首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino acid sequence G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-K(8)-P(9) occurs twice in the proline-rich glycoprotein (PRG) found in human parotid saliva. As part of our efforts to elucidate the structure-function relationships of PRG, this nonapeptide sequence (PRG9) was synthesized for the purpose of conformational analyses by high-resolution proton n.m.r. spectroscopy and computer-modeling. The empirical n.m.r. spectrum differed from the simulated spectrum in that the overall chemical shift locations were displaced from their random coil positions and the five proline residues had non-degenerate C alpha H alpha protons. Other n.m.r. data indicated that no intramolecular hydrogen-bonding was present in the PRG. In conjunction with X-ray crystallographic data on a triproline-containing model compound (Kartha, g., Ashida, T. & Kakudo, M. (1974) Acta Cryst. B30, 1861-1866), four energy-minimized PRG9 structures were obtained. Two of the structures were energetically unfavorable, while the other two conformations were reasonable. The two most likely structures gave all prolines an S-type ring pucker, the P(2)-P(3)-P(4) sequence as a poly-L-proline II helix, the H(5) phi = -90.3 degrees, P(6) and P(9) with trans peptide bond orientation, G(7) in an extended state, and the K(8) phi = -93.2 degrees or -146.8 degrees for structures #1 and #2, respectively.  相似文献   

2.
The proline-rich glycoprotein from human parotid saliva has a common heptapeptide sequence around four of six N-glycosylation sites (Maeda, N., H. S. Kim, E. A. Azen, and O. J. Smithies, 1985, J. Biol. Chem., 20:11123-11130). A synthetic model of the heptamer protein sequence, NH2-Q(1)-G(2)-G(3)-N(4)-Q(5)-S(6)-Q(7)-CONH2, was examined by nuclear magnetic resonance (NMR) spectroscopy and the ECEPP/2-VAO4A (Empirical Conformation Energy Program for Peptides) energy minimization computer algorithm (Scheraga, H. A., 1982, Quantum Chemistry Program Exchange, 454; Powell, M. J. D., 1964, Quantum Chemistry Program Exchange, 60). The NMR spectrum was almost completely assigned in dimethylsulfoxide-d6 (DMSO), and the amide chemical shift temperature dependence, phi dihedral angles, and chi 1 rotamer populations elucidated. These data indicated that a significant population of the heptamer could exist as a type I beta-turn [4----1 between Q(5) and G(2)] and/or a type II' beta-turn [4----1 between (Q)5 and G(2) and/or a gamma-turn [3----1 between Q(5) and G(3)] with the amino acid chi 1 torsion angles weighted toward the gauche- conformation. Starting from these three possible conformations, the ECEPP/2-VAO4A rigid geometry energy minimization program was used to find the localized predominant in vacuo structures of this heptapeptide sequence. The type II' beta-turn conformation best fits the data based on internuclear hydrogen-bonding distances, minimum potential energy considerations, and the NMR parameters.  相似文献   

