首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
Coiled coils are formed by two or more alpha-helices that align in a parallel or an antiparallel relative orientation. Polar interactions involving residues at the interior a and d positions are important for determining the quaternary structure of coiled coils. In the model heterodimeric coiled-coil Acid-a1-Base-a1, a buried a-d' Asn-Asn interaction is sufficient to specify both a dimeric structure and an antiparallel relative helix orientation. Although the equivalent a-a' interaction is found in parallel coiled coils, there is no example of an a-d' Asn-Asn interaction in structurally characterized, naturally occurring antiparallel coiled coils. Instead, interior charged residues form interhelical salt-bridges with residues at the adjacent e or g positions. Using a model coiled-coil heterodimer, we have explored the role of a potential interhelical interaction between an Arg at an interior d position and a Glu at the adjacent g' position. Our results demonstrate that this potentially attractive interhelical Coulombic interaction has little or no influence on helix orientation. Instead, we show that burying a single Arg residue at an interior position is sufficient to specify a dimeric state at a significantly lower thermodynamic cost than burial of two interacting Asn residues.  相似文献   

2.
Campbell KM  Lumb KJ 《Biochemistry》2002,41(22):7169-7175
The coiled coil is an attractive target for protein design. The helices of coiled coils are characterized by a heptad repeat of residues denoted a to g. Residues at positions a and d form the interhelical interface and are usually hydrophobic. An established strategy to confer structural uniqueness to two-stranded coiled coils is the use of buried polar Asn residues at position a, which imparts dimerization and conformational specificity at the expense of stability. Here we show that polar interactions involving buried position-a Lys residues that can interact favorably only with surface e' or g' Glu residues also impart structural uniqueness to a designed heterodimeric coiled coil with the nativelike properties of sigmoidal thermal and urea-induced unfolding transitions, slow hydrogen exchange and lack of ANS binding. The position-a Lys residues do not, however, confer a single preference for helix orientation, likely reflecting the ability of Lys at position a to from favorable interactions with g' or e' Glu residues in the parallel and antiparallel orientations, respectively. The Lys-Glu polar interaction is less destabilizing than the Asn-Asn a-->a' interaction, presumably reflecting a higher desolvation penalty associated with the completely buried polar position-a groups. Our results extend the range of approaches for two-stranded coiled-coil design and illustrate the role of complementing polar groups associated with buried and surface positions of proteins in protein folding and design.  相似文献   

3.
Apgar JR  Gutwin KN  Keating AE 《Proteins》2008,72(3):1048-1065
The alpha-helical coiled coil is a structurally simple protein oligomerization or interaction motif consisting of two or more alpha helices twisted into a supercoiled bundle. Coiled coils can differ in their stoichiometry, helix orientation, and axial alignment. Because of the near degeneracy of many of these variants, coiled coils pose a challenge to fold recognition methods for structure prediction. Whereas distinctions between some protein folds can be discriminated on the basis of hydrophobic/polar patterning or secondary structure propensities, the sequence differences that encode important details of coiled-coil structure can be subtle. This is emblematic of a larger problem in the field of protein structure and interaction prediction: that of establishing specificity between closely similar structures. We tested the behavior of different computational models on the problem of recognizing the correct orientation--parallel vs. antiparallel--of pairs of alpha helices that can form a dimeric coiled coil. For each of 131 examples of known structure, we constructed a large number of both parallel and antiparallel structural models and used these to assess the ability of five energy functions to recognize the correct fold. We also developed and tested three sequence-based approaches that make use of varying degrees of implicit structural information. The best structural methods performed similarly to the best sequence methods, correctly categorizing approximately 81% of dimers. Steric compatibility with the fold was important for some coiled coils we investigated. For many examples, the correct orientation was determined by smaller energy differences between parallel and antiparallel structures distributed over many residues and energy components. Prediction methods that used structure but incorporated varying approximations and assumptions showed quite different behaviors when used to investigate energetic contributions to orientation preference. Sequence based methods were sensitive to the choice of residue-pair interactions scored.  相似文献   

