首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Regulated fusion of mammalian lysosomes is critical to their ability to acquire both internalized and biosynthetic materials. Here, we report the identification of a novel human protein, hVam6p, that promotes lysosome clustering and fusion in vivo. Although hVam6p exhibits homology to the Saccharomyces cerevisiae vacuolar protein sorting gene product Vam6p/Vps39p, the presence of a citron homology (CNH) domain at the NH(2) terminus is unique to the human protein. Overexpression of hVam6p results in massive clustering and fusion of lysosomes and late endosomes into large (2-3 microm) juxtanuclear structures. This effect is reminiscent of that caused by expression of a constitutively activated Rab7. However, hVam6p exerts its effect even in the presence of a dominant-negative Rab7, suggesting that it functions either downstream of, or in parallel to, Rab7. Data from gradient fractionation, two-hybrid, and coimmunoprecipitation analyses suggest that hVam6p is a homooligomer, and that its self-assembly is mediated by a clathrin heavy chain repeat domain in the middle of the protein. Both the CNH and clathrin heavy chain repeat domains are required for induction of lysosome clustering and fusion. This study implicates hVam6p as a mammalian tethering/docking factor characterized with intrinsic ability to promote lysosome fusion in vivo.  相似文献   

2.
We previously identified BET3 by its genetic interactions with BET1, a gene whose SNARE-like product acts in endoplasmic reticulum (ER)-to-Golgi transport. To gain insight into the function of Bet3p, we added three c-myc tags to its C-terminus and immunopurified this protein from a clarified detergent extract. Here we report that Bet3p is a member of a large complex ( approximately 800 kDa) that we call TRAPP (transport protein particle). We propose that TRAPP plays a key role in the targeting and/or fusion of ER-to-Golgi transport vesicles with their acceptor compartment. The localization of Bet3p to the cis-Golgi complex, as well as biochemical studies showing that Bet3p functions on this compartment, support this hypothesis. TRAPP contains at least nine other constituents, five of which have been identified and shown to be highly conserved novel proteins.  相似文献   

3.
4.
alpha 1,3 mannosyltransferase (Mnn1p) is a type II integral membrane protein that is localized to the yeast Golgi complex. We have examined the signals within Mnn1p that mediate Golgi localization by expression of fusion proteins comprised of Mnn1p and the secreted protein invertase. The N-terminal transmembrane domain (TMD) of Mnn1p is sufficient to localize invertase to the Golgi complex by a mechanism that is not saturable by approximately 15-20 fold overexpression. Furthermore, the TMD-mediated localization mechanism is clathrin dependent, as an invertase fusion protein bearing only the Mnn1p TMD is mislocalized to the plasma membrane of a clathrin heavy chain mutant. The Mnn1-invertase fusion proteins are not retained in the Golgi complex as efficiently as Mnn1p, suggesting that other signals may be present in the wild-type protein. Indeed, the Mnn1p lumenal domain (Mnn1-s) is also localized to the Golgi complex when expressed as a functional, soluble protein by exchanging its TMD for a cleavable signal sequence. In contrast to the Mnn1-invertase fusion proteins, overexpression of Mnn1-s saturates its retention mechanism, and results in the partial secretion of this protein. These data indicate that Mnn1p has separable Golgi localization signals within both its transmembrane and lumenal domains.  相似文献   

5.
6.
Mutations in the trafficking protein particle complex C2 protein (TRAPPC2), a mammalian ortholog of yeast Trs20p and a component of the trafficking protein particle (TRAPP) vesicle tethering complex, have been linked to the skeletal disorder spondyloepiphyseal dysplasia tarda (SEDT). Intriguingly, the X-linked TRAPPC2 is just one of a complement of Trs20-related genes in humans. Here we characterize TRAPPC2L, a novel, highly conserved TRAPP-interacting protein related to TRAPPC2 and the uncharacterized yeast open reading frame YEL048c . TRAPPC2L and TRAPPC2 genes are found in pairs across species and show broad and overlapping expression, suggesting they are functionally distinct, a notion supported by yeast complementation studies and biochemical characterization. RNA interference-mediated knockdown of either TRAPPC2L or TRAPPC2 in HeLa cells leads to fragmentation of the Golgi, implicating both proteins in Golgi dynamics. Gradient fractionation of cellular membranes indicates that TRAPPC2L is found with a portion of cellular TRAPP on very low-density membranes whereas the remainder of TRAPP, but not TRAPPC2L, is found associated with Golgi markers. YEL048c displays genetic interactions with TRAPP II-encoding genes and the gene product co-fractionates with and interacts with yeast TRAPP II. Taken together these results indicate that TRAPPC2L and its yeast ortholog YEL048c are novel TRAPP-interacting proteins that may modulate the function of the TRAPP II complex.  相似文献   