3.
Proton NMR studies are reported on the complementary d(C-A-T-G-G-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dG 9-mer duplex), which contains exocyclic adduct 1,N6-ethenodeoxyadenosine positioned opposite deoxyguanosine in the center of the helix. The present study focuses on the alignment of dG5 and epsilon dA14 at the lesion site in the epsilon dA.dG 9-mer duplex at neutral pH. This alignment has been characterized by monitoring the NOEs originating from the NH1 proton of dG5 and the H2, H5, and H7/H8 protons of epsilon dA14 in the central d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment of the epsilon dA.dG 9-mer duplex. These NOE patterns establish that epsilon dA14 adopts a syn glycosidic torsion angle that positions the exocyclic ring toward the major groove edge while all the other bases including dG5 adopt anti glycosidic torsion angles. We detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment which establish formation of right-handed helical conformations on both strands and stacking of the dG5(anti).epsilon dA14(syn) pair between stable dG4.dC15 and dG6.dC13 pairs. The energy-minimized conformation of the central d(G4-G5-G6).d(C13-epsilon A14-C15) segment establishes that the dG5(anti).epsilon dA14(syn) alignment is stabilized by two hydrogen bonds from the NH1 and NH2-2 of dG5(anti) to N9 and N1 of epsilon dA14(syn), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The genome of the human immunodeficiency virus type-1 (HIV-1) contains a stretch of approximately 120 nucleotides known as the psi-site that is essential for RNA packaging during virus assembly. These nucleotides have been proposed to form four stem-loops (SL1-SL4) that have both independent and overlapping functions. Stem-loop SL2 is important for efficient recognition and packaging of the full-length, unspliced viral genome, and also contains the major splice-donor site (SD) for mRNA splicing. We have determined the structure of the 19-residue SL2 oligoribonucleotide by heteronuclear NMR methods. The structure is generally consistent with the most recent of two earlier secondary structure predictions, with residues G1-G2-C3-G4 and C6-U7 forming standard Watson Crick base-pairs with self-complementary residues C16-G17-C18-C19 and A12-G13, respectively. However, residue A15, which is located near the center of the stem, does not form a predicted bulge, and residues A5 and U14 do not form an expected Watson-Crick base-pair. Instead, these residues form a novel A5-U14-A15 base-triple that appears to be stabilized by hydrogen bonds from A15-H61 and -H62 to A5-N1 and U14-O2, respectively; from A5-H61 to U14-O2, and from C16-H42 to U14-O2'. A kink in the backbone allows the aromatic rings of the sequential U14-A15 residues to be approximately co-planar, adopting a stable "platform motif" that is structurally similar to the A-A (adenosine) platforms observed in the P4-P6 ribozyme domain of the Tetrahymena group I intron. Platform motifs generally function in RNA by mediating long-range interactions, and it is therefore possible that the A-U-A base-triple platform mediates long-range interactions that either stabilize the psi-RNA or facilitate splicing and/or packaging. Residue G8 of the G8-G9-U10-G11 tetraloop is stacked above the U7-A12 base-pair, and the remaining tetraloop residues are disordered and available for potential interactions with either other RNA or protein components.  相似文献   

5.
Proton NMR studies are reported on the complementary d(C1-C2-A3-C4-T5-A6-oxo-G7-T8-C9-A10-C11-C12).d(G13-G14-T15- G16-A17-A18-T19- A20-G21-T22-G23-G24) dodecanucleotide duplex (designated 8-oxo-7H-dG.dA 12-mer), which contains a centrally located 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) residue, a group commonly found in DNA that has been exposed to ionizing radiation or oxidizing free radicals. From the NMR spectra it can be deduced that this moiety exists as two tautomers, or gives rise to two DNA conformations, that are in equilibrium and that exchange slowly. The present study focuses on the major component of the equilibrium that originates in the 6,8-dioxo tautomer of 8-oxo-7H-dG. We have assigned the exchangeable NH1, NH7, and NH2-2 base protons located on the Watson-Crick and Hoogsteen edges of 8-oxo-7H-dG7 in the 8-oxo-7H-dG.dA 12-mer duplex, using an analysis of one- and two-dimensional nuclear Overhauser enhancement (NOE) data in H2O solution. The observed NOEs derived from the NH7 proton of 8-oxo-7H-dG7 to the H2 and NH2-6 protons of dA18 establish an 8-oxo-7H-dG7(syn).dA 18(anti) alignment at the lesion site in the 8-oxo-7H-dG.dA 12-mer duplex in solution. This alignment, which places the 8-oxo group in the minor groove, was further characterized by an analysis of the NOESY spectrum of the 8-oxo-7H-dG.dA 12-mer duplex in D2O solution. We were able to detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(A6-oxo-G7-T8).d(A17-A18-T19) trinucleotide segment centered about the lesion site that establishes stacking of the oxo-dG7(syn).dA(anti) pair between stable Watson-Crick dA6.dT19 and dT8.dA17 base pairs with minimal perturbation of the helix. Thus, both strands of the 8-oxo-7H-dG.dA 12-mer duplex adopt right-handed conformations at and adjacent to the lesion site, the unmodified bases adopt anti glycosidic torsion angles, and the bases are stacked into the helix. The energy-minimized conformation of the central d(A6-oxo-G7-T8).d(A17-A18-T19) segment requires that the 8-oxo-7H-dG7(syn).dA18(anti) alignment be stabilized by two hydrogen bonds from NH7 and O6 of 8-oxo-7H-dG7(syn) to N1 and NH2-6 of dA18(anti), respectively, at the lesion site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Conformational analysis of endomorphin-1 by molecular dynamics methods.   总被引:1,自引:0,他引:1  
Endomorphin-1 (EM1, H-Tyr-Pro-Trp-Phe-NH2) is a highly potent and selective agonist for the mu-opioid receptor. A conformational analysis of this tetrapeptide was carried out by simulated annealing and molecular dynamics methods. EM1 was modeled in the neutral (NH2-) and cationic (NH-) forms of the N-terminal amino group. The results of NMR measurements were utilized to perform simulations with restrained cis and trans Tyr1-Pro2 peptide bonds. Preferred conformational regions in the Phi 2-Psi 2, Phi 3-Psi 3 and Phi 4-Psi 4 Ramachandran plots were identified. The g(+), g(-) and trans rotamer populations of the side-chains of the Tyr1, Trp3 and Phe4 residues were determined in chi 1 space. The distances between the N-terminal N atom and the other backbone N and O atoms, and the distances between the centers of the aromatic side-chain rings and the Pro2 ring were measured. The preferred secondary structures were determined as different types of beta-turns and gamma-turns. In the conformers of trans-EM1, an inverse gamma-turn can be formed in the N-terminal region, but in the conformers of cis-EM1 the N-terminal inverse gamma-turn is absent. Regular and inverse gamma-turns were observed in the C-terminal region in both isomers. These beta- and gamma-turns were stabilized by intramolecular H-bonds and bifurcated H-bonds.  相似文献   

