首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Sources of hematopoietic cells for bone marrow transplantation are limited by the supply of compatible donors, the possibility of viral infection, and autologous (patient) marrow that is depleted from prior chemo- or radiotherapy or has cancerous involvement. Anex vivo system to amplify hematopoietic progenitor cells could increase the number of patients eligible for autologous transplant, allow use of cord blood hematopoietic cells to repopulate an adult, reduce the amount of bone marrow and/or mobilized peripheral blood stem and progenitor cells required for transplantation, and reduce the time to white cell and platelet engraftment. The cloning of hematopoietic growth factors and the identification of appropriate conditions has enabled the development of successfulex vivo hematopoietic cell cultures. Purification systems based on the CD34 marker (which is expressed by the most primitive hematopoietic cells) have proven an essential tool for research and clinical applications. Present methods for hematopoietic cultures (HC) on stromal (i.e. accessory cells that support hematopoiesis) layers in flasks lack a well-controlled growth environment. Several bioreactor configurations have been investigated, and a first generation of reactors and cultures has reached the clinical trial stage. Our research suggests that perfusion conditions improve substantially the performance of hematopoietic reactors. We have designed and tested a perfusion bioreactor system which is suitable for the culture of non-adherent cells (without stromal cells) and readily scaleable for clinical therapies. Eliminating the stromal layer eliminates the need for a stromal cell donor, reduces culture time, and simplifies the culture system. In addition, we have compared the expansion characteristics of both mononuclear and CD34+ cells, since the latter are frequently assumed to give a superior performance for likely transplantation therapies.Abbreviations BFU0-E burst forming unit-erythroid - BM bone marrow - CB cord blood - CFU-C colony forming unit-culture - CFU-E colony forming unit-erythroid - CFU-F colony forming unit-fibroblast - CFU-GEMM colony forming unit-granulocyte, erythroid, macrophage, megakaryocyte - CFU-GM colony forming unit-granulocyte, macrophage - CFU-Mix colony forming unit-mixed (also known as CFU-GEMM) - CML chronic myeloid leukemia - CSF colony stimulating factor - DMSO dimethyl sulfoxide - ECM extracellular matrix - EPO erythropoietin - FL fetal liver - HC hematopoietic culture - LTBMC long-term bone marrow culture - LTC-IC long-term culture initiating cell - LTHC long-term hematopoietic culture - MNC mononuclear cells - PB peripheral blood  相似文献   

2.
Transient abnormal myelopoiesis (TAM) in neonates with Down syndrome, which spontaneously resolves within several weeks or months after birth, may represent a very special form of leukemia arising in the fetal liver (FL). To explore the role of the fetal hematopoietic microenvironment in the pathogenesis of TAM, we examined the in vitro influences of stromal cells of human FL and fetal bone marrow (FBM) on the growth of TAM blasts. Both FL and FBM stromal cells expressed mesenchymal cell antigens (vimentin, α‐smooth muscle actin, CD146, and nestin), being consistent with perivascular cells/mesenchymal stem cells that support hematopoietic stem cells. In addition, a small fraction of the FL stromal cells expressed an epithelial marker, cytokeratin 8, indicating that they could be cells in epithelial‐mesenchymal transition (EMT). In the coculture system, stromal cells of the FL, but not FBM, potently supported the growth of TAM blast progenitors, mainly through humoral factors. High concentrations of hematopoietic growth factors were detected in culture supernatants of the FL stromal cells and a neutralizing antibody against granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) almost completely inhibited the growth‐supportive activity of the culture supernatants. These results indicate that FL stromal cells with unique characteristics of EMT cells provide a pivotal hematopoietic microenvironment for TAM blasts and that GM‐CSF produced by FL stromal cells may play an important role in the pathogenesis of TAM. J. Cell. Biochem. 115: 1176–1186, 2014. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.  相似文献   

3.
A competitive repopulation assay utilizing chromosome markers was used to assay the reconstituting potential of hematopoietic populations. The test populations consisted of tibial murine marrow locally irradiated with doses ranging from 1.5 Gy to 8.5 Gy and of marrow generated from either murine splenic or marrow stem cells. The purpose of this assay was to assess the innate proliferative potential and microenvironmental influences on the ability to repopulate. Regardless of origin, spleen repopulating ability consistently agreed with spleen colony-forming unit (CFU-s) content. Doses of radiation from 5 Gy to 8.5 Gy diminished, by a factor of 2, the ability to repopulate marrow despite maintenance of CFU-s levels. Marrow generated from splenic stem cells had one-fifth the repopulating ability of marrow derived from marrow stem cells, even though CFU-s levels were equivalent. The results imply that the splenic environment can only maintain stem cells at the level of the CFU-s, even if the stem cells were originally of higher quality, and that their original potential cannot be regained in a marrow environment. Nevertheless, the marrow can maintain more primitive stem cells, but this reserve is drained to support CFU-s levels.  相似文献   