4.
Mottamal M  Zhang J  Lazaridis T 《Proteins》2006,62(4):996-1009
Using an implicit membrane model (IMM1), we examine whether the structure of the transmembrane domain of Glycophorin A (GpA) could be predicted based on energetic considerations alone. The energetics of native GpA shows that van der Waals interactions make the largest contribution to stability. Although specific electrostatic interactions are stabilizing, the overall electrostatic contribution is close to zero. The GXXXG motif contributes significantly to stability, but residues outside this motif contribute almost twice as much. To generate non-native states a global conformational search was done on two segments of GpA: an 18-residue peptide (GpA74-91) that is embedded in the membrane and a 29-residue peptide (GpA70-98) that has additional polar residues flanking the transmembrane region. Simulated annealing was done on a large number of conformations generated from parallel, antiparallel, left- and right-handed starting structures by rotating each helix at 20 degrees intervals around its helical axis. Several crossing points along the helix dimer were considered. For 18-residue parallel topology, an ensemble of native-like structures was found at the lowest effective energy region; the effective energy is lowest for a right-handed structure with an RMSD of 1.0 A from the solid-state NMR structure with correct orientation of the helices. For the 29-residue peptide, the effective energies of several left-handed structures were lower than that of the native, right-handed structure. This could be due to deficiencies in modeling the interactions between charged sidechains and/or omission of the sidechain entropy contribution to the free energy. For 18-residue antiparallel topology, both IMM1 and a Generalized Born model give effective energies that are lower than that of the native structure. In contrast, the Poisson-Boltzmann solvation model gives lower effective energy for the parallel topology, largely because the electrostatic solvation energy is more favorable for the parallel structure. IMM1 seems to underestimate the solvation free energy advantage when the CO and NH dipoles just outside the membrane are parallel. This highlights the importance of electrostatic interactions even when these are not obvious by looking at the structures.  相似文献   

5.
Helix-helix interactions in lipid bilayers.   总被引:1,自引:1,他引:0  
Using a continuum model, we calculated the electrostatic interaction free energy between two alpha-helices in three environments: the aqueous phase, a low dielectric alkane phase, and a simple representation of a lipid bilayer. As was found in previous work, helix-helix interactions in the aqueous phase are quite weak, because of solvent screening, and slightly repulsive, because of desolvation effects that accompany helix assembly. In contrast, the interactions can be quite strong in a hypothetical alkane phase because desolvation effects are essentially nonexistent and because helix-helix interactions are not well screened. In this type of environment, the antiparallel helix orientation is strongly favored over the parallel orientation. In previous work we found that the free energy penalty associated with burying helix termini in a bilayer is quite high, which is why the termini tend to protrude into the solvent. Under these conditions the electrostatic interaction is strongly screened by solvent; indeed, it is sufficient for the termini to protrude a few angstroms from the two surfaces of the bilayer for their interaction to diminish almost completely. The effect is consistent with the classical model of the helix dipole in which the dipole moment is represented by point charges located at either terminus. Our results suggest, in agreement with previous models, that there is no significant nonspecific driving force for helix aggregation and, hence, that membrane protein folding must be driven by specific interactions such as close packing and salt-bridge and hydrogen bond formation.  相似文献   

6.
Helix-helix interactions are important for the folding, stability, and function of membrane proteins. Here, two independent and complementary methods are used to investigate the nature and distribution of amino acids that mediate helix-helix interactions in membrane and soluble alpha-bundle proteins. The first method characterizes the packing density of individual amino acids in helical proteins based on the van der Waals surface area occluded by surrounding atoms. We have recently used this method to show that transmembrane helices pack more tightly, on average, than helices in soluble proteins. These studies are extended here to characterize the packing of interfacial and noninterfacial amino acids and the packing of amino acids in the interfaces of helices that have either right- or left-handed crossing angles, and either parallel or antiparallel orientations. We show that the most abundant tightly packed interfacial residues in membrane proteins are Gly, Ala, and Ser, and that helices with left-handed crossing angles are more tightly packed on average than helices with right-handed crossing angles. The second method used to characterize helix-helix interactions involves the use of helix contact plots. We find that helices in membrane proteins exhibit a broader distribution of interhelical contacts than helices in soluble proteins. Both helical membrane and soluble proteins make use of a general motif for helix interactions that relies mainly on four residues (Leu, Ala, Ile, Val) to mediate helix interactions in a fashion characteristic of left-handed helical coiled coils. However, a second motif for mediating helix interactions is revealed by the high occurrence and high average packing values of small and polar residues (Ala, Gly, Ser, Thr) in the helix interfaces of membrane proteins. Finally, we show that there is a strong linear correlation between the occurrence of residues in helix-helix interfaces and their packing values, and discuss these results with respect to membrane protein structure prediction and membrane protein stability.  相似文献   