7.
The backbone modification amide-3, in which -CH2-NH-CO-CH2- replaces -C5'H2-O5'-PO2-O3'-, is studied in the duplex d(G1-C2-G3-T4.T5-G6-C7-G8)*mr(C9-G10-C11-A12-A13-C14-G15+ ++-C16) where . indicates the backbone modification and mr indicates the 2'-OMe RNA strand. The majority of the exchangeable and non-exchangeable resonances have been assigned. The assignment procedure differs from standard methods. The methyl substituent of the 2'-OMe position of the RNA strand can be used as a tool in the interpretation. The duplex structure is a right-handed double helix. The sugar conformations of the 2'-OMe RNA strand are predominantly N-type and the 2'-OMe is positioned at the surface of the minor groove. In the complementary strand, only the sugar of residue T4 is found exclusively in N-type conformation. The incorporation of the amide modification does not effect very strongly the duplex structure. All bases are involved in Watson-Crick base pairs.  相似文献   

8.
Eleven new analogues were synthesized by modification of the potent oxytocin antagonist (OTA) [(S)Pmp(1), D-Trp(2), Pen(6), Arg(8)]-Oxytocin, or PA (parent antagonist), in which (S)Pmp = beta,beta-(3-thiapentamethylene)-beta-mercapto-propionic acid. By internal acylation of Lys, Orn, L-1,4-diaminobutyric acid (Dab), L-1,3-diaminopropionic acid (Dap) at position 4 with the C-terminal Gly of the peptide tail, we prepared cyclo-(4-9)-[Lys(4), Gly(9)]-PA (pA(2) = 8.77 +/- 0.27), 1, and cyclo-(4-9)-[Orn(4), Gly(9)]-PA (pA(2) = 8.81 +/- 0.25), 3, which are equipotent with PA (pA(2) = 8.68 +/- 0.18) in the rat uterotonic assay and cyclo-(4-9)-[Dab(4), Gly(9)]-PA, 4, cyclo-(4-9)-[Dap(4), Gly(9)]-PA, 5, and cyclo-(4-9)-[Pmp(1), Lys(4), Gly(9)]-PA, 2, which were weaker OTAs. Neither 1 nor 3 had activity as agonists or antagonists in the antidiuretic assay. In the pressor assay, both analogues 1 and 3, with pA(2) = 7.05 +/- 0.10 and pA(2) = 6.77 +/- 0.12, respectively, are somewhat weaker antagonists than PA (pA(2) = 7.47 +/- 0.35) showing significant gain in specificity. The [desamido(9)] PA-ethylenediamine monoamide, 6, and the dimer ([desamido(9)]-PA)(2) ethylenediamine diamide, 7, had lower potency in the uterotonic assay than PA. Additionally, we synthesized cyclo-(1-5)-[(HN)Pmp(1), Asp(5)]-PA, 8, inactive in all tests, which suggests that the intact Asn(5) side chain may be critical in the interaction of the OTAs with the oxytocin (OT) receptor. Similarly, cyclo-(5-9)-[Dap(5), Gly(9)]-PA, 9, had very low uterotonic potency. Two derivatives of PA truncated from the C-terminus were internally cyclized to Lys(4), giving rise to cyclo-(4-8)-desGly-NH(2)(9)[Lys(4), Arg(8)]-PA, 10 (pA(2) = 8.35 +/- 0.20), which maintains the high potency of PA and has no activity in the rat antidiuretic assay, and in the rat pressor assay it is about ten times weaker (pA2 = 6.41 +/- 0.15) than PA (pA2 = 7.47 +/- 0.35), thus showing gains in specificity, and to cyclo-(4-7)-desArg-Gly-(NH)(2)(8-9)[Lys(4), Pro(7))-PA, 11, which has much weaker potency than PA. Synthesis of cyclo-(4-6)-desPro-Arg-Gly-(NH)(2)(7-9)[Lys(4)]-PA failed.  相似文献   