4.
Using a chromosome marker within a syngeneic system, we investigated the seeding characteristics of murine hematopoietic stem cells after transplantation to irradiated hosts. The chromosome-marked test cells were allowed to compete with normal marrow cells in repopulating the spleen and marrow of irradiated mice. Although the seeding behavior of normal marrow could be predicted from the number of colony-forming units-spleen (CFU-s) transplanted, the marrow seeding of melphalan-treated marrow was 7-fold greater than expected. Repopulation of marrow by spleen cells was less effective than expected from the CFU-s content, while the reverse was true after repopulation by fetal liver cells. These differences were emphasized after treatment of cell donors with melphalan. The results were due primarily to differences in the lodging properties of the transplanted cells, those seeding in the marrow were less sensitive to melphalan than CFU-s. In some instances marrow-repopulating ability could be separated from peak CFU-s activity on a density gradient, suggesting a marrow-repopulating cell exists that is distinct from CFU-s.  相似文献   

5.
Presence of mast cell precursors in the yolk sac of mice   总被引:3,自引:0,他引:3  
Concentration of mast-cell precursors in hematopoietic tissues of mouse embryos was evaluated by a limiting dilution method. Cells from yolk sacs, livers, and bodies of (WB x C57BL/6)F1 (hereafter called WBB6F1)- +/+ embryos were injected directly into the skin of adult WBB6F1-W/Wv mice which were genetically depleted of tissue mast cells. Concentration of mast-cell precursors was calculated from the proportion of injection sites at which mast cells did not appear. Since the concentration of mast-cell precursors in the yolk sac was about 30 times as great as that of embryonic body at Day 9.5 of the pregnancy, the mast-cell precursors seemed to be generated within the yolk sac. The concentration in the yolk sac reached the maximum level at Day 11, and then dropped markedly at Day 13. In contrast, mast-cell precursors increased from Day 11 to Day 15 in the fetal liver. As a result, the concentration of 11-day yolk sacs was comparable to that of 15-day fetal liver. Although intravenous injection of 15-day fetal liver cells (2 x 10(6)) rescued the general mast-cell depletion of WBB6F1-W/Wv mice, the intravenous injection of the same number of 11-day yolk sac cells did not rescue it. In contrast with fetal livers, yolk sacs scarcely contained hematopoietic stem cells which were measured by spleen colony formation. Therefore, the mast-cell precursors of the yolk sac may not originate from such stem cells.  相似文献   

6.
目的和方法:高增殖潜能集落形成细胞(HPPCFC)是表达CD34+DRLin-的最早期造血祖细胞之一,它在体外的增殖分化能力可反映造血干细胞的某些特征。结果:本文研究了人正常骨髓CD34+造血细胞在体外扩增和形成HPPCFC的能力。利用CIMS100免疫磁性分离术首先获得>90%的CD34+造血细胞以富集HPPCFC。在含有Epo+GMCSF+IL3+IL6+SCF(简EGIIS)的无基质液培条件下,CD34+造血细胞在四周内可持续产生单个核细胞和HPPCFC,并使其总量最高可达1770倍和8倍,以第2和3周为最佳时期,但不同个体CD34+造血细胞的这种能力差别较大。结论:高度纯化的人骨髓CD34+造血细胞能够在含有最佳组合造血生长因子的无基质液培条件下持续扩增,为临床应用提供了重要依据。  相似文献   

7.
The authors studied the ability of the CFU-s, forming colonies on the 8 and 11 day after transplantation of cells from fetal liver (FL) of 14-18 day gestation and adult mouse bone marrow (BM), to repair the sublethal radiation damages (SRD), according to Elkind's model. The ability to repair the SRD of 11-day CFU-s (both EL- and BM-derived) was lower than the ability of 8-day CFU-s. Both subpopulations of CFU-s (as 8-, as 11-day) from FL have a reduced index of SRD reparation as compared with the corresponding meanings for BM.  相似文献   