7.
Recent structural studies have highlighted the importance of antiparallel coiled coils in nature. In addition, well-behaved, model antiparallel coiled coils have been designed and used for the reassembly of protein fragments and for the study of the energetic contributions of various interactions to helix orientation specificity. Finally, high-resolution structural data are available for designed helical bundles, allowing an evaluation of the success of state-of-the-art protein design efforts.  相似文献   

8.
Orientation, dynamics, and packing of transmembrane helical peptides are important determinants of membrane protein structure, dynamics, and function. Because it is difficult to investigate these aspects by studying real membrane proteins, model transmembrane helical peptides are widely used. NMR experiments provide information on both orientation and dynamics of peptides, but they require that motional models be interpreted. Different motional models yield different interpretations of quadrupolar splittings (QS) in terms of helix orientation and dynamics. Here, we use coarse-grained (CG) molecular dynamics (MD) simulations to investigate the behavior of a well-known model transmembrane peptide, WALP23, under different hydrophobic matching/mismatching conditions. We compare experimental 2H-NMR QS (directly measured in experiments), as well as helix tilt angle and azimuthal rotation (not directly measured), with CG MD simulation results. For QS, the agreement is significantly better than previously obtained with atomistic simulations, indicating that equilibrium sampling is more important than atomistic details for reproducing experimental QS. Calculations of helix orientation confirm that the interpretation of QS depends on the motional model used. Our simulations suggest that WALP23 can form dimers, which are more stable in an antiparallel arrangement. The origin of the preference for the antiparallel orientation lies not only in electrostatic interactions but also in better surface complementarity. In most cases, a mixture of monomers and antiparallel dimers provides better agreement with NMR data compared to the monomer and the parallel dimer. CG MD simulations allow predictions of helix orientation and dynamics and interpretation of QS data without requiring any assumption about the motional model.  相似文献   

9.
Higher-order interactions are important for protein folding and assembly. We introduce the concept of interhelical three-body interactions as derived from Delaunay triangulation and alpha shapes of protein structures. In addition to glycophorin A, where triplets are strongly correlated with protein stability, we found that tight interhelical triplet interactions exist extensively in other membrane proteins, where many types of triplets occur far more frequently than in soluble proteins. We developed a probabilistic model for estimating the value of membrane helical interaction triplet (MHIT) propensity. Because the number of known structures of membrane proteins is limited, we developed a bootstrap method for determining the 95% confidence intervals of estimated MHIT values. We identified triplets that have high propensity for interhelical interactions and are unique to membrane proteins, e.g. AGF, AGG, GLL, GFF and others. A significant fraction (32%) of triplet types contains triplets that may be involved in interhelical hydrogen bond interactions, suggesting the prevalent and important roles of H-bond in the assembly of TM helices. There are several well-defined spatial conformations for triplet interactions on helices with similar parallel or antiparallel orientations and with similar right-handed or left-handed crossing angles. Often, they contain small residues and correspond to the regions of the closest contact between helices. Sequence motifs such as GG4 and AG4 can be part of the three-body interactions that have similar conformations, which in turn can be part of a higher-order cooperative four residue spatial motif observed in helical pairs from different proteins. In many cases, spatial motifs such as serine zipper and polar clamp are part of triplet interactions. On the basis of the analysis of the archaeal rhodopsin family of proteins, tightly packed triplet interactions can be achieved with several different choices of amino acid residues.  相似文献   

10.
Conformational energy computations have been carried out to determine the favorable ways of packing a right-handed alpha-helix on a right-twisted antiparallel or parallel beta-sheet. Co-ordinate transformations have been developed to relate the position and orientation of the alpha-helix to the beta-sheet. The packing was investigated for a CH3CO-(L-Ala)16-NHCH3 alpha-helix interacting with five-stranded beta-sheets composed of CH3CO-(L-Val)6-NHCH3 chains. All internal and external variables for both the alpha-helix and the beta-sheet were allowed to change during energy minimization. Four distinct classes of low-energy packing arrangements were found for the alpha-helix interacting with both the parallel and the anti-parallel beta-sheet. The classes differ in the orientation of the axis of the alpha-helix relative to the direction of the strands of the right-twisted beta-sheet. In the class with the most favorable arrangement, the alpha-helix is oriented along the strands of the beta-sheet, as a result of attractive non-bonded side-chain-side-chain interactions along the entire length of the alpha-helix. A class with nearly perpendicular orientation of the helix axis to the strands is also of low energy, because it allows similarly extensive attractive interactions. In the other two classes, the helix is oriented diagonally relative to the strands of the beta-sheet. In one of them, it interacts with the convex surface near the middle of the saddle-shaped twisted beta-sheet. In the other, it is oriented along the concave diagonal of the beta-sheet and, therefore, it interacts only with the corner regions of the sheet, so that this packing is energetically less favorable. The packing arrangements involving an antiparallel and a parallel beta-sheet are generally similar, although the antiparallel beta-sheet has been found to be more flexible. The major features of 163 observed alpha/beta packing arrangements in 37 proteins are accounted for in terms of the computed structural preferences. The energetically most favored packing arrangement is similar to the right-handed beta alpha beta crossover structure that is observed in proteins; thus, the preference for this connectivity arises in large measure from this energetically favorable interaction.  相似文献   

