首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
3.
4.
5.
To assess the contribution of DNase I-hypersensitive site 4 (HS4) of the beta-globin locus control region (LCR) to overall LCR function we deleted a 280 bp fragment encompassing the core element of 5'HS4 from a 248 kb beta-globin locus yeast artificial chromosome (beta-YAC) and analyzed globin gene expression during development in beta-YAC transgenic mice. Four transgenic lines were established; each contained at least one intact copy of the beta-globin locus. The deletion of the 5'HS4 core element had no effect on globin gene expression during embryonic erythropoiesis. In contrast, deletion of the 5'HS4 core resulted in a significant decrease of gamma and beta-globin gene expression during definitive erythropoiesis in the fetal liver and a decrease of beta-globin gene expression in adult blood. We conclude that the core element of 5'HS4 is required for globin gene expression only in definitive erythropoiesis. Absence of the core element of HS4 may limit the ability of the LCR to provide an open chromatin domain and/or enhance gamma and beta-globin gene expression in the adult erythroid cells.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
The β-globin locus undergoes dynamic chromatin interaction changes in differentiating erythroid cells that are thought to be important for proper globin gene expression. However, the underlying mechanisms are unclear. The CCCTC-binding factor, CTCF, binds to the insulator elements at the 5' and 3' boundaries of the locus, but these sites were shown to be dispensable for globin gene activation. We found that, upon induction of differentiation, cohesin and the cohesin loading factor Nipped-B-like (Nipbl) bind to the locus control region (LCR) at the CTCF insulator and distal enhancer regions as well as at the specific target globin gene that undergoes activation upon differentiation. Nipbl-dependent cohesin binding is critical for long-range chromatin interactions, both between the CTCF insulator elements and between the LCR distal enhancer and the target gene. We show that the latter interaction is important for globin gene expression in vivo and in vitro. Furthermore, the results indicate that such cohesin-mediated chromatin interactions associated with gene regulation are sensitive to the partial reduction of Nipbl caused by heterozygous mutation. This provides the first direct evidence that Nipbl haploinsufficiency affects cohesin-mediated chromatin interactions and gene expression. Our results reveal that dynamic Nipbl/cohesin binding is critical for developmental chromatin organization and the gene activation function of the LCR in mammalian cells.  相似文献   

14.
15.
DNA replication in the human beta-globin locus is subject to long-distance regulation. In murine and human erythroid cells, the human locus replicates in early S phase from a bidirectional origin located near the beta-globin gene. This Hispanic thalassemia deletion removes regulatory sequences located over 52 kb from the origin, resulting in replication of the locus from a different origin, a shift in replication timing to late S phase, adoption of a closed chromatin conformation, and silencing of globin gene expression in murine erythroid cells. The sequences deleted include nuclease-hypersensitive sites 2 to 5 (5'HS2-5) of the locus control region (LCR) plus an additional 27-kb upstream region. We tested a targeted deletion of 5'HS2-5 in the normal chromosomal context of the human beta-globin locus to determine the role of these elements in replication origin choice and replication timing. We demonstrate that the 5'HS2-5-deleted locus initiates replication at the appropriate origin and with normal timing in murine erythroid cells, and therefore we conclude that 5'HS2-5 in the classically defined LCR do not control replication in the human beta-globin locus. Recent studies also show that targeted deletion of 5'HS2-5 results in a locus that lacks globin gene expression yet retains an open chromatin conformation. Thus, the replication timing of the locus is closely correlated with nuclease sensitivity but not globin gene expression.  相似文献   

16.
To examine the function of murine beta-globin locus region (LCR) 5' hypersensitive site 3 (HS3) in its native chromosomal context, we deleted this site from the mouse germ line by using homologous recombination techniques. Previous experiments with human 5' HS3 in transgenic models suggested that this site independently contains at least 50% of total LCR activity and that it interacts preferentially with the human gamma-globin genes in embryonic erythroid cells. However, in this study, we demonstrate that deletion of murine 5' HS3 reduces expression of the linked embryonic epsilon y- and beta H 1-globin genes only minimally in yolk sac-derived erythroid cells and reduces output of the linked adult beta (beta major plus beta minor) globin genes by approximately 30% in adult erythrocytes. When the selectable marker PGK-neo cassette was left within the HS3 region of the LCR, a much more severe phenotype was observed at all developmental stages, suggesting that PGK-neo interferes with LCR activity when it is retained within the LCR. Collectively, these results suggest that murine 5' HS3 is not required for globin gene switching; importantly, however, it is required for approximately 30% of the total LCR activity associated with adult beta-globin gene expression in adult erythrocytes.  相似文献   

17.
The locus activating region (LAR), contained within 30 kb of chromatin flanking the human beta-globin gene cluster, has recently been shown to be essential for high level beta-globin gene expression. To determine the effect of fragments containing LAR sequences on globin gene expression, mRNA from a marked gamma-globin gene linked to LAR fragments was assayed in stably transfected K562 erythroleukemia cells. DNaseI hypersensitive site II (HS II), located 10.9 kb upstream of the epsilon-globin gene, was required for high level gamma-globin gene expression. We also showed that a 46 bp enhancer element within HS II was necessary and sufficient for the increased gamma-globin gene expression observed with hemin induced erythroid maturation of K562 cells. These results localize a distant regulatory element important for activation of globin genes during human erythroid cell maturation.  相似文献   

18.
19.
Noordermeer D  de Laat W 《IUBMB life》2008,60(12):824-833
The mammalian beta-globin locus is a multigene locus containing several globin genes and a number of regulatory elements. During development, the expression of the genes changes in a process called "switching." The most important regulatory element in the locus is the locus control region (LCR) upstream of the globin genes that is essential for high-level expression of these genes. The discovery of the LCR initially raised the question how this element could exert its effect on the downstream globin genes. The question was solved by the finding that the LCR and activate globin genes are in physical contact, forming a chromatin structure named the active chromatin hub (ACH). Here we discuss the significance of ACH formation, provide an overview of the proteins implicated in chromatin looping at the beta-globin locus, and evaluate the relationship between nuclear organization and beta-globin gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号