9.
The stability of trans-(Pt(NH3)2[d(CGAG)-N7-G,N7-G]) adducts, resulting from cross-links between two guanine residues at d(CGAG) sites within single-stranded oligonucleotides by trans-diamminedichloro-platinum(II), has been studied under various conditions of temperature, salt and pH. The trans-(Pt(NH3)2[d(C GAG)-N7-G,N7-G]) cross-links rearrange into trans-(Pt(NH3)2[d(CGAG)-N3-C,N7-G]) cross-links. The rate of rearrangement is independent of pH, in the range 5-9, and of the nature and concentration of the salt (NaCl or NaCIO4) in the range 10-400 mM. The reaction rate depends upon temperature, the t1/2 values for the disappearance of the (G,G) intrastrand cross-link ranging from 120 h at 30 degrees C to 70 min at 80 degrees C. The linkage isomerization reaction occurs in oligonucleotides as short as the platinated tetramer d(CGAG). Replacement of the intervening residue A by T has no major effect on the reaction. The C residue adjacent to the adduct on the 5' side plays a key-role in the reaction; its replacement by a G, A or T residue prevents the reaction occuring. No rearrangement was observed with the C residue adjacent to the adduct on the 3' side. It is proposed that the linkage isomerization reaction results from a direct attack of the base residue on the platinum(II) square complex.  相似文献   

10.
Escherichia coli strain CL137, a K-12 derivative made E colicinogenic by contact with Fredericq's strain K317, was unaffected by colicin E2-P9, but K-12 carrying ColE2-P9 was sensitive to the E colicin made by strains CL137 and K317. This colicin we named E7-K317 because by the test of colicinogenic immunity it differed from colicins E1-K30, E2-P9, and E3-CA38 and from recently recognized colicins termed E4Horak, E5, and E6. Strain K317 as conjugational donor transmitted E7 colicinogeny; about half the E7-colicinogenic transconjugants were immune to colicin E2-P9. A spontaneous variant of CL137 retained E7 colicinogeny but was sensitive to E2 colicins. We attribute the E2 immunity of strain CL137 and some E7-coliconogeic transconjugants to a "colicin-immunity plasmid," ColE2imm-K317, from strain K317. Tra+ E7-colicinogenic transconjugants restricted phage BF23 in the same way as strains carrying ColIb-P9. We attribute Tra+ and restricting ability to a plasmid, pRES-K317, acquired from strain K317, and related to the ColI plasmids.  相似文献   

11.
The hepatic bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P2ase), E.C. 2.7-1-105/E.C. 3-1-3-46, is one member of a family of unique bifunctional proteins that catalyze the synthesis and degradation of the regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2). Fru-2,6-P2 is a potent activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, and provides a switching mechanism between these two opposing pathways of hepatic carbohydrate metabolism. The activities of the hepatic 6PF-2-K/Fru-2,6-P2ase isoform are reciprocally regulated by a cyclic AMP-dependent protein kinase (cAPK)-catalyzed phosphorylation at a single NH2-terminal residue, Ser-32. Phosphorylation at Ser-32 inhibits the kinase and activates the bisphosphatase, in part through an electrostatic mechanism. Substitution of Asp for Ser-32 mimics the effects of cAPK-catalyzed phosphorylation. In the dephosphorylated homodimer, the NH2- and COOH-terminal tail regions also have an interaction with their respective active sites on the same subunit to produce an autoregulatory inhibition of the bisphosphatase and activation of the kinase. In support of this hypothesis, deletion of either the NH2- or COOH-terminal tail region, or both regions, leads to a disruption of these interactions with a maximal activation of the bisphosphatase. Inhibition of the kinase is observed with the NH2-truncated forms, in which there is also a diminution of cAPK phosphorylation to decrease the Km for Fru-6-P. Phosphorylation of the bifunctional enzyme by cAPK disrupts these autoregulatory interactions, resulting in inhibition of the kinase and activation of the bisphosphatase. Therefore, effects of cyclic AMP-dependent phosphorylation are mediated by a combination of electrostatic and autoregulatory control mechanisms.  相似文献   