11.
12.
Helical membrane proteins are more tightly packed and the packing interactions are more diverse than those found in helical soluble proteins. Based on a linear correlation between amino acid packing values and interhelical propensity, we propose the concept of a helix packing moment to predict the orientation of helices in helical membrane proteins and membrane protein complexes. We show that the helix packing moment correlates with the helix interfaces of helix dimers of single pass membrane proteins of known structure. Helix packing moments are also shown to help identify the packing interfaces in membrane proteins with multiple transmembrane helices, where a single helix can have multiple contact surfaces. Analyses are described on class A G protein-coupled receptors (GPCRs) with seven transmembrane helices. We show that the helix packing moments are conserved across the class A family of GPCRs and correspond to key structural contacts in rhodopsin. These contacts are distinct from the highly conserved signature motifs of GPCRs and have not previously been recognized. The specific amino acid types involved in these contacts, however, are not necessarily conserved between subfamilies of GPCRs, indicating that the same protein architecture can be supported by a diverse set of interactions. In GPCRs, as well as membrane channels and transporters, amino acid residues with small side-chains (Gly, Ala, Ser, Cys) allow tight helix packing by mediating strong van der Waals interactions between helices. Closely packed helices, in turn, facilitate interhelical hydrogen bonding of both weakly polar (Ser, Thr, Cys) and strongly polar (Asn, Gln, Glu, Asp, His, Arg, Lys) amino acid residues. We propose the use of the helix packing moment as a complementary tool to the helical hydrophobic moment in the analysis of transmembrane sequences.  相似文献   

13.
The APC (adenomatous polyposis coli) tumor suppressor protein has many different intracellular functions including a nuclear export activity. Only little is known about the molecular architecture of the 2843-amino acid APC protein. Guided by secondary structure predictions we identified a fragment close to the N-terminal end, termed APC-(129-250), as a soluble and protease-resistant domain. We solved the crystal structure of APC-(129-250), which is monomeric and consists of three alpha-helices forming two separate antiparallel coiled coils. APC-(129-250) includes the nuclear export signal NES-(165-174) at the C-terminal end of the first helix. Surprisingly, the conserved hydrophobic amino acids of NES-(165-174) are buried in one of the coiled coils and are thus not accessible for interaction with other proteins. We demonstrate the direct interaction of APC-(129-250) with the nuclear export factor chromosome maintenance region 1 (Crm-1). This interaction is enhanced by the small GTPase Ran in its activated GTP-bound form and also by a double mutation in APC-(129-250), which deletes two amino acids forming two of the major interhelical interactions within the coiled coil. These observations hint to a regulatory mechanism of the APC nuclear export activity by NES masking.  相似文献   

14.
Bcl-XL binds to Bax, inhibiting Bax oligomerization required for mitochondrial outer membrane permeabilization (MOMP) during apoptosis. How Bcl-XL binds to Bax in the membrane is not known. Here, we investigated the structural organization of Bcl-XL·Bax complexes formed in the MOM, including the binding interface and membrane topology, using site-specific cross-linking, compartment-specific labeling, and computational modeling. We found that one heterodimer interface is formed by a specific interaction between the Bcl-2 homology 1–3 (BH1–3) groove of Bcl-XL and the BH3 helix of Bax, as defined previously by the crystal structure of a truncated Bcl-XL protein and a Bax BH3 peptide (Protein Data Bank entry 3PL7). We also discovered a novel interface in the heterodimer formed by equivalent interactions between the helix 1 regions of Bcl-XL and Bax when their helical axes are oriented either in parallel or antiparallel. The two interfaces are located on the cytosolic side of the MOM, whereas helix 9 of Bcl-XL is embedded in the membrane together with helices 5, 6, and 9 of Bax. Formation of the helix 1·helix 1 interface partially depends on the formation of the groove·BH3 interface because point mutations in the latter interface and the addition of ABT-737, a groove-binding BH3 mimetic, blocked the formation of both interfaces. The mutations and ABT-737 also prevented Bcl-XL from inhibiting Bax oligomerization and subsequent MOMP, suggesting that the structural organization in which interactions at both interfaces contribute to the overall stability and functionality of the complex represents antiapoptotic Bcl-XL·Bax complexes in the MOM.  相似文献   