7.
Incorporation of chimeric gag protein into retroviral particles.   总被引:38,自引:36,他引:2       下载免费PDF全文
The product of the Rous sarcoma virus (RSV) gag gene, Pr76gag, is a polyprotein precursor which is cleaved by the viral protease to yield the major structural proteins of the virion during particle assembly in avian host cells. We have recently shown that myristylated forms of the RSV Gag protein can induce particle formation with very high efficiency when expressed in mammalian cells (J. W. Wills, R. C. Craven, and J. A. Achacoso, J. Virol. 63:4331-4343, 1989). We made use of this mammalian system to examine the abilities of foreign antigens to be incorporated into particles when fused directly to the myristylated Gag protein. Our initial experiments showed that removal of various portions of the viral protease located at the carboxy terminus of the RSV Gag protein did not disrupt particle formation. We therefore chose this region for coupling of iso-1-cytochrome c from Saccharomyces cerevisiae to Gag. This was accomplished by constructing an in-frame fusion of the CYC1 and gag coding sequences at a common restriction endonuclease site. Expression of the chimeric gene resulted in synthesis of the Gag-cytochrome fusion protein and its release into the cell culture medium. The chimeric particles were readily purified by simple centrifugation, and transmission electron microscopy of cells that produced them revealed a morphology similar to that of immature type C retrovirions.  相似文献   

8.
NSP1 is an essential nuclear pore protein in yeast. We observed that anti-NSP1 antibodies label mammalian nuclear pore complexes and recognize nucleoporin p62. Also peptide antibodies raised against the NSP1 carboxy-terminal end cross-react with p62, a conserved component of the nuclear pore complex in higher eukaryotes. To further analyze the structural and functional similarity between NSP1 and mammalian nucleoporins, we cloned and sequenced nucleoporin p62 from a HeLa cDNA library. Human p62 consists of a carboxy-terminal domain homologous to the essential yeast NSP1 carboxy-terminal domain and an amino-terminal half resembling the repetitive middle domain of NSP1. The full-length p62 and a fusion protein consisting of cytosolic mouse dihydrofolate reductase (DHFR) and the p62 carboxy-terminal domain were expressed in transfected HeLa cells. Only overexpressed full-length p62, but not the DHFR-C-p62 fusion protein, binds wheat germ agglutinin (WGA). This suggests that modification by N-acetylglucosamine is mainly restricted to the repetitive amino-terminal half of p62 and implies a role of this type of repetitive sequences in nuclear transport. In the transfected HeLa cells, the DHFR-C-p62 fusion protein forms patchy aggregates that accumulate at the nuclear periphery but are also scattered through the cytoplasm. It is suggested that nucleoporin p62 may be targeted and anchored to the pore complex via its carboxy-terminal domain which reveals a hydrophobic heptad repeat organization similar to that found in lamins and other intermediate filament proteins.  相似文献   