8.
Hematopoietic stem cells interact with a complex microenvironment both in vivo and in vitro. In association with this microenvironment, murine stem cells are maintained in vitro for several months. Fibroblast-like stromal cells appear to be important components of the microenvironment, since several laboratories have demonstrated that cloned stromal cell lines support hematopoiesis in vitro. The importance of the tissue of origin of such cell lines remains unknown, since systematic generation of stromal cell lines from adult tissues has never been accomplished. In addition, the capacity of stromal cell lines to support reconstituting stem cell has not been examined. We have previously described an efficient and rapid method for the immortalization of primary bone marrow stromal cell lines (Williams et al., Mol. Cell. Biol. 8:3864-3871, 1988) which can be used to systematically derive cell lines from multiple tissues of the adult mouse. Here we report the immortalization of primary murine lung, kidney, skin, and bone marrow stromal cells using a recombinant retrovirus vector (U19-5) containing the simian virus large T antigen (SV40 LT) and the neophosphotransferase gene. The interaction of these stromal cells with factor-dependent cells Patterson-Mix (FDCP-Mix), colony forming units-spleen (CFU-S), and reconstituting hematopoietic stem cells was studied in order to analyze the ability of such lines to support multipotent stem cells in vitro. These studies revealed that stromal cell lines from these diverse tissues were morphologically and phenotypically similar and that they quantitatively bound CFU-S and FDCP-Mix cells equally well. However, only those cell lines derived from bone marrow-supported maintenance of day 12 CFU-S in vitro. One lung-derived stromal cell line, ULU-3, supported the survival of day 8 CFU-S, but not the more primitive CFU-S12. A bone marrow-derived stromal cell line, U2, supported the survival of long-term reconstituting stem cells for up to 3 weeks in vitro as assayed by reconstitution 1 year post-transplant. These studies suggest that adherence of HSC to stromal cells is necessary but not sufficient for maintenance of these stem cell populations and that bone marrow provides specific signals relating to hematopoietic stem cell survival and proliferation.  相似文献   

9.
Haemopoiesis in mammals takes place in yolk-sac and in mouse it can be detected on the 7th day of gestation. Erythropoietin (EPO) responsive cells can be detected from 7th day onwards. However, the cells committed to the myeloid lineage which can respond to the haemopoietic growth factor (viz. granulocyte macrophage colony stimulating factor; GM-CSF) can be demonstrated only on 10th day of gestation. At the same time, the 12-day spleen colony forming cells i.e. the late colony forming unit spleen (CFU-s) which are multipotent stem cells can also be detected. Data suggest that the stem cells seen in the embryo from 7-10 days of gestation may be a primitive population confined only to the yolk-sac. Liver haemopoiesis which begins in the liver of 13-day embryos is due to primitive haemopoietic pluripotent stem cells, arising de novo in the embryo and not in the yolk-sac, since no primitive pluripotent stem cells capable of repopulating lethally irradiated bone-marrow can be detected in the yolk-sac.  相似文献   

10.
We investigated a haemopoietic stromal defect, in mice heterozygous for the Slj allele, during haemopoietic stress induced by treatment with bacterial lipopolysaccharides (LPS) or lethal total body irradiation (TBI) and bone-marrow cell (BMC) reconstitution. Both treatments resulted in a comparable haemopoietic stem cell (CFU-s) proliferation in Slj/+ and +/+ haemopoietic organs. There was no difference in committed haemopoietic progenitor cell (BFU-e and CFU-G/M) kinetics after TBI and +/+ bone-marrow transplantation in Slj/+ and +/+ mice. The Slj/+ mice were deficient in their ability to support macroscopic spleen colony formation (65% of +/+ controls) as measured at 7 and 10 days after BMC transplantation. However, the Slj/+ spleen colonies contained the same number of BFU-E and CFU-G/M as colonies from +/+ spleens, while their CFU-s content was increased. On day 10 post-transplantation, the macroscopic 'missing' colonies could be detected at the microscopic level. These small colonies contained far fewer CFU-s than the macroscopic detectable colonies. Analysis of CFU-s proliferation-inducing activities in control and post-LPS sera revealed that Slj/+ mice are normal in their ability to produce and to respond to humoral stem-cell regulators. We postulate that Slj/+ mice have a normal number of splenic stromal 'niches' for colony formation. However, 35% of these niches is defective in its proliferative support.  相似文献   