15.
We have investigated the role of cation–π interactions on translation elongation factors. In our investigation, an average of four significant cation–π interactions were found, that is, an average of one cation–π interaction per 44 residues in the ten elongation factors were observed. The analysis on the influence of short (<±4), medium (>±4 to <±20) and long (>20) range contacts showed that cation–π interactions are mainly formed by medium and long-range contacts. Arg-Tyr pair was found largest in number but energetic contribution of Arg-Trp pair was found most. Preferred secondary structural conformation analysis of the residues involved in cation–π interaction indicates that the cationic Arg prefers to be in helix and Lys having equal probability for helix and strand, whereas the aromatic Phe and Trp were found mostly in helix while Tyr in strand regions. The cation–π interaction residues involved in these proteins were found highly conserved with 48.86% residues having conservation score of ≥6. Analysis of secondary structure preference of the energetically significant cation–π residues in different solvent accessible range indicates that most of the π residues are found buried or partially buried whereas cationic residues were found mostly at the protein surface. The results presented in this study will be useful for structural stability studies in translation elongation factors.  相似文献   

16.
A series of designed short helical peptides was used to study the effect of nonpolar interactions on conformational specificity. The consensus sequence was designed to obtain short helices (17 residues) and to minimize the presence of interhelical polar interactions. Furthermore, the sequence contained a heptad repeat (abcdefg), where positions a and d were occupied by hydrophobic residues Leu, Ile, or Val, and positions e and g were occupied by Ala. The peptides were named according to the identities of the residues in the adeg positions, respectively. The peptides llaa, liaa, ilaa, iiaa, ivaa, viaa, lvaa, vlaa, and vvaa were synthesized, and their characterization revealed marked differences in specificity. An experimental methodology was developed to study the nine peptides and their pairwise mixtures. These peptides and their mixtures formed a vast array of structural states, which may be classified as follows: helical tetramers and pentamers, soluble and insoluble helical aggregates, insoluble unstructured aggregates, and soluble unstructured monomers. The peptide liaa formed stable helical pentamers, and iiaa and vlaa formed stable helical tetramers. Disulfide cross-linking experiments indicated the presence of an antiparallel helix alignment in the helical pentamers and tetramers. Rates of amide proton exchange of the tetrameric form of vlaa were 10-fold slower than the calculated exchange rate for unfolded vlaa. In other work, the control of specificity has been attributed to polar interactions, especially buried polar interactions; this work demonstrated that subtle changes in the configuration of nonpolar interactions resulted in a large variation in the extent of conformational specificity of assemblies of designed short helical peptides. Thus, nonpolar interactions can have a significant effect on the conformational specificity of oligomeric short helices.  相似文献   

17.
ATG14 binding to BECN/Beclin homologs is essential for autophagy, a critical catabolic homeostasis pathway. Here, we show that the α‐helical, coiled‐coil domain (CCD) of BECN2, a recently identified mammalian BECN1 paralog, forms an antiparallel, curved homodimer with seven pairs of nonideal packing interactions, while the BECN2 CCD and ATG14 CCD form a parallel, curved heterodimer stabilized by multiple, conserved polar interactions. Compared to BECN1, the BECN2 CCD forms a weaker homodimer, but binds more tightly to the ATG14 CCD. Mutation of nonideal BECN2 interface residues to more ideal pairs improves homodimer self‐association and thermal stability. Unlike BECN1, all BECN2 CCD mutants bind ATG14, although more weakly than wild type. Thus, polar BECN2 CCD interface residues result in a metastable homodimer, facilitating dissociation, but enable better interactions with polar ATG14 residues stabilizing the BECN2:ATG14 heterodimer. These structure‐based mechanistic differences in BECN1 and BECN2 homodimerization and heterodimerization likely dictate competitive ATG14 recruitment.  相似文献   