9.
p34, a specific p-nitrophenyl phosphatase (pNPPase) was identified and purified from the murine cell line EL4 in a screen for the intracellular molecular targets of the antiinflammatory natural product parthenolide. A BLAST search analysis revealed that it has a high degree of sequence similarity to two yeast alkaline phosphatases. We have cloned, sequenced, and expressed p34 as a GST-tagged fusion protein in Escherichia coli and an EE-epitope-tagged fusion protein in mammalian cells. Using p-nitrophenyl phosphate (pNPP) as a substrate, p34 is optimally active at pH 7.6 with a K(m) of 1.36 mM and K(cat) of 0.052 min(-1). Addition of 1 mM Mg(2+) to the reaction mixture increases its activity by 14-fold. Other divalent metal ions such as Co(2+) and Mn(2+) also stimulated the activity of the enzyme, while Zn(2+), Fe(2+), and Cu(2+) had no effect. Furthermore, both NaCl and KCl enhanced the activity of the enzyme, having maximal effect at 50 and 75 mM, respectively. The enzyme is inhibited by sodium orthovanadate but not by sodium fluoride or okadaic acid. Mutational analysis data suggest that p34 belongs to the group of phosphatases characterized by the sequence motif DXDX(T/V).  相似文献   

10.
Four mammalian beta-spectrin genes are currently recognized, all encode proteins of approximately 240-280,000 M(r) and display 17 triple helical homologous approximately 106-residue repeat units. In Drosophila and Caenorhabditis elegans, a variant beta spectrin with unusual properties has been recognized. Termed beta heavy (beta(H)), this spectrin contains 30 spectrin repeats, has a molecular weight in excess of 400,000, and associates with the apical domain of polarized epithelia. We have cloned and characterized from a human retina cDNA library a mammalian ortholog of Drosophila beta(H) spectrin, and in accord with standard spectrin naming conventions we term this new mammalian spectrin beta 5 (betaV). The gene for human betaV spectrin (HUBSPECV) is on chromosome 15q21. The 11, 722-nucleotide cDNA of betaV spectrin is generated from 68 exons and is predicted to encode a protein with a molecular weight of 416,960. Like its fly counterpart, the derived amino acid sequence of this unusual mammalian spectrin displays 30 spectrin repeats, a modestly conserved actin-binding domain, a conserved membrane association domain 1, a conserved self-association domain, and a pleckstrin homology domain near its COOH terminus. Its putative ankyrin-binding domain is poorly conserved and may be inactive. These structural features suggest that betaV spectrin is likely to form heterodimers and oligomers with alpha spectrin and to interact directly with cellular membranes. Unlike its Drosophila ortholog, betaV spectrin does not contain an SH3 domain but displays in repeat 5 a 45-residue insertion that displays 42% identity to amino acids 85-115 of the E4 protein of type 75 human papilloma virus. Human betaV spectrin is expressed at low levels in many tissues. By indirect immunofluorescence, it is detected prominently in the outer segments of photoreceptor rods and cones and in the basolateral membrane and cytosol of gastric epithelial cells. Unlike its Drosophila ortholog, a distinct apical distribution of betaV spectrin is inapparent in the epithelial cell populations examined, although it is confined to the outer segments of photoreceptor cells. The complete cDNA sequence of human betaV spectrin is available from GenBank(TM) as accession number.  相似文献   

11.
Shuttling of proteins between nucleus and cytoplasm in mammalian cells is facilitated by the presence of nuclear localization signals (NLS) and nuclear export signals (NES), respectively. However, we have found that Tus, an E. coli replication fork arresting protein, contains separate sequences that function efficiently as NLS and NES in mammalian cell lines, as judged by cellular location of GFP-fusion proteins. The NLS was localized to a short stretch of 9 amino acids in the carboxy-terminus of Tus protein. Alterations of any of these basic amino acids almost completely abolished the nuclear targeting. The NES comprises a cluster of leucine/hydrophobic residues located within 21 amino acids at the amino terminus of Tus. Finally, we have shown that purified GFP-Tus fusion protein or GFP-Tus NLS fusion protein, when added to the culture media, was internalized very efficiently into mammalian cells. Thus, Tus is perhaps the first reported bacterial protein to possess both NLS and NES, and has the capability to transduce protein into mammalian cells.  相似文献   