12.
The number of beta-turns in a representative set of 426 protein three-dimensional crystal structures selected from the recent Protein Data Bank has nearly doubled and the number of gamma-turns in a representative set of 320 proteins has increased over seven times since the previous analysis. Beta-turns (7153) and gamma-turns (911) extracted from these proteins were used to derive a revised set of type-dependent amino acid positional preferences and potentials. Compared with previous results, the preference for proline, methionine and tryptophan has increased and the preference for glutamine, valine, glutamic acid and alanine has decreased for beta-turns. Certain new amino acid preferences were observed for both turn types and individual amino acids showed turn-type dependent positional preferences. The rationale for new amino acid preferences are discussed in the light of hydrogen bonds and other interactions involving the turns. Where main-chain hydrogen bonds of the type NH(i + 3) --> CO(i) were not observed for some beta-turns, other main-chain hydrogen bonds or solvent interactions were observed that possibly stabilize such beta-turns. A number of unexpected isolated beta-turns with proline at i + 2 position were also observed. The NH(i + 2) --> CO(i) hydrogen bond was observed for almost all gamma-turns. Nearly 20% classic gamma-turns and 43% inverse gamma-turns are isolated turns.  相似文献   

13.
Equilibrium constants for reactions catalyzed by ribulose-5-phosphate 3-epimerase, [sigma xylulose-5-P]/[sigma ribulose-5-P] = 1.82, ribose-5-phosphate isomerase, [sigma Rib-5-P]/[sigma ribulose-5-P] = 1.20, transaldolase, [sigma erythrose-4-P] [sigma Fru-6-P]/[sigma sedoheptulose-7-P] [sigma glyceraldehyde 3-P] = 0.37, and transketolase, [sigma Fru-6-P] [sigma glyceraldehyde 3-P]/[sigma erythrose-4-P] [sigma xylulose-5-P] = 29.7 and [sigma Rib-5-P] [sigma xylulose-5-P]/[sigma sedoheptulose-7-P] [sigma glyceraldehyde 3-P] = 0.48, were redetermined under physiological conditions. The equilibrium constant for the combined glucose-6-P dehydrogenase and 6-phosphoglucono-gamma-lactonase reaction, [6-phosphogluconate3-] [NADPH] [H+]2/[Glc-6-P2-] [NADP+], was found to be at least 1 X 10(-9). Using these redetermined equilibrium constants, calculated values of pentose cycle intermediates, based on near equilibrium assumptions and the tissue content of Fru-6-P and glyceraldehyde 3-P, were found to be in good agreement with measured values for male Wistar rats injected with saline, 20 mumol/g pyruvate, 20 mumol/g gluconate, and 20 mumol/g ribose. Measured and calculated values for pentose cycle intermediates in saline injected animals were ribulose-5-P; 3.8 +/- 0.4 and 2.4 +/- 0.1 nmol/g; xylulose-5-P, 5.9 +/- 0.6 nmol/g and 4.3 +/- 0.2 nmol/g; sedoheptulose-7-P, 41.5 +/- 2.4 and 37.6 +/- 2.9 nmol/g; and combined sedopheptulose-7-P and Rib-5-P, 43.0 +/- 2.8 nmol/g and 40.5 +/- 3.0 nmol/g; liver content of erythrose-4-P was less than the detection limits of the assay, 2 nmol/g. Calculated erythrose-4-P was 0.23 +/- 0.01 nmol/g. Liver content of 6-phosphogluconate was 8.5 +/- 0.7 nmol/g. The free cytosolic [NADP+]/[NADPH] ratio calculated from the 6-phosphogluconate dehydrogenase redox couple, 0.0030 +/- 0.0002, was also in good agreement with that calculated from the malic enzyme redox couple, 0.0051 +/- 0.0007, and the isocitrate dehydrogenase redox couple, 0.0066 +/- 0.0008. These data indicate the interdependence of the liver content of glycolytic intermediates and pentose cycle intermediates in ad libitum fed rats.  相似文献   