18.
Liu J  Zheng Q  Deng Y  Li Q  Kallenbach NR  Lu M 《Biochemistry》2007,46(51):14951-14959
Predictive understanding of how the folded, functional shape of a native protein is encoded in the linear sequence of its amino acid residues remains an unsolved challenge in modern structural biology. Antiparallel four-stranded coiled coils are relatively simple protein structures that embody a heptad sequence repeat and rich diversity for tertiary packing of alpha-helices. To explore specific sequence determinants of the lac repressor coiled-coil tetramerization domain, we have engineered a set of buried nonpolar side chains at the a-, d-, and e-positions into the hydrophobic interior of the dimeric GCN4 leucine zipper. Circular dichroism and equilibrium ultracentrifugation studies show that this core variant (GCN4-pAeLV) forms a stable tetrameric structure with a reversible and highly cooperative thermal unfolding transition. The X-ray crystal structure at 1.9 A reveals that GCN4-pAeLV is an antiparallel four-stranded coiled coil of the lac repressor type in which the a, d, and e side chains associate by means of combined knobs-against-knobs and knobs-into-holes packing with a characteristic interhelical offset of 0.25 heptad. Comparison of the side chain shape and packing in the antiparallel tetramers shows that the burial of alanine residues at the e positions between the neighboring helices of GCN4-pAeLV dictates both the antiparallel orientation and helix offset. This study fills in a gap in our knowledge of the determinants of structural specificity in antiparallel coiled coils and improves our understanding of how specific side chain packing forms the teritiary structure of a functional protein.  相似文献   

19.
A variety of features are thought to contribute to the oligomeric and topological specificity of coiled coils. In previous work, we examined the determinants of oligomeric state. Here, we examine the energetic basis for the tendency of six coiled-coil peptides to align their α-helices in antiparallel orientation using molecular dynamics simulations with implicit solvation (EEF1.1). We also examine the effect of mutations known to disrupt the topology of these peptides. In agreement with experiment, ARG or LYS at a or d positions were found to stabilize the antiparallel configuration. The modeling suggests that this is not due to a-a' or d-d' repulsions but due to interactions with e' and g' residues. TRP at core positions also favors the antiparallel configuration. Residues that disfavor parallel dimers, such as ILE at d, are better tolerated in, and thus favor the antiparallel configuration. Salt bridge networks were found to be more stabilizing in the antiparallel configuration for geometric reasons: antiparallel helices point amino acid side chains in opposite directions. However, the structure with the largest number of salt bridges was not always the most stable, due to desolvation and configurational entropy contributions. In tetramers, the extent of stabilization of the antiparallel topology by core residues is influenced by the e' residue on a neighboring helix. Residues at b and c positions in some cases also contribute to stabilization of antiparallel tetramers. This work provides useful rules toward the goal of designing coiled coils with a well-defined and predictable three-dimensional structure.  相似文献   

20.
Recent studies with model peptides and statistical analyses of the crystal structures of membrane proteins have shown that buried polar interactions contribute significantly to the stabilization of the three-dimensional structures of membrane proteins. Here, we probe how the location of these polar groups along the transmembrane helices affect their free energies of interaction. Asn residues were placed singly and in pairs at three positions within a model transmembrane helix, which had previously been shown to support the formation of trimers in micelles. The model helix was designed to form a transmembrane coiled coil, with Val side chains at the "a" positions of the heptad repeat. Variants of this peptide were prepared in which an Asn residue was introduced at one or more of the "a" positions, and their free energies of association were determined by analytical ultracentrifugation. When placed near the middle of the transmembrane helix, the formation of trimers was stabilized by at least -2.0 kcal/mol per Asn side chain. When the Asn was placed at the interface between the hydrophobic and polar regions of the peptide, the substitution was neither stabilizing nor destabilizing (0.0 +/- 0.5 kcal/mol of monomer). Finally, it has previously been shown that a Val-for-Asn mutation in a water-soluble coiled coil destabilizes the structure by approximately 1.5 kcal/mol of monomer [Acharya, A., et al. (2002) Biochemistry 41, 14122-14131]. Thus, the headgroup region of a micelle appears to have a conformational impact intermediate between that of bulk water and the apolar region of micelle. A similarly large dependence on the location of the polar residues was found in a statistical survey of helical transmembrane proteins. The tendency of different types of residues to be buried in the interiors versus being exposed to lipids was analyzed. Asn and Gln show a very strong tendency to be buried when they are located near the middle of a transmembrane helix. However, when placed near the ends of transmembrane helices, they show little preference for the surface versus the interior of the protein. These data show that Asn side chains within the apolar region of the transmembrane helix provide a significantly larger driving force for association than Asn residues near the apolar/polar interface. Thus, although polar interactions are able to strongly stabilize the folding of membrane proteins, the energetics of association depend on their location within the hydrophobic region of a transmembrane helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号