11.
12.
Cloning and sequencing of a cDNA amplified by RNA fingerprinting at the implantation site of pregnant rats revealed 80% similarity with H beta 58, previously shown to be essential for formation of the chorioallantoic placenta in the mouse. H beta 58 mRNA was detected in the endometrium of hormonally sensitized rats stimulated to undergo decidualization and in the contralateral uterine horns lacking a decidual stimulus, indicating that uterine expression of H beta 58 mRNA did not require decidualization or the presence of a blastocyst. Immunodetection in the early postimplantation uterus (Days 6-8 of pregnancy) showed H beta 58 localized in the luminal and glandular epithelia and some stromal cells. Decidual cells at Day 6 of pregnancy expressed H beta 58, and by Day 9 of pregnancy, the protein localized throughout the maternal decidua. The temporal and spatial distribution of H beta 58 in the developing chorioallantoic placenta was assessed at Days 10, 12, and 14 of pregnancy. Immunoreactive H beta 58 localized to erythroid cells within the developing fetal vasculature of the chorioallantoic primordia at Day 10 of pregnancy. By Day 12, the fetal vasculature extended into the placental labyrinth, and the erythroid stem cells continued to strongly express H beta 58. At Day 14 of pregnancy, immunoreactivity became evident in the trophoblast giant cells and syncytiotrophoblast of the fetal placenta. As the chorioallantoic placenta matured (Day 18), H beta 58 mRNA was 3.6-fold higher in the labyrinth compared with the junctional region. Stable cell lines (HRP/LRP) isolated from the rat labyrinthine placenta expressed H beta 58 mRNA and protein. The expression pattern of H beta maternal and fetal placental tissues and its early expression in fetal erythroid stem cells during formation and maturation of the chorioallantoic placenta suggest that H beta 58 plays key roles in the regulatory networks that control hematopoietic development and placentation.  相似文献   

13.
The patterns of development of T cells from the very early stem cells that settle in the embryonic thymus have been studied. For this purpose, mouse embryonic thymuses (14 days) depleted of thymocytes were reconstituted with hemopoietic stem cells from fetal liver (FL) and yolk sac (YS) and T-cell development was followed in vitro in organ culture. It was found that cells derived from FL and YS of 10- to 14-day-old embryos were capable of reconstituting depleted thymic explants and exhibiting membrane markers in a pattern similar to that of thymocytes developing in intact thymic explants. Furthermore, these cells responded to concanavalin A in proliferative and cytotoxic assays as measured by limiting-dilution analysis. Thus, lymphohemopoietic stem cells emerging in the embryo prior to thymus lymphoid development are capable of differentiation in the thymus microenvironment into T cells, identified by phenotypic markers and functions that are characteristic of cells developing in the intact embryonic thymus.  相似文献   

14.
The authors studied the radiosensitivity of CFU-s, forming 7- and 11-day colonies from fetal liver (FL) of 14 and 17 day gestation and bone marrow (BM) of adult mice. The index of D0 for 7-day colonies, formed by CFU-s from 14-day, 17-day FL and BM was 2.02; 1.57 and 0.78 Gy, accordingly. 11-day CFU-s both from FL, and from BM did not distinguish statistically at their radiosensitivity (their D0 was 1.25 Gy).  相似文献   

15.
N Banu  B Deng  S D Lyman  H Avraham 《Cytokine》1999,11(9):679-688
The Flt-3 receptor is expressed in primitive haematopoietic cells and its ligand exerts proliferative effects on these cells in vitro in synergy with other cytokines. To increase our knowledge of the functional properties of the human Flt-3 ligand (FL) as relating to in vitro expansion of haematopoietic stem cells, the effects on murine haematopoiesis of FL alone or in combination with other growth factors were studied. Analysis of Flk-2/Flt-3 mRNA expression indicated that Flk-2/Flt-3 was preferentially expressed in primitive haematopoietic cell populations. To examine the expression of the Flk-2/Flt-3 receptor on megakaryocyte progenitors (CFU-Meg), Flk-2/Flt-3 positive and negative CD34(+)populations were separated from human bone marrow and cultured in a plasma clot culture system. CFU-Meg colonies were found in the Flk-2/Flt-3 negative fraction. Myeloid (CFU-GM) derived colonies appeared in the presence of FL alone. Neither FL+IL-3 nor FL+IL-3+IL-6 had any effect on the generation of megakaryocyte colonies (CFU-MK), due to the lack of FL receptor expression on megakaryocyte progenitors. Bone marrow cells remaining after 5-fluorouracil (5-FU) treatment of mice represent a very primitive population of progenitors enriched for reconstituting stem cells. This cell population expressed FL receptors, as revealed by RT-PCR analysis. Addition of FL alone did not enhance the replication of such cells in liquid cultures as compared to controls. However, a significantly greater generation of myeloid progenitors (CFU-GM) in clonogenic assays was observed in the presence of FL+IL-3, FL+GM-CSF or FL+CSF-1. In addition, the effects of FL on in vitro expansion of murine haematopoietic stem cells were studied using lineage-negative (lin(-)) Sca-1 positive (Sca-1(+)) c-kit positive (c-kit(+)) marrow cells from 5-FU treated mice. FL enhanced the survival of primitive murine lin(-)Sca-1(+)c-kit(+)cells. FL and IL-6 were able to significantly expand murine progenitor stem cells in vitro and promote their survival. These studies strongly suggest that FL significantly and selectively enhanced the generation of myeloid progenitors in vitro and increased myeloid progenitor responsiveness to later acting growth factors. In addition, FL synergized with IL-6 to support in vitro expansion of haematopoietic progenitors and promoted the survival of lin(-)Sca-1(+)c-kit(+)cells.  相似文献   