14.
The oligonucleotide 5'-d(TCTACGCGTTCT) reacts with trans-diamminedichloroplatinum(II) to yield primarily trans-[Pt(NH3)2[d(TCTACGCGTTCT)-N7-G(6),N7-G(8)]], containing the desired trans-[Pt(NH3)2[d(GCG)]] 1,3-cross-link. A key element of the platination reaction is the use of low pH to suppress coordination at A(4). The product was fully characterized by pH-dependent NMR titrations, enzymatic degradation analysis, and 195Pt NMR spectroscopy. Interestingly, the 1,3-cross-linked adduct is unstable at neutral pH, rearranging unexpectedly to form the linkage isomer trans-[Pt(NH3)2[d-(TCTACGCGTTCT)-N3-C(5),N7-G(8)]]. This rearrangement product is more stable than the initially formed isomer and could be characterized by pH-dependent NMR titrations, enzymatic degradation analysis, liquid secondary ion mass spectrometric analysis of an enzymatically digested fragment, 195Pt NMR spectroscopy, and modified Maxam-Gilbert footprinting experiments. By contrast, the 1,3-intrastrand cross-linked isomer rearranges during the course of both pH titration and enzymatic degradation experiments to form the 1,4-adduct. The equilibrium constant for this rearrangement is approximately 3, favoring the 1,4-adduct. Kinetic studies of the linkage isomerization reaction reveal t1/2 values for the first-order disappearance of the 1,3-intrastrand cross-linked isomer ranging from 129 (at 30 degrees C) to 3.6 h (at 62 degrees C), with activation parameters delta H not equal to = 91 +/- 2 kJ/mol and delta S not equal to = -58 +/- 8 J/(mol.K). Mechanistic implications of these kinetic results as well as the general relevance of this linkage isomerization reaction to platinum-DNA chemistry are briefly discussed.  相似文献   

15.
The peptide Boc-L-Val-deltaPhe-deltaPhe-L-Ile-OCH3 was synthesized using the azlactone method in the solution phase, and its crystal and molecular structures were determined by X-ray diffraction. Single crystals were grown by slow evaporation from solution in methanol at 25 degrees C. The crystals belong to an orthorhombic space group P2(1)2(1)2(1) with a = 12.882(7) A, b = 15.430(5) A, c = 18.330(5) A and Z = 4. The structure was determined by direct methods and refined by a least-squares procedure to an R-value of 0.073. The peptide adopts a right-handed 3(10)-helical conformation with backbone torsion angles: phi1 = 56.0(6)degrees, psi1 = -38.0(6)degrees, phi2 = -53.8(6)degrees, psi2 = 23.6(6)degrees, phi3 = -82.9(6)degrees, psi3 = -10.6(7)degrees, phi4 = 124.9(5)degrees. All the peptide bonds are trans. The conformation is stabilized by intramolecular 4-->1 hydrogen bonds involving Boc carbonyl oxygen and NH of deltaPhe3 and CO of Val1 and NH of Ile4. It is noteworthy that the two other chemically very similar peptides: Boc-Val-deltaPhe-deltaPhe-Ala-OCH3 (i) and Boc-Val-deltaPhe-deltaPhe-Val-OCH3 (ii) with differences only at the fourth position have been found to adopt folded conformations with two overlapping beta-turns of types II and III', respectively, whereas the present peptide adopts two overlapping beta-turns of type III. Thus the introduction of Ile at fourth position in a sequence Val-deltaPhe-deltaPhe-X results in the formation of a 3(10)-helix. The crystal structure is stabilized by intermolecular hydrogen bonds involving NH of Val1 and carbonyl oxygen of a symmetry related (-x, y - 1/2, 1/2 + z) deltaPhe2 and NH of deltaPhe2 with carbonyl oxygen of a symmetry related (x, y1/2, 1/2 + z) Ile4. This gives rise to long columns of helical molecules linked head to tail running along [010] direction.  相似文献   