12.
Silver is a non-essential, toxic metal. The use of silver as an antimicrobial agent in many applications and its presence as a contaminant in foods and air can lead to accumulation in tissues. Despite its widespread use, the systems involved in the uptake of silver into mammalian cells are presently unknown. Previous studies have shown that copper uptake at the plasma membrane by copper transporter 1 (Ctr1) is inhibited by an excess of silver, suggesting that Ctr1 may function in importing silver into cells. In this study we examined directly the role of Ctr1 in the accumulation of silver in mammalian cells using over-expression experiments and mouse embryonic fibroblast cells lacking Ctr1. COS-7 cells transfected to express a human Ctr1-green fluorescent protein (hCtr1-GFP) fusion protein hyper-accumulated silver when incubated in medium supplemented with low micromolar concentrations (2.5–10 μmol/L) of AgNO3. An hCtr1-GFPM150L,M154L variant deficient for copper transport failed to stimulate accumulation of silver. Mouse embryonic fibroblast cells lacking Ctr1 showed approximately a 50% reduction in silver content when incubated in silver-supplemented medium compared to a wild-type isogenic cell line. Collectively, these data demonstrate that Ctr1 transports both copper and silver and suggest that Ctr1 is an important transport protein in the accumulation of silver in mammalian cells.  相似文献   

13.
A fusion protein (scu-PA:AV) was expressed in the baculovirus expression system and secreted from Sf9 cells lead by signal peptides, 2mel and 3egt. The scu-PA:AV displays both the urokinase activity and membrane binding activity of its parental components. Our work indicated that it is possible to be developed as a thrombus-targeting drug.  相似文献   

14.
African swine fever virus (ASFV), a large icosahedral deoxyvirus, is the causative agent of an economically relevant hemorrhagic disease that affects domestic pigs. The major purpose of the present study was to investigate the nuclear transport activities of the ASFV p37 and p14 proteins, which result from the proteolytic processing of a common precursor. Experiments were performed by using yeast-based nucleocytoplasmic transport assays and by analysis of the subcellular localization of different green fluorescent and Myc fusion proteins in mammalian cells. The results obtained both in yeast and mammalian cells clearly demonstrated that ASFV p14 protein is imported into the nucleus but not exported to the cytoplasm. The ability of p37 protein to be exported from the nucleus to the cytoplasm of both yeast and mammalian cells was also demonstrated, and the results clearly indicate that p37 nuclear export is dependent on the interaction of the protein with the CRM-1 receptor. In addition, p37 was shown to exhibit nuclear import activity in mammalian cells. The p37 protein nuclear import and export abilities described here constitute the first report of a nucleocytoplasmic shuttling protein encoded by the ASFV genome. Overall, the overlapping results obtained for green fluorescent protein fusions and Myc-tagged proteins undoubtedly demonstrate that ASFV p37 and p14 proteins exhibit nucleocytoplasmic transport activities. These findings are significant for understanding the role these proteins play in the replication cycle of ASFV.  相似文献   

15.
Ryu J  Han K  Park J  Choi SY 《Molecules and cells》2003,16(3):385-391
Poor membrane permeability of proteins is a major limitation of protein therapy. In a previous study, we showed that the minimal sequence required for efficient transduction of Tat-GFP is the basic domain from 49-57 of HIV-1 Tat called the protein transduction domain (PTD. Here we have generated HIV-1 Tat PTD GFP fusion proteins in which HIV-1 Tat PTD is fused with the N- and/or C-termini of GFP. The various GFP fusion proteins were purified from Escherichia coli and characterized for their ability to enter mammalian cells using Western blot analysis, confocal microscopy and flow cytometry. The GFP fusion protein with Tat PTD at its C-terminus was taken up as efficiently as the GFP fusion protein with Tat PTD at its N-terminus. However, the same protein with PTDs at its both termini was taken up even more efficiently. All the GFP fusion proteins were present in both the nucleus and cytosol of the transduced cells. Uptake was lower at 4 degrees C than at 37 degrees C. The availability of the expression vectors developed in this study may help to devise novel strategies in the rational development of protein-based drugs.  相似文献   