16.
本实验对基质细胞造血刺激因子-1(SHF-1)的体外生物活性进行了研究。结果表明,SHF-1可刺激小鼠骨髓CFU-E、BFU-E、CFU-GM、CFU-Mix集落的形成,它产生的这些广泛造血刺激作用是其自身所具活性的直接影响。正常小鼠骨髓细胞与SHF-1在体外孵育4h,其中CFU-S的自杀率可提高约10%,显示它对造血干细胞也有诱导增殖作用。  相似文献   

17.
We investigated a haemopoietic stromal defect, in mice heterozygous for the Slj allele, during haemopoietic stress induced by treatment with bacterial lipopolysaccharides (LPS) or lethal total body irradiation (TBI) and bone-marrow cell (BMC) reconstitution. Both treatments resulted in a comparable haemopoietic stem cell (CFU-s) proliferation in Slj/+ and +/+ haemopoietic organs. There was no difference in committed haemopoietic progenitor cell (BFU-e and CFU-G/M) kinetics after TBI and +/+ bone-marrow transplantation in Slj/+ and +/+ mice. the Slj/+ mice were deficient in their ability to support macroscopic spleen colony formation (65% of +/+ controls) as measured at 7 and 10 days after BMC transplantation. However, the Slj/+ spleen colonies contained the same number of BFU-E and CFU-G/M as colonies from +/+ spleens, while their CFU-s content was increased. On day 10 post-transplantation, the macroscopic ‘missing’ colonies could be detected at the microscopic level. These small colonies contained far fewer CFU-s than the macroscopic detectable colonies. Analysis of CFU-s proliferation-inducing activities in control and post-LPS sera revealed that Slj/+ mice are normal in their ability to produce and to respond to humoral stem-cell regulators. We postulate that Slj/+ mice have a normal number of splenic stromal ‘niches’ for colony formation. However, 35% of these niches is defective in its proliferative support.  相似文献   

18.
19.
This investigation was undertaken to determine whether primitive stem cells and/or fully differentiated macrophages were the source of in vitro colonies derived from hematopoietic tissues. The chicken colony-forming cell (CFC) present in uncultured yolk sac was a nonadherent, presumably undifferentiated cell. The efficiency of colony formation in this case was approximately 0.08%. In contrast to uncultured yolk sac, the CFC present in one-week old yolk sac cultures was evidently a macrophage. Yolk sac cultures, which consisted of greater than 99% macrophages, produced colonies with an efficiency of 1-5% while cultures derived from peritoneal macrophages produced colonies with an efficiency of 10%. Silica selectively destroyed macrophages and reduced the colony forming efficiency of cells derived from yolk sac cultures.  相似文献   

20.
The influence of histamine at various concentrations on the cell cycle state of hematopoietic stem cells (CFU-s) was investigated. CFU-s were triggered from the G0 state into the S phase of the cell cycle by in vitro treatment of mouse bone marrow cells with high concentrations of histamine. This effect could be antagonized by a histamine H2 receptor blocking agent. When bone marrow cells were treated with a histamine H1 receptor antagonist prior to histamine treatment, low concentrations of histamine also triggered the entrance of CFU-s into the DNA synthetic phase. Our findings further suggest the existence of histamine H1 and H2 receptors on the surface of CFU-s cells and the antagonistic effect of these two histamine receptor subtypes on the cell cycle state of CFU-s. Our results also suggest that histamine may participate in regulating the proliferation of hematopoietic stem cells in vivo during immune or inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号