16.
X L Gao  D J Patel 《Biochemistry》1990,29(49):10940-10956
This paper reports on a solution NMR characterization of the sequence selectivity and metal ion specificity in chromomycin-DNA oligomer complexes in the presence of divalent cations. The sequence selectivity studies have focused on chromomycin complexes with the self-complementary d(A1-A2-G3-G4-C5-C6-T7-T8) duplex containing a pair of adjacent (G3-G4).(C5-C6) steps and the self-complementary d(A1-G2-G3-A4-T5-C6-C7-T8) duplex containing a pair of separated (G2-G3).(C6-C7) steps in aqueous solution. The antitumor agent (chromomycin) and nucleic acid protons have been assigned following analysis of distance connectivities in NOESY spectra and coupling connectivities in DQF-COSY spectra for both complexes in H2O and D2O solution. The observed intermolecular NOEs establish that chromomycin binds as a Mg(II)-coordinated dimer [1 Mg(II) per complex] and contacts the minor-groove edge with retention of 2-fold symmetry centered about the (G3-G4-C5-C6).(G3-G4-C5-C6) segment of the d(A2G2C2T2) duplex. By contrast, complex formation is centered about the (G2-G3-A4-T5).(A4-T5-C6-C7) segment and results in removal of the two fold symmetry of the d(AG2ATC2T) duplex. Thus, the binding of one subunit of the chromomycin dimer at its preferred (G-G).(C-C) site assists in the binding of the second subunit to the less preferred adjacent (A-T).(A-T) site. These observations suggest a hierarchy of chromomycin binding sites, with a strong site detected at the (G-G) step due to the hydrogen-bonding potential of acceptor N3 and donor NH2 groups of guanosine that line the minor groove. The divalent cation specificity has been investigated by studies on the symmetric chromomycin-d(A2G2C2T2) complex in the presence of diamagnetic Mg(II), Zn(II), and Cd(II) cations and paramagnetic Ni(II) and Co(II) cations. A comparative NOESY study of the Mg(II) and Ni(II) symmetric complexes suggests that a single tightly bound divalent cation aligns the two chromomycins in the dimer through coordination to the C1 carbonyl and C9 enolate ions on the hydrophilic edge of each aglycon ring. Secondary divalent cation binding sites involve coordination to the major-groove N7 atoms on adjacent guanosines in G-G steps. This coordination is perturbed on lowering the pH below 6.0, presumably due to protonation of the N7 atoms. The midpoint of the thermal dissociation of the symmetric complex is dependent on the divalent cation with the stability for reversible transitions decreasing in the order Mg(II) greater than Zn(II) greater than Cd(II) complexes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
A method for determining the site and extent of deuterium (D) labeling of glucose by GC/MS and mass fragmentography was developed. Under chemical and electron impact ionization, ion clusters m/z 328, 242, 217, 212, and 187 of glucose aldonitrile pentaacetate and m/z 331 and 169 of pentaacetate derivative were produced. From the mass spectra of 13C- and D-labeled reference compounds, glucose carbon and hydrogen (C-H) positions included in these fragments were deduced to be m/z 328 = C1-C6, 2,3,4,5,6,6-H6; m/z 331 = C1-C6, 1,2,3,4,5,6,6-H7; m/z 169 = C1-C6, 1,3,4,5,6,6-H6; m/z 187 = C3-C6, 3,4,5,6,6-H5; m/z 212 = C1-C5, 2,3,4,5-H4; m/z 217 = C4-C6, 4,5,6,6-H4; and m/z 242 = C1-C4, 2,3,4-H3. After correction for isotope discrimination and deuterium-hydrogen exchange, the D enrichment of these fragments can be quantitated using selective ion monitoring, and the D enrichment of all C-H positions can be obtained by the difference in enrichment of the corresponding ion pairs. The validity of this approach was tested by examining D enrichment of known mixtures of 1-d1-, 2-d1-, 3-d1-, and 5,6,6-d3-glucose with unlabeled glucose and D enrichment of perdeuterated glucose using these fragments. This method was used to determine deuterium incorporation in C1 through C6 of blood glucose in fasted (24 h) rats infused with deuterated water. The distribution of deuterium was similar to that found by Postle and Bloxham (1980, Biochem. J. 192, 65-73). Approximately one deuterium atom was incorporated into C5 and only 75% deuterium atom was incorporated into C2. The enrichment of C2 and C6 of glucose relative to that of water indicated that 74 +/- 9% of plasma glucose was newly formed 4 h after the onset of deuterium infusion, and gluconeogenesis accounted for about 76 +/- 7% of the glucose 6-phosphate flux.  相似文献   