16.
Yeast mutants of cell cycle gene cdc48-1 arrest as large budded cells with microtubules spreading aberrantly throughout the cytoplasm from a single spindle plaque. The gene was cloned and disruption proved it to be essential. The CDC48 sequence encodes a protein of 92 kD that has an internal duplication of 200 amino acids and includes a nucleotide binding consensus sequence. Vertebrate VCP has a 70% identity over the entire length of the protein. Yeast Sec18p and mammalian N-ethylmaleimide-sensitive fusion protein, which are involved in intracellular transport, yeast Pas1p, which is essential for peroxisome assembly, and mammalian TBP-1, which influences HIV gene expression, are 40% identical in the duplicated region. Antibodies against CDC48 recognize a yeast protein of apparently 115 kD and a mammalian protein of 100 kD. Both proteins are bound loosely to components of the microsomal fraction as described for Sec18p and N-ethylmaleimide-sensitive fusion protein. This similarity suggests that CDC48p participates in a cell cycle function related to that of N-ethylmaleimide-sensitive fusion protein/Sec18p in Golgi transport.  相似文献   

17.
A cDNA was isolated from the shrimp Penaeus japonicus by homology cloning. Similar to the mammalian Ras proteins, this shrimp hepatopancreas cDNA encodes a 187-residue polypeptide whose predicted amino acid sequence shares 85% homology with mammalian KB-Ras proteins and demonstrates identity in the guanine nucleotide binding domains. Expression of the cDNA of shrimp in Escherichia coli yielded a 25-kDa polypeptide with positive reactivity toward the monoclonal antibodies against Ras of mammals. As judged by nitrocellulose filtration assay, the specific GTP binding activity of ras-encoded p25 fusion protein was approximately 30,000 units/mg of protein, whereas that of GDP was 5,000 units/mg of protein. In other words, the GTP bound form of ras-encoded p25 fusion protein prevails. Fluorography analysis demonstrated that the prenylation of both shrimp Ras-GDP and shrimp Ras-GTP by protein geranylgeranyltransferase I of shrimp Penaeus japonicus exceeded that of nucleotide-free form of Ras by 10-fold and four-fold, respectively. That is, the protein geranylgeranyl transferase I prefers to react with ras-encoded p25 fusion protein in the GDP bound form.  相似文献   

18.
19.
UFD1L is the human homologue of the yeast ubiquitin fusion degradation 1 (Ufd1) gene and maps on chromosome 22q11.2 in the typically deleted region (TDR) for DiGeorge/velocardiofacial syndromes (DGS/VCFS). In yeast, Ufd1 protein is involved in a degradation pathway for ubiquitin fused products (UFD pathway). Several studies have demonstrated that Ufd1 is a component of the Cdc48-Ufd1-Npl4 multiprotein complex which is active in the recognition of several polyubiquitin-tagged proteins and facilitates their presentation to the 26S proteasome for protein degradation or even more specific processing. The multiprotein complex Cdc48-Ufd-Npl4 is also active in mammalian cells. The biochemical role of UFD1L protein in human cells is unknown, even though the interaction between UFD1L and NPL4 proteins has been maintained. In order to clarify this issue, we examined the intracellular distribution of the protein in different mammalian cells and studied its involvement in the Fas and ceramide factors-mediated apoptotic pathways. We established that in mammalian cells, Ufd1l is localized around the nucleus and that it does not interfere with Fas-and ceramide-mediated apoptosis.  相似文献   

20.
Hepatitis B surface antigen (HBsAg), the major coat protein of hepatitis B virus, is also secreted from cells as a subviral particle, without concomitant cleavage of N-terminal amino acid sequences. We examined this unusual export process in a cell-free system and showed that the initial product of HBsAg biosynthesis is an integral transmembrane protein, with most or all of its C-terminal half on the lumenal side of the endoplasmic reticulum membrane. To study the nature of its topogenic signals, we synthesized fusion proteins between HBsAg and the nonsecreted protein alpha-globin. Fusion proteins in which approximately 100 amino acids of globin preceded all HBsAg sequences were successfully translocated in vitro; the same domain as in the wild-type HBsAg was transported into the vesicle lumen. Fusions in which the entire globin domain was C terminal were able to translocate both the C-terminal region of HBsAg and its attached globin domain. Thus, uncleaved signal sequences in p24s function to direct portions of the molecule across the membrane and are able to perform this function even when positioned in an internal protein domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号