies the area of short‐grazed patch increases until the paddock has a lawn‐like appearance. This mosaic of patch structures can be stable, as short patches tend to attract repeated grazing and tall patches tend to be avoided. Because heavy grazing can detrimentally affect soil and water functions in grassland (ultimately resulting in erosion), we aimed to assess how well the physical structure of the sward reflects soil surface condition. We described four grassland patch structures that were assumed to reflect different levels of present grazing, and to some extent, past grazing pressure. We assessed patch structure and two other grass‐related variables (basal area of a ‘large tussock’ functional group and basal area of all perennial grass) as possible indicators of soil surface condition. Three indices of condition were measured in the field. The infiltration and nutrient cycling index declined progressively across patch structures, consistent with increasing grazing pressure. The stability index was found to be reduced only for the most heavily grazed grass structure (short patches). We found the ‘large tussock’ grass functional group to be a more sensitive indicator of soil surface condition than the group consisting of all perennial grasses. We found no evidence of sudden soil surface condition decline beyond a certain level of grass basal area, that is, there was no evidence of thresholds, rather, incremental loss of condition accompanied grass decline. We are thus not able to further refine an earlier proposed management recommendation ‘Graze conservatively to maintain dominance of large and medium tussock grasses over 60–70% of the native pastures’, except to suggest the use of short patches as a more practical indicator, rephrasing the recommendation as ‘Graze conservatively to allow a maximum of 30% short‐grazed patches in native pastures’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号