18.
Replacement of one of the chloride leaving groups in trans-[PtCl2(NH3)(L)] by the nucleobase 9-ethylguanine gives the nucleobase cations [SP-4-2]-[PtCl(9-ethylguanine)(NH3)(L)]+ (L = NH3, 1; L = quinoline, 3), which are models for the monofunctional adduct on DNA. Displacement of Cl- in 1 and 3 by either 5'-guanosine monophosphate (5'-GMP) or N-acetyl-L-methionine (N-AcMet) showed clear kinetic preference for the sulfur (estimated half-lives of 1.5 and 4 h with N-AcMet against 7 and 17 h for 5'-GMP for 1 and 3, respectively). To further examine the kinetic preference, 1-methylcytosine (1-MeCyt) analogs were prepared, [SP-4-2]-[PtCl(1-Me-Cyt)(NH3)(L)]+ (L=NH3, 2; L=quinoline, 4). The -MeCyt compounds, 2 and 4, resulted in slower rates of substitution by both 5'-GMP and N-AcMet in comparison to 1 and 3 (estimated half-lives for N-AcMet of 5 and 13.5 h and for 5'-GMP of 6 and 14 h for 2 and 4, respectively). Interestingly in this case, however, no selectivity for the sulfur site was observed, a possible explanation being that molecular recognition across the square plane enhances the rate of reaction with 5'-GMP. The affinity of 3 towards S-donor ligands was exploited to remove zinc from the zinc-finger site of the C-terminal finger of the HIV-nucleocapsid protein, NCp7. The ability to eject zinc further suggested the biological antiviral application of [SP-4-2]-[PtCl(nucleobase)(NH3)(L)]+. A preliminary survey against HIV and herpes viruses indeed showed encouraging results with some antiviral specificity, dependent on the exact nature of the compound. The initial results suggest consideration of [SP-4-2]-[PtCl(nucleobase)(NH3)(L)]+ as a novel antiviral chemotype.  相似文献   

19.
模拟阴天对南美白对虾养殖水体理化及其生长指标的影响   总被引:1,自引:0,他引:1  
为探索阴天对南美白对虾(Penaeus vannamei Boon)养殖水体理化及其生长指标的影响, 实验采用黑色遮荫网模拟阴天弱光环境对南美白对虾进行遮荫实验, 设置遮荫组与对照组各5个平行, 实验周期7周。遮荫组采用黑色遮荫网交替性遮荫, 即第1、第3、第5、第7周遮荫, 第2、第4、第6周曝光, 对照组正常养殖。结果显示: 遮荫组与对照组的pH、DO、Chl. a、 -N、NH3-N、 -N、 -N及 -P的浓度在遮荫处理下具有显著性差异(P<0.05), Chl. a、 -N及 -P的浓度具有明显的波动性, 表现为遮荫时Chl. a的浓度极显著降低(P<0.01), -N、 -P的浓度极显著升高(P<0.01); 曝光时遮荫组Chl. a的浓度较遮荫时升高, -N的浓度极显著降低(P<0.01), -P浓度的增长幅度降低, 此时遮荫组与对照组Chl. a、 -N及 -P的浓度无显著差异。 -N的浓度在实验前5周, 遮荫组高于对照组, 第6、7周对照组高于遮荫组。 -N浓度在整个实验周期中则是遮荫组高于对照组。南美白对虾生长指标结果显示: 两个组生长指标具有显著性差异。研究表明: 妨害南美白对虾生长的主要是NH3-N, 然后是 -N; 藻类可间接促进南美白对虾生长。遮荫处理抑制藻类吸收养殖水体中的有毒离子、恶化南美白对虾的生长环境并危害对虾的生存、生长。  相似文献   

20.
Acetylation of Saccharomyces cerevisiae histone H3 on K56 by the histone acetyltransferase (HAT) Rtt109 is important for repairing replication-associated lesions. Rtt109 purifies from yeast in complex with the histone chaperone Vps75, which stabilizes the HAT in vivo. A whole-genome screen to identify genes whose deletions have synthetic genetic interactions with rtt109Delta suggests Rtt109 has functions in addition to DNA repair. We show that in addition to its known H3-K56 acetylation activity, Rtt109 is also an H3-K9 HAT, and we show that Rtt109 and Gcn5 are the only H3-K9 HATs in vivo. Rtt109's H3-K9 acetylation activity in vitro is enhanced strongly by Vps75. Another histone chaperone, Asf1, and Vps75 are both required for acetylation of lysine 9 on H3 (H3-K9ac) in vivo by Rtt109, whereas H3-K56ac in vivo requires only Asf1. Asf1 also physically interacts with the nuclear Hat1/Hat2/Hif1 complex that acetylates H4-K5 and H4-K12. We suggest Asf1 is capable of assembling into chromatin H3-H4 dimers diacetylated on both H4-K5/12 and H3-K9/